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Abstract

Connectivity in the cortex is organized at multiple scales 1-5, suggesting that scale-dependent 

correlated activity is particularly important for understanding the behavior of sensory cortices and 

their function in stimulus encoding. Here, we analyze the scale-dependent structure of cortical 

interactions by using maximum entropy models 6-9 to characterize multiple-tetrode recordings 

from primary visual cortex of anesthetized monkeys (Macaca mulatta). We compare the 

properties of firing patterns among local clusters of neurons (<300 microns) with neurons 

separated by larger distances (600-2500 microns). We find that local firing patterns are distinctive: 

while multi-neuronal firing patterns at larger distances can be predicted by pairwise interactions, 

patterns within local clusters often show evidence of high-order correlations. Surprisingly, these 

local correlations are flexible and rapidly reorganized by visual input. While they modestly reduce 

the amount of information that a cluster conveys, they also modify the format of this information, 

creating sparser codes by increasing the periods of total quiescence, and concentrating information 

into briefer periods of common activity. These results imply a hierarchical organization of 

neuronal correlations: simple pairwise correlations link neurons over scales of tens to hundreds of 

minicolumns, but on the scale of a few minicolumns, ensembles of neurons form complex 

subnetworks whose moment-to-moment effective connectivity is dynamically reorganized by the 

stimulus.

Early cortical sensory areas create internal representations of the sensory world. At the level 

of individual neurons, this process is reasonably well understood. For instance, in the 

primary visual cortex (V1) neurons respond selectively to components or features of the 

sensory stimulus, such as orientation or spatial frequency. But, because the activity of pairs 

of cortical neurons is correlated 10, the behavior of a network of cortical neurons cannot be 

fully understood from measurements of its individual responses. Understanding the 

functional role of correlations among groups of neurons is challenging because of the 

combinatorial explosion of possible interactions. However, the organization of cortical 
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connectivity suggests that certain types of interactions are particularly relevant to cortical 

processing.

A striking anatomical feature of the neocortex is that connectivity between neurons is highly 

structured. Across the cortical sheet, neurons are organized over a range of spatial scales: 

fine scale networks (50-100μm) display specific, nonrandom connectivity 1-3. Neurons with 

similar responses are grouped into functional columns which span several hundred microns 
4, and long range horizontal connections link neurons together over several millimeters 5, 11. 

The prominence of this multi-scale organization argues that scale-dependent interactions 

between neurons shape the behavior of cortical networks, and the manner in which they 

encode sensory information. This view predicts that cortical neurons participate in multiple 

subnetworks whose characteristics vary with spatial scale.

Directly addressing this question requires in vivo sampling (with high temporal resolution) 

of neuronal populations at different spatial scales and a principled way to characterize multi-

neuron activity. To do this, we combine multiple-tetrode recording with maximum entropy 

models 6-9. Multiple-tetrode recording in macaque primary visual cortex (Fig. 1a) enables 

sampling of cortical activity at different scales: each tetrode isolates several neurons within a 

radius of approximately 150 microns 12, and we separate the tetrodes by distances ranging 

from 600 microns to several millimeters. A complete characterization of the activity of a 

network of neurons is challenging, because the number of potential interactions grows 

exponentially as the network size increases. Even for small networks, it is infeasible to make 

enough measurements to accurately estimate multi-neuron joint histograms. Here, we record 

from small groups of neurons (3 to 6) and use maximum entropy models 6-9 to provide an 

insightful summary of the many possible interactions between them. In the simple case that 

neurons in a population are independent, the frequency of joint activity of any set of neurons 

can be predicted from the product of the individual neurons' mean firing rates. Maximum 

entropy models allow us to explore more complex hypotheses, such as, whether pairwise 

interactions account for the observed firing patterns. For example, given recordings from 

three neurons, we can ask if the frequency of triplet firing (the pattern – ‘111’) is predicted 

by the frequency of pairs of neurons firing (the patterns ‘011’, ‘110’ and ‘101’). Thus, we 

characterize a network by asking what kinds of simple interactions are sufficient to predict 

the observed distribution of firing patterns.

