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ABSTRACT

Objective: Finding relevant datasets is important for promoting data reuse in the biomedical domain, but it is

challenging given the volume and complexity of biomedical data. Here we describe the development of an

open source biomedical data discovery system called DataMed, with the goal of promoting the building of addi-

tional data indexes in the biomedical domain.

Materials and Methods: DataMed, which can efficiently index and search diverse types of biomedical datasets

across repositories, is developed through the National Institutes of Health–funded biomedical and healthCAre

Data Discovery Index Ecosystem (bioCADDIE) consortium. It consists of 2 main components: (1) a data inges-

tion pipeline that collects and transforms original metadata information to a unified metadata model, called

DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries. In

addition to describing its architecture and techniques, we evaluated individual components within DataMed, in-

cluding the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the

overall performance of the dataset retrieval engine.

Results and Conclusion: Our manual review shows that the ingestion pipeline could achieve an accuracy of

90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark

dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10

(P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural

language processing and terminology services. Currently, we have made the DataMed system publically avail-

able as an open source package for the biomedical community.

Keywords: data discovery index, metadata, dataset, information storage and retrieval, information dissemination

VC The Author 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For Permissions, please email: journals.permissions@oup.com 300

Journal of the American Medical Informatics Association, 25(3), 2018, 300–308

doi: 10.1093/jamia/ocx121

Advance Access Publication Date: 13 January 2018

Research and Applications

https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

With the advances in recent technologies producing large datasets,

the bottleneck of biomedical research is shifting from digital data

generation to data management and analysis. Large, complex, and

diverse data are continually being generated and are accumulating

exponentially, becoming valuable sources for biomedical discovery.

To take full advantage of existing data, facilitate knowledge discov-

ery, and make scientific discoveries more productive and reproduc-

ible, following the widely endorsed FAIR principles (to make data

Findable, Accessible, Interoperable, and Reusable)1 is recom-

mended. However, there are unique challenges in collecting and nor-

malizing preexisting experimental data from disparate sources for

different purposes.

The biomedical and healthCAre Data Discovery Index Ecosystem

(bioCADDIE) project,2 funded by the National Institutes of Health

(NIH) via the Big Data to Knowledge program, is focused on the dis-

covery of biomedical datasets. Since its start, researchers, service pro-

viders, and knowledge experts around the globe have participated in

various aspects of bioCADDIE, such as working groups, pilot projects,

and dataset retrieval challenges (https://biocaddie.org/). To instantiate

the concepts and recommendations developed by this large commu-

nity, bioCADDIE developed a prototype data discovery index (DDI)

named DataMed, which collects and indexes metadata from broad

types of biomedical datasets of interest from heterogeneous sources

and makes them searchable through a web-based interface.3 We be-

lieve that metadata from diverse datasets can be mapped to a unified

representation model, thus enabling more efficient search across

domain-specific repositories and making data more discoverable by

users. Further details and discussion of the motivations for building

DataMed are available here.3 DataMed is available as an open source

package, to allow the research community to leverage its technologies

to build additional biomedical data indexes. This article describes

technical details about developing DataMed, including its metadata

ingestion/indexing pipeline and search engine functionalities.

BACKGROUND

To embrace the big data era, the biomedical research community

has devoted substantial effort and resources to the goal of enabling

biomedical research as a digital enterprise. Making datasets findable

is key to promoting the reuse of existing datasets, and major initia-

tives have been established to build repositories and knowledge

bases for specific types of data and domains.4 For example, Gene

Expression Omnibus is a public functional genomics data repository

for gene expression data.5 Protein Data Bank serves as an informa-

tion portal for biological macromolecular structures.6 ImmPort is a

data repository for public data sharing of immunological studies.7

Such data repositories have greatly improved the discoverability

and reuse of datasets, since researchers can easily find datasets from

a familiar repository. However, with an increasing number of repos-

itories, search capabilities for different types of data across multiple

repositories is needed. Currently, researchers need to search individ-

ual repositories, which is time consuming and also limits the ideas

that researchers can have when they know the datasets they have ac-

cess to. An integrated biomedical data retrieval and discovery system

across different repositories is a first step toward removing this limi-

tation. A successfully integrated search engine will provide a one-

stop shop, where data seekers can quickly access all these resources,

improving the community’s capability to utilize existing databases

for data query, knowledge dissemination, and integrative analysis.