To test for the existence of scale-dependent functional subnetworks, we present a visual 

stimulus of a binary checkerboard stimulus, pseudorandom in space and time (Fig. 1b) and 

record from several neurons (typically 3) isolated on one or more tetrodes. We choose this 

stimulus because its lack of spatiotemporal correlations minimizes the possibility that 

neuronal correlations are merely driven by correlations within the stimulus itself 6. We bin 

multi-neuron firing patterns (10-15 ms bins, depending on the frame rate of the stimulus) to 

create a distribution of firing pattern counts (Fig. 1c). We ask how well the joint activity of 

these neurons is predicted by two models that have proved useful for studying the retina 6, 8: 

an independent model, Mind, which assumes that neurons are independent, and a pairwise 

model, Mpair, which takes into account interactions between pairs of neurons. Fig. 2 shows 

the extent to which these models account for observed firing patterns, both in terms of 

predicting the firing rates of specific configurations (left panels), and in terms of an overall 
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measure of goodness of fit (right panels). Although Mind (Fig. 2a,b) fits well for a fraction of 

recordings, it often fails for distances >300 μm and nearly always fails for nearby (<300 μm) 

recordings. In contrast, for distances >300 μm, Mpair fits well in 79/80 triplet recordings 

(Fig. 2c,d), but surprisingly, it often fits poorly for nearby recordings: 15/38 recordings have 

a log-likelihood ratio per minute of < -5 (5/23 triplets and 10/15 groups of four, five or six 

neurons - Supp. Fig. 6). A log-likelihood ratio per minute of -5 means that on average, after 

60 seconds of data, neuronal responses are 32 times more likely (25) to have come from a 

perfect model (Mobs) than from Mpair. These results are robust to errors in estimating joint 

firing activity due to spike sorting and other statistical artifacts (see Supplementary 

Information), and the degree of failure was uncorrelated with the similarity of orientation 

tuning of the neurons (data not shown).

Our finding, that pairwise correlations account for the multi-neuronal activity of neurons 

separated by several hundred microns, is consistent with previous studies from area 17 of the 

anesthetized cat 9 and studies of ex vivo retinal 6, 8 and cortical tissue 7. However, the failure 

of the pairwise model for nearby cortical neurons is novel and implies that complex local 

interactions distinguish the behavior of local cortical networks. The difference between local 

and long-range patterns of correlation shows that complex fine-scale anatomical 

connectivity 1-3 has an observable effect on network firing patterns.

To determine if local correlations play a role in encoding visual information, we analyzed 

how visual input affects the network behavior. We extend the maximum entropy approach to 

incorporate stimulus-dependent interactions by examining how the population firing pattern 

depends on the state of individual pixels within the overlap of the three neurons' receptive 

fields. We select the individual spatiotemporal pixel that maximally modulates the 

population response (Fig. 3a), subdivide the data into halves by conditioning on each of the 

two states of this “maximally informative pixel,” and fit the pairwise maximum entropy 

model (Mpair) to each half to the data.

For each recording site, this procedure generates a fit of Mpair to each stimulus condition 

(pixel ON/OFF). In Fig. 3b we plot these fits against the fit of Mpair without stimulus 

conditioning. Typically, conditioning on maximally informative pixels (blue dots) often 

significantly improves the fit of Mpair for one pixel state, and simultaneously worsens the fit 

for the other pixel state. (As a control for the statistical effects of halving the data available 

for each fit, we also conditioned on random pixels (red dots); this has a negligible effect on 

the fit of Mpair). If stimulus-varying pairwise correlations could account for the network 

correlation patterns, we would have found a very different result: conditioning on the 

maximally informative pixel, the main determinant of visual responsiveness, would improve 

the fit of Mpair for both states, rather than improve it for one state, and worsen it for the 

other (as we observe). Further conditioning (on the second- or third- most-informative 

pixels) continues to reveal data subsets in which the pairwise model fit worsens, but analysis 

of further conditioning is limited by the successive halving of the amount of data available 

to build the models (data not shown).

Our observation that the extent of failure of Mpair depends on the pixel state (Fig.3b,c), 

suggests that the effective connectivity 10 of local networks dynamically depends on visual 

Ohiorhenuan et al. Page 3

Nature. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



input, and can be modulated on a frame-by-frame basis (This need not mean changes in 

actual connections; more likely, it is the functional result of nonlinear interactions between 

the stimulus and the network.) To further support the notion that effective connectivity is 

rapidly modulated, we compare the interaction strengths between neurons when the neural 

response is conditioned on each of the two states of a pixel. These interaction strengths – the 

interaction parameters of the pairwise model – reflect correlated firing between two neurons 

which cannot be attributable to a third (unlike a peak in a cross-correlogram) 8. As a robust 

measure of the dependence of functional network connectivity on the two states of the pixel, 

we compared the mean interaction strengths of the pairwise models fit to each condition (see 