DDI systems to help users find datasets across multiple reposito-

ries exist. The Omics Discovery Index aggregates and indexes

“omics” datasets, including 90 729 datasets from 15 repositories.8

Other resources, such as Datacite, provide basic foundations for

data discovery for general research data. As of the time of writing,

Datacite includes 8 452 860 works and 1287 data centers globally

from many different domains.9 The Neuroscience Information

Framework10 and the National Institute of Diabetes and Digestive

and Kidney Disease Information Network11 are community aggre-

gators focused on specific biomedical domains, assisting researchers

in finding data and information such as organisms, reagents, etc.

They aggregate information from>230 resources and support

efforts such as the Resource Identification Initiative.12 Dataverse,

which includes 49 122 datasets, is an open source system for

researchers, data authors, publishers, etc., to share, preserve, cite,

explore, and analyze research data.13 In the biomedical domain,

there is no comprehensive search engine covering a broad spectrum

of repositories. Several technical challenges exist when building such

an integrated search engine, including extracting and normalizing

metadata from different repositories to a unified metadata model,14

as well as finding highly relevant datasets for users in a huge search

space.

The mission of DataMed is to provide a DDI to help users effi-

ciently find and access existing datasets that are distributed across a

wide range of repositories in the biomedical domain. In DataMed,

we developed a metadata ingestion pipeline which extracts, maps,

and indexes by following the DatA Tag Suite (DATS)14 based on in-

put from the community and a thorough analysis of existing meta-

data from popular repositories. We implemented a fully functional

search engine for retrieving relevant datasets, with a user-friendly in-

terface and other advanced technologies, such as Elasticsearch,15

natural language processing (NLP), and terminology services. This

paper provides a detailed description of DataMed’s architecture and

technologies, as well as evaluations of individual components.

METHODS

DataMed consists of 2 major components: the ingestion and index-

ing pipeline and the search engine (Figure 1). The ingestion and

indexing pipeline collects metadata from different repositories,

maps them to the DATS model, and then indexes them to the Elas-

ticsearch endpoint. The search engine is a web-based application

that consists of a user interface and various search functionalities,

including the core Elasticsearch-based ranking algorithm, query ex-

pansion module utilizing NLP and terminologies, and other ad-

vanced services, such as a dataset similarity calculator.

Ingestion and indexing pipeline
System architecture

For data ingestion, transformation, and enhancement, DataMed

uses a horizontally scalable message oriented extract-transform-load

system. As shown in Figure 2, the pipeline is a loosely coupled dis-

tributed system consisting of a message dispatcher and one or more

data processing components (consumers), with a command line

management interface. The dispatcher acts as a hub, orchestrating

the data ingestion and processing pipeline using persistent queues.

The consumers are managed within a consumer container, wherein

each consumer receives a data record wrapper document from the

consumer container, does an operation such as a transformation,

cleanup, and/or enhancement on the document, and returns the

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3 301

https://biocaddie.org/


document to the consumer container. The consumer container saves

the updated document to the data store (MongoDB), and then places

a message in the message queue for the dispatcher. The dispatcher

uses the pipeline specification to decide the next step and places a

message in the corresponding consumer’s input message queue. All

running consumer containers listen to the message queues config-

ured for the consumers they manage and provide the data record

wrapper for processing upon receipt of a new message in the input

queue in an asynchronous manner.

Data ingestion

To handle heterogeneity in the data availability from multiple insti-

tutions and laboratories, the pipeline abstracts out retrieval modes

(eg, REST API, FTP), data formats (eg, XML, CSV, JSON), and

data traversal functionality. Different ingestors for retrieval mode

and data format combinations are developed as specific consumers

using a specialized plug-in interface. The extent of effort required to

develop a new plug-in for a consumer varies. If a new ingest con-

sumer needs to be created from scratch, it takes, with testing, any-

where between half a day (4 h) to multiple days, depending on the

complexity. For new enhancement modules that work as consumers,

the time required to develop the module also depends on the com-

plexity of the processing required (4 h and up for a simple one).

Now, we have developed a number of ingest consumers for different

repositories; therefore, for many new sources, we just need to

configure a current consumer rather than develop a new ingest con-

sumer for the source. Data traversal is generalized where the iterators

allow streaming to retrieve data only when needed, facilitating the

processing of datasets much larger than the system memory. Each

specific ingestor uses these iterator(s) to retrieve and traverse the

records. Each traversed raw data record is converted to JavaScript

Object Notation (JSON) format, wrapped in a JSON document with

additional pipeline management and provenance information, and

stored in a MongoDB database for further processed.

Data transformation

The ingested raw data is transformed into the DATS format using a

domain-specific language called JSONTL. The language uses JSON-

Path, similar to XPath, to specify branches in a JSON object tree. A

matching branch from the source JSON document is mapped to a

branch in the destination document. Currently, the incoming con-

verted JSON is mapped to the index DATS representation manually

for each repository. Thus, the DATS metadata model provides the

analogous structures for the curators to map. This mapping can be

one-to-one, many-to-one, one-to-many, or many-to-many. To allow

all forms of mapping and arbitrary field value manipulation and

Figure 1. Architecture of DataMed

Figure 2. Workflow of the ingestion and indexing pipelines

302 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3



combination, the language allows embedding scripts written in the

Python language to be included in the transformation rules. The lan-

guage also allows conditional transformations. The transformation

engine is integrated into a consumer and run as a part of the process-

ing pipeline by the consumer containers.

Data enhancement

In addition to the original metadata, enhancements to the metadata

records are performed by the current DataMed ingestion and indexing

pipeline. These include data citation enhancer (which attaches informa-

tion on citations of the dataset from other resources) and an NLP-

based biomedical named entity enhancer (please see the subsection on

NLP service for details). Using the NLP enhancement on a metadata re-

cord, particularly on longer text descriptions and abstracts, provides a

detailed list of semantic concepts contained within the dataset descrip-

tion. This enhanced DATS transformation for each record is stored in

the MongoDB and indexed to the Elasticsearch cluster.

Search engine
The DataMed search engine is a PHP-based web application following

the MVC (Model, View, and Control) architecture.16 The user inter-

face provides various ways for users to interactively refine their search

queries and navigate among returned results. Different search function-

alities based on NLP and terminology technologies are implemented to

improve the search performance and user experience.

User interface

DataMed provides a Google-like search box query entry as well as

an advanced search option allowing expert users to define the search

fields and build specialized queries using Boolean operators. The

ranked list of relevant results can be further filtered and refined by

the user with facets (eg, data types, repository names). Each dataset

record provides general information, such as title, description, re-

leased data, etc., and link to the dataset in the original data resource

for users to access the dataset.

The general view applies across all repositories, while the detailed

view for a single repository has additional repository-specific informa-

tion. The DataMed user interface (UI) also provides many other func-

tions, such as sharing selected datasets via e-mail, downloading them,

or storing them as collections using users’ DataMed accounts. We pro-

vide additional information, such as similar datasets in DataMed via

similar dataset service, and associated publications and grants, by link-

ing to external resources such as PubMed17 and NIH RePORT.18

Search functionalities

Figure 3 shows the workflow of the DataMed search engine. After a

user enters a query, the NLP service extracts biomedical concepts

that are used to generate synonyms via terminology service. The syn-

onyms are added to the original search query and sent to Elastic-

search to retrieve results. We describe each of the services below.

NLP service: Two different NLP solutions are used to identify bio-

medical concepts from queries: (1) general Medical Subject Headings

concepts are extracted using the existing MetaMap Lite system,19 and

(2) specific concepts such as diseases, chemicals, genes, and biological

processes are identified using in-house NLP programs. Both rule-based

and machine learning-based NLP pipelines developed using the

CLAMP NLP toolkit (clamp.uth.edu) are utilized. Identified entities

are mapped to Unified Medical Language System (UMLS) Concept

Unique Identifiers.20–22 Our NLP service is implemented as (1) web ser-

vice, used for real-time query expansion, and (2) Java program, used as

NLP enhancer in the ingestion pipeline.