Methods). As shown in Fig. 3d, conditioning on maximally informative pixels (blue bars), 

but not random pixels (red bars), can substantially modulate overall functional connectivity 

(see also Supp. Fig. 7)

Since multi-neuronal correlations form dynamically even in response to spatiotemporally 

uncorrelated stimuli, we hypothesized that multineuronal correlations will be even stronger 

when stimuli contain correlations – as do naturalistic stimuli. Supp. Fig. 1 shows that this is 

indeed the case. For neurons at <300 μm, Mpair fails for 20/46 sites; overall, the fit of Mpair 

is worse for naturalistic stimuli (mean log likelihood ratio per minute, -11.7) than for 

pseudorandom ones (mean, -6.9). Moreover, Mpair occasionally fails at 600 μm (22/481) for 

naturalistic stimuli (Supp. Fig. 1, right); no failures of Mpair were seen at this distance for 

pseudorandom stimuli (Fig, 2c,d). However, since the correlation structure of natural stimuli 

is spatially extensive and complex 13, it is difficult to separate correlations that arise as a 

result of intrinsic network dynamics, from those which arise from simple (e.g. linear) 

filtering of the stimulus, or from nonlinear interactions that contours drive 14.

Finally, we consider two key functional aspects of local correlations: their impact on the 

amount of information carried, and on the format of this information (i.e., the neural code). 

As described below, we find a substantial effect on the latter, but only a minor effect on the 

former.

To determine the impact of high-order interactions on the amount of information carried, we 

compared the mutual information between the informative pixels and the neural responses 

generated under Mobs and Mpair (see Methods). As shown in Fig. 4a, higher-than-second 

order correlations have little effect on the overall information content. However, comparing 

Mpair and Mind (Fig. 4b) shows that there is a mild reduction in information content due to 

the second-order correlations (i.e., redundancy), as has been seen in previous studies in 

retina 15, primary visual cortex 16, 17, and inferior temporal cortex 18. Thus, while it has 

been suggested that fine-scale pairwise correlations might result in an increase in 

information content 19, 20 (i.e., synergy), we find that redundancy dominates for larger 

neuronal populations – supporting the notion that it is a strategy the cortex employs to 

maintain the fidelity of information in the face of variable individual neural responses 21, 

and that correlations do not increase the information conveyed by neurons 22.

The effect of local correlations on the format of the visual information is represented is 

shown in Fig. 4c. Correlations sparsify the neural code – i.e., they decrease the fraction of 

time at which the population is active, without a proportional decrease in the amount of 
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information encoded. Specifically, as shown in Fig. 4c, the probability of total quiescence, 

p000, is larger for Mobs than Mind in local networks. This effect was driven nearly 

completely by pairwise correlations. However, information does not decrease 

proportionally. Instead, as shown in Fig. 4d, information during the non-quiescent periods is 

higher when pairwise (and higher) interactions are included. These functional consequences 

are specific to local correlations, and distinguish them from the longer-range correlations 

typically studied 9, 11.

We have analyzed correlations at three spatial scales, sampled from the continuum of scales 

that are present in cortex. The analysis shows that correlations in cortical networks have a 

specific scale-dependence. Fine-scale subnetworks are characterized by a prevalence of 

stimulus-dependent high order correlations and pairwise correlations which increase coding 

redundancy and response sparseness. In turn, these fine-scale networks are weakly 

synchronized by pairwise noise correlations at longer ranges. In contrast, responses of 

retinal networks to naturalistic stimuli8 and flickering checkerboards6 did not display high 

order correlations, and pairwise interactions nearly perfectly accounted for the behavior, 

even among adjacent neurons. Thus, complex scale-dependent patterns of correlations 

between neurons are an emergent property of cortical processing.