Terminology service: The terminology server is based on Sci-

Graph (https://github.com/SciGraph/SciGraph) and Neo4j, via

adoption of major ontologies such as Medical Subject Headings,23

SNOMED CT,24 Gene Ontology,25 Foundational Model of Anat-

omy,26 National Center for Biotechnology Information Taxon-

omy,27 and Hugo Gene Nomenclature.28 These different

terminologies are integrated in the context of the UMLS Metathe-

saurus to obtain a unified terminology of related terms. A web ser-

vice supports real-time concept and relationship (eg, synonym and

parent-child) identification, which is used along with NLP service

for query expansion and metadata enrichment and as a stand-alone

component for spelling correction and auto-completion functions.

Ranking algorithm: Currently, DataMed 3.0 uses Elasticsearch’s

default ranking algorithm (cosine similarity based on vector space

model using TF-IDF weighting29) to retrieve and rank datasets from

the entire collection. We are in the process of integrating novel

search algorithms from the bioCADDIE dataset retrieval chal-

lenge,30 and this should be reflected in future releases.

Similar dataset: The similar dataset service is an iterative variant

of the Random Indexing paradigm.31,32 Dataset vectors are composed

from word vectors using distributional semantics methods.33 The word

vectors undergo transformations prior to being added to the dataset

vector, indicating the field in which they occur such that datasets with

similar (but not necessarily identical) words in the same field have simi-

lar vectors. Numerical fields such as date are encoded into semantic

vector representations34,35 such that vectors for datasets published at a

similar (but not identical) time are related to one another.36

Evaluation
To evaluate the accuracy of the ingestion pipeline, we randomly col-

lected metadata of 50 datasets and their outputs by the ingestion pipe-

line – the mapped DATS elements. We manually compared each

DATS element with the original metadata records to determine

whether it was correctly mapped by the ingestion pipeline. The accu-

racy, defined as the ratio between the number of correctly mapped

DATS elements and the number of total elements, is reported. We also

evaluated the scalability of the ingestion pipeline by setting up a test

system on the Amazon cloud consisting of 6 EC2 instances: one for the

MongoDB database, another for the dispatcher, ActiveMQ messaging

server, and consumer container process, and 4 running a consumer

container. The consumer containers were serially introduced after at

Figure 3. Workflow of the DataMed web application
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least one hour of processing. We report the number of datasets proc-

essed per second after the introduction of each consumer container.

To determine how the DATS elements are represented in bio-

medical data repositories, we assessed the frequency of each DATS

element across repositories. For each DATS element, we manually

checked whether a repository contained this element in its metadata

records. We then defined the frequency of an element as the ratio be-

tween the number of data repositories that contained this element

and the number of total repositories that we examined. We report

the frequency for each DATS element.

We also evaluated the NLP service using a corpus containing tex-

tual description of 700 randomly selected datasets. For each dataset,

entities (eg, genes and chemicals) were annotated by domain experts,

resulting in a total of 2303 entities. We report performance using

precision, recall, and F1-measure. To evaluate the terminology ser-

vice for generating synonyms, we collected search terms in DataMed

with a frequency>10 (156 terms in total) in October 2016 and man-

ually examined the synonyms we obtained from the terminology ser-

vice. We report the number of terms that have the correct synonyms.

In the bioCADDIE Dataset Retrieval Challenge,30,37 we gener-

ated a benchmark dataset, which contains 15 user queries and

20 184 samples with relevance judgments. Using this benchmark

dataset, we evaluated DataMed’s ranking algorithm by reporting

the inferred average precision (infAP), the inferred normalized

discounted cumulative gain (infNDCG), and the precision at 10

(p@10). p@10 is the number of relevant results in the top 10 search

results, which is a metric often used in modern information retrieval.

We also report infAP, infNDCG, and p@10 for DataMed without

synonym expansion of user queries to demonstrate the utility of

NLP and terminology services.

RESULTS

As of July 2017, DataMed had ingested 2 336 403 datasets from 74

repositories across 15 data types. Fifteen organizations have submit-

ted requests to DataMed to index their repositories. We are in the

process of ingesting more repositories. Regular updates to the index

are planned to include recently added datasets and changes of the

Figure 4. Screenshot of search page in DataMed
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metadata of datasets (in case of any modifications) in a timely man-

ner. Among different types of ingestors, the Web Ingestor and Data-

base Ingestor are the 2 most widely used across different repositories.

Figure 4 shows a screenshot of the search page in DataMed. In

the left column, facets are provided for users to refine search results.

The middle column displays the search results. Visualization of data-

set release dates via a timeline graph, synonyms, and search query

details are shown on the right. Figure 5 shows screenshots of the in-

formation page for a selected dataset. Besides the metadata of the

dataset, similar datasets, related publications, and grant information

are also provided if available.

To improve DataMed and monitor usage, a user-activity track-

ing module is implemented that logs all queries as well as key-

strokes and clicks. To further engage users and solicit user input

during the development process, DataMed collects feedback

(https://datamed.org/feedback.php) via multiple modes: (1) a

“Contact Us” form, (2) a System Usability Scale (SUS)-style ques-

tionnaire, and (3) an issue-/bug-reporting repository. Feedback

Figure 5. Screenshot of a single item page in DataMed
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from all routes is logged into GitHub, which serves as a central

node to track user-reported issues for the development team. To

better understand users’ needs, usability studies were also con-

ducted, providing guidance for the iterative development of

DataMed.38

The evaluation exercise showed that among 1361 DATS ele-

ments from the 50 randomly chosen datasets, 1225 were correctly

identified, indicating an accuracy of 90% for the ingestion pipeline.

In the scalability testing, the number of datasets processed per sec-

ond shows a linear increase with each additional consumer con-

tainer computation unit, demonstrating that the ingestion pipeline is

computationally scalable.

Table 1 shows the frequencies of core DATS elements across re-

positories. Frequencies of all DATS element are provided in Supple-

mentary Table S1. Elements such as Dataset Title and Data

Repository Name show high frequencies>85%. However, some

data fields, such as Grant Name and Software Name, have very low

frequencies, indicating a need to link these external resources.

Table 2 shows the performance of the NLP engine on recogniz-

ing different types of biomedical entities. The overall precision,

recall, and F-measures are 91.88%, 71.38%, and 79.66%, respec-

tively, on 700 randomly selected datasets. For synonym generation

by the terminology service, out of the total 156 search terms exam-

ined, 124 returned the correct synonyms, achieving an accuracy rate

of 79.49%.

On the benchmark dataset generated for the bioCADDIE dataset

retrieval challenge,30,37 the current ranking algorithm of DataMed

(with query expansion by NLP and terminology services) has an

infAP of 0.203, an infNDCG of 0.354, and a p@10 of 0.602, which

are lower than the best entry in the challenge (infAP, infNDCG, and

p@10 of 0.147, 0.513, 0.760), indicating a need to improve the

ranking algorithm. When we disabled the query expansion function,

infAP, infNDCG, and p@10 dropped to 0.098, 0.259, and 0.468,

respectively.

DataMed was first publicly launched on June 30, 2016. Since

then, we have been tracking the traffic to DataMed using Google

Analytics. About a year later (July 2017), and still in a prototype

stage, DataMed had attracted 11 144 users from 126 countries.

DISCUSSION

Increased availability of digital data and growing multidomain re-

search areas in the biomedical field have created a need for users

from differing disciplines to find and retrieve datasets that are not

from their direct areas of expertise. Therefore, toolsets that provide

a coherent presentation of metadata information across repositories

housing biomedical datasets are important for data search and ac-

cess. DataMed is one of the first data discovery indexes that harvest

metadata from a broad range of data providers and make it avail-

able through a single integrated search system. The proximal goal of

DataMed is to develop the capability to search across datasets from

different repositories, which it has achieved. The depth in search ca-

pabilities achieved by domain-specific search engines forms the next

step that the DataMed team would like to pursue, and further evalu-

ation is needed to validate its usefulness.

On account of the diverse nature of metadata fields and reposito-

ries, some of the issues arising during the development of DataMed

overlap with those of data integration efforts aiming to link information

across heterogeneous datasets (for a review, see39). The application of

knowledge resources such as ontologies and semantic web technologies

to draw connections across disparate datasets has been an active area of

research over the past decade (eg, see40–42). The goals of these efforts

have generally involved developing an integrated data model to permit

reasoning across data drawn from different sources. In contrast,

DataMed aims to facilitate search across a broad range of inconsistently

indexed data repositories. However, many of the technologies and

approaches used to facilitate dataset integration are also pertinent to

dataset indexing for information retrieval purposes, as is evident in

DataMed’s utilization of a common data model (DATS14) for metadata

fields, and the application of NLP and terminology services to attempt

to map between different expressions of related concepts. Our project is

not the first to apply these technologies to dataset retrieval. One line of

related research concerns the mapping of dataset metadata to concepts

in the UMLS,43–46 including at times using the resulting annotations to

draw novel inferences.47 As the primary goal of the DataMed prototype

is to facilitate search and retrieval across a large number of repository

types, it differs from these efforts, in both its focus and scope.