Cortical minicolumns have been proposed to form the smallest organizational unit in the 

cortex 23; in the macaque, they are approximately 40-60 μm in diameter 24. Since tetrodes 

typically isolate neurons up to of 70-150 μm 12, 25, our measurements of local correlations 

reflect cortical processing that occurs on the scale of one to a few minicolumns. Our 

observation that stimulus-dependent correlations impact coding strengthens the concept that 

locally, minicolumns interact to form functional groups 24. Because, as we have shown, 

these interactions increase coding redundancy and concentrate the output of the network into 

short time epochs, they are potentially useful for transmitting information to higher order 

neurons in the face of noisy neuronal activity 21 and frequent synaptic failures 26. Although 

we found that correlations at a scale of tens to hundreds of minicolumns produce significant 

interactions between pairs of neurons, the role of these correlations in cortical activity is still 

unclear. Correlations at these scales could reflect a global cortical state, such as that 

captured by electroencephalographic recordings. Alternatively, they may contribute to 

encoding of naturalistic visual input when the stimulus itself contains long-range 

correlations such as extended contours 14, or high-order correlations 13.

Methods Summary

Data

Recordings were made in V1 of 12 anesthetized macaque monkeys (Macaca mulatta) 27. 

Pseudorandom checkerboards 28 were presented at 67.6/100 Hz for 16-32 minutes.

Analysis

Spikes were sorted 29 and binned into 10 or 14.8 ms bins. Similar bin widths have been 

useful for exploring multi-neuronal correlations 6-9. Bins with two or more spikes (<3%) 

were replaced with one spike. A conservative spike count correction was applied to 

estimates of multi-neuron events from single tetrode recordings (see Methods).
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Maximum Entropy Models

The models Mind and Mpair have been previously described in detail 6, 8. Their performance 

was evaluated by the Kullback-Leibler divergence between the model-predicted firing 

pattern distributions and the observed distributions, Mobs, which also yields the log 

likelihood ratio between the maximum entropy models and a perfect model (Mobs).

Conditional maximum entropy models were similarly calculated based on firing 

probabilities that occurred following specific sets of stimuli. Stimuli were divided into sets 

based on the state of individual pixels. These (“maximally informative”) pixels were 

selected by the criterion that the mutual information between pixel state and firing pattern is 

maximized.

Encoding

The contribution of correlations to the mutual information between the neural response and 

the stimulus was evaluated by fitting Mind and Mpair to firing patterns conditioned on the 

state of the maximally informative pixel. Mutual information in the absence of correlation 

was calculated as the Jensen-Shannon divergence between the two conditioned Mind models. 

Mutual information with pairwise correlations included was calculated as the Jensen-

Shannon divergence of the two conditioned Mpair models. We quantified sparseness by the 

frequency at which the network is silent (for three neurons, the ‘000’ pattern). Information 

transmitted when the network is active was measured by removing this “all-silent” firing 

pattern and calculating the Jensen-Shannon divergence between the remaining stimulus-

conditioned firing patterns.

Methods

Stimulus

Pseudorandom binary checkerboards 28 at 100% contrast were presented at 67.6 Hz or 100 

Hz. Each check typically subtended 0.25 × 0.25 degrees. 8-16 repeats of a 60 second 

stimulus were presented, along with its contrast inverse, for a total of 16-32 minutes at each 

recording site. Naturalistic stimuli consisted of vignetted natural movies and frame-shuffled 

natural movies sampling a range of natural environments and containing diverse sets of 

animals as well as man-made structures. Stimuli spanned the same spatial extent as the 

pseudorandom stimuli and were presented for 12 repeats at 100 Hz for a total of 20 minutes.

Physiology

Single and multi-tetrode extracellular recordings were made from V1 in 12 propofol/

sulfentanil 27 anesthetized macaque monkeys (Macaca mulatta).

Analysis

Spikes were sorted using a principal components based algorithm 29, and binned into 10 or 

14.8 ms bins, matching the frame rate of the stimulus. This bin width was chosen because 

pairs of V1 neurons are correlated on scales of tens of milliseconds; finer temporal 

resolution would reduce the accuracy of estimates of multi-neuron events. Similar bin 
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widths have been useful for exploring multi-neuronal correlations in the retina 6, 8, ex vivo 

cortex7 and cat area 17 9.

Under pseudorandom stimulation, for single tetrode recordings (38 sites in 8 animals), 23 

groups of 3 neurons, 8 groups of 4 neurons, 4 groups of 5 and 3 groups of 6 neurons were 

jointly analyzed. For multi-tetrode recordings at the 600 μm scale, 56 groups of 3 neurons (5 

sites, 5 animals) were selected by choosing subsets of 3 neurons where two neurons were 

isolated on one tetrode and the other on a different tetrode. For recordings at >1000 μm, 

subsets of 3 neurons were chosen where each neuron was isolated on a separate tetrode (24 

neurons in 5 sites, 4 animals).

Under naturalistic stimuli, the <300 μm dataset consisted of 46 sites from 10 animals (28 

groups of 3 neurons, 5 groups of 4 neurons, 5 groups of 5 neurons, and 8 groups of 6 

neurons). The 600 μm dataset consisted of 25 recording sites from 7 animals and the >1000 

μm dataset consisted of 15 recording sites from 5 animals, with subsets of 3 neurons chosen 

as described above.

When multiple neurons are recorded on one tetrode, near-simultaneous spiking from 

multiple units can superimpose to generate waveforms that are not readily sorted. This 

prevents our software from detecting multiple spikes (at one tetrode) that occur within 1.2 

ms. We correct this systematic underestimate as follows. First, we partition a 10 ms (or 14.8 

ms) bin into n=8 (or n=12) slots of 1.2 ms, and assume that events are properly detected if 

they occur in separate slots, and are occluded (i.e., not detected) if they occur in the same 

slot. We then assume that within each analysis bin (10 or 14.8 ms), the k components of a 

multi-neuron spiking event will fall randomly into the n slots. For k simultaneously active 

neurons, there are  equally likely ways in which the spikes can fall into the n 

slots, but only  are observable. We therefore multiply the observed occurrences of k-

neuron events by the ratio of these two quantities, namely, (n+1)/(n-1) for k=2, and (n+2)(n

+1)/(n-1)(n-2) for k=3. In the Supplement we consider alternative corrections that take into 

account tighter correlation at timescales of 1-2 ms than at 10 ms. These alternative 

corrections had little effect on the goodness of fit of the models considered (see Supp. 

Methods and Supp. Figs. 2-3).

Maximum Entropy Models

The maximum entropy models, Mind and Mpair, have been previously described in detail6, 8. 

Our implementation is similar. We solved for the maximum entropy distribution subject to 

the constraints of firing rate (Mind) or firing rate and pairwise correlations (Mpair) using a 

gradient descent algorithm. For Mpair this procedure yields the Lagrange multipliers, hi, 

which describes each neurons intrinsic firing rate, and Jij, which describes the strength of 

interaction between pairs of neurons.8 To characterize the strength of interactions between 

pairs of neurons for a recording site, we average Jij over all possible pairs. We measure the 

effect of stimulus conditioning on functional network connectivity by taking the absolute 

value of the difference between the average Jij in each stimulus condition (Fig. 3d). We 
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measure the goodness of fit as the Kullback-Leibler divergence between the model-predicted 

firing pattern distribution and the observed distributions (Mobs):

, where mobsi is the observed probability of the 

ith firing pattern, and mmodeli is the corresponding prediction from a maximum entropy 

model. We calculate the log2 of the likelihood ratio (LLR) per minute between the 

maximum entropy models and the observed distributions (Mobs) via <LLR> = B − Dkl Mobs 

‖Mmodel, where B is the number of bins in 60 s (as in 6).

Conditional maximum entropy models

The above analysis was extended to determine maximum entropy distributions conditional 

on the state of a stimulus pixel. Pixels were chosen either at random, or to have maximal 

influence on the firing patterns (“maximally informative” pixels). The maximally 

informative pixels were identified as follows. For each stimulus pixel and each time lag Δτ 

(0-120 ms (10 ms bins) or 0-178 ms (14.8 ms bins)), we determined the distribution of firing 

patterns at a time Δτ after the pixel was ON or OFF. This yielded two conditional 

distributions: P(r ∣sON) and P(r ∣sOFF). (Mobs is a 50:50 mixture of P(r ∣sON) and P(r ∣sOFF), 

since the probability of a pixel being ON or OFF was 0.5). In the specific (and present) case 

that the two pixel states are equally likely, the mutual information I(S,R) between the state 

of the pixel and the response is equal to the Jensen-Shannon divergence between the two 

conditional distributions 21:

Thus, the maximally informative pixel (in the sense of greatest mutual information between 

pixel state and firing pattern distribution) is also the pixel for which the two conditional 

distributions are maximally different in the Jensen-Shannon sense.

Random pixels were chosen by randomly choosing 50 pixels from the lower half of the 

distribution of informative pixels. These pixels generally lie outside the receptive fields of 

the neurons.