DataMed uses a modular architecture and supports use cases

from the general, biological, and translational communities with a

number of common needs for metadata searches. This makes

DataMed broad (rather than deep) in its search capabilities, allowing

it to easily span a range of diverse domains and types of data. There

are other centralized repositories, such as the Omics Discovery In-

dex,8 developed by the biomedical community that address needs that

are specific to one or few of the various data types of biomedicine.

DataMed ingests such aggregators (ie, other indices) in addition to

the repositories that house the datasets themselves in an effort to pro-

vide a comprehensive overview of all the available information for a

particular dataset. However, such data aggregators have not yet been

developed for the majority of biomedical areas, so future efforts could

involve developing a deeper index for each specialized domain.

Table 1. Frequency of core DATS elements

DATS legend Core DATS element Frequency (%)

Dataset Title 86

Types 73

Creators 52

Grant Name 4

Dimension Name 11

Type 4

Data repository Name 89

Organization Name 84

Software Name 2

Table 2. NER results of the NLP system

Evaluation metrics Gene (%) Disease (%) Chemical (%) Biological process (%) Overall (%)

Precision 89.95 92.54 91.08 93.96 91.88

Recall 50.75 88.89 69.06 76.80 71.38

F-score 64.89 90.68 78.55 84.52 79.66

No. of Entities 670 684 462 487 2303
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DataMed is still a prototype and a work in progress. There are limi-

tations to the system. Since DataMed was designed to cover a broad

range of repositories, there is no in-depth indexing of the different re-

positories yet. DATS is also generalized and broad. Therefore,

DataMed in its current state cannot address use cases that require de-

tailed, granular metadata to answer queries. We are developing extend-

able attributes in DATS that can be used for deeper search, eg, finding

datasets with certain variables. Furthermore, the current ranking algo-

rithm of DataMed is a relatively baseline system. We are exploring in-

novative search strategies (such as learning-to-rank) that arose from

the Dataset Retrieval Challenge30 for integration into DataMed.

The DataMed team has also worked toward exposing the har-

vested metadata to other general search applications (eg, Google,

Yahoo, Bing, etc.) by providing schema.org markups. We have de-

veloped a RESTful API to provide programmatic access to all of

DataMed’s harvested metadata and additional user-interface fea-

tures. Such sharing capabilities make DataMed easily accessible not

only to the biomedical community, but also to those outside of the

biomedical sphere.

We are developing a proof-of-concept module to link DataMed

to external resources. For example, DataMed will use a plug-in to

access remotely located databases and tools from the Library of Inte-

grated Network-based Signatures Data Coordination and Integra-

tion Center (http://lincs-dcic.org/#/) as a visualization tool for the

results of user-requested data. Reusing components like these not

only provides additional data usability options, but also significantly

reduces duplication of programming effort and development costs.

The consortium approach to development has allowed DataMed

to receive input from various community members to produce a reus-

able, modular, portable, robust, feature-rich application. The

DataMed team is continuously improving the quality of the index and

expanding the scope of the ingested repositories. Evaluation of the

DATS model and other DataMed tools, not only by the bioCADDIE

team but also by the community, is critical for the long-term suste-

nance of the initiative. To this end, the team has made the codes avail-

able to the community as an open-source package in GitHub (https://

github.com/biocaddie), as well as datasets such as the benchmark

dataset from the Dataset Retrieval Challenge.37 We are not only pro-

viding information about the existence and usefulness of the tool to

the biomedical community, but are also actively pursuing different

strategies for long-term sustenance and maintenance of DataMed.

CONCLUSIONS

DataMed leverages scalable technologies to ingest, index, and search

diverse biomedical datasets across repositories. It demonstrates a

successful prototype for building an integrated dataset search engine

for the biomedical domain. Its flexible service oriented architecture

and the open source nature make it valuable for building other data

discovery indexes in the biomedical domain.
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