Confidence intervals on log likelihood ratios

We created simulated datasets of the same size as the real datasets by Markov Chain Monte 

Carlo sampling of a distribution based on a Dirichlet prior and the observed firing pattern 

counts 30 We fit maximum entropy models to 200 such simulated datasets. The confidence 

intervals are the 95% range of the resulting distribution of LLR's, indicating the confidence 

with which we can specify the LLR of a particular model. We used three Dirichlet priors 

(Dirichlet parameter β= 0, 0.5, and 1); these led to similar results and we quote the analysis 

based on β =0. For random pixels (Fig. 3b,c), confidence limits indicate two standard errors 

of the mean LLR and demonstrate the effect of limited data.
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As a test of the statistical methods, we created artificial datasets drawn from a true pairwise 

model, with a comparable number of spikes as in the real datasets. For these datasets, one-

minute LLR's were >-1 (likelihood ratio of >1/2). Note that our criterion of a “failed” model 

was a LLR of <-5 (likelihood ratio of <1/32).

Encoding

To determine the contribution of stimulus dependent correlations to stimulus encoding, we 

first choose the maximally informative pixel. We fit Mind or Mpair to firing patterns 

conditional on this pixel's state. We calculate the mutual information between the model 

population responses and the stimulus state via the Jensen-Shannon divergence of the model 

conditional distributions.

We measure the contribution of correlations to the sparseness of the population response as 

the frequency at which the network is silent (for three neurons, the ‘000’ pattern) under Mind 

and Mpair. We measure the information transmitted when the network is active by removing 

this “all-silent” firing pattern and calculating the Jensen-Shannon divergence between the 

remaining stimulus-conditioned firing patterns.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis of multi-tetrode recordings
a, Multi-tetrode recording geometry: red dots indicate tetrode centers; grey circles indicate 

approximate recording areas of each tetrode. b Visual stimuli consisted of pseudorandom 

checker boards. c, Extracellularly-recorded spikes are sorted and binned (10 or 15 ms bin 

width). Multi-neuron firing patterns are identified and tallied to form a firing pattern 

distribution. Maximum entropy models are fit to this distribution.
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Figure 2. A pairwise maximum entropy model frequently fails for local networks of neurons
a, The independent model (Mind, ordinate) fails to predict the observed (Mobs, abscissa) 

frequency of firing patterns over a range of spatial scales. b, Box plots (inter-quartile range) 

of log-likelihood ratios of the independent model (Mind), referenced to a perfect model 

(Mobs) for 60 s of data. Notches indicate median values; outliers plotted as pluses. Across 

spatial scales, Mind is a poor fit. c, The pairwise model (Mpair, ordinate) fails to predict the 

observed (Mobs, abscissa) frequency of firing patterns for ensembles of neurons separated by 

<300 μm (red dots), but not at larger separations. d, Box plots of log-likelihood ratios of the 
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pairwise model (Mpair), referenced to a perfect model (Mobs). At distances <300 μm (red), 

Mpair frequently fails to account for the observed distribution of firing patterns; at larger 

separations, Mpair is nearly perfect.
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Figure 3. High-order stimulus dependent correlations in multi-neuron firing patterns
a, The Jensen-Shannon divergence between firing pattern distributions conditional on each 

pixel (insets on right) yields a spatiotemporal map of mutual information between the 

stimulus and the population response. For a maximally informative pixel, Mpair is fit to these 

conditional distributions. b, Conditioning on maximally informative pixels (blue dots) has a 

large effect on the goodness of fit of Mpair; conditioning on random pixels (red dots) has a 

small effect. For maximally-informative pixels, confidence intervals (95%, see Methods) are 

smaller than the plotted symbols. For random pixels, the error bars show 95% confidence 
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intervals for the mean. c, Expanded view of b, near the origin. d, Histogram of the change in 

average interaction strength (Jij) following conditioning. Conditioning on informative pixels 

(blue bars), but not random pixels (red bars) lead to significantly different interaction 

strengths.
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Figure 4. Effect of correlations on stimulus encoding
a, Mutual information between the stimulus (maximally informative pixel) and neural 

response generated by Mobs (ordinate) and Mpair (abscissa) for neurons recorded at <300 

μm. Higher-than-second order correlations make no contribution to the mutual information 

transmitted. b, Pairwise correlations slightly reduce the information encoded by local 

ensembles. c, At distances <300 μm (red), neuronal activity (Mobs) has a higher frequency of 

the all-silent firing pattern than predicted from independent firing (Mind), indicating that 

correlations in neuronal firing increase the sparseness of local networks. No difference was 

seen at larger distances (600 μm (blue) or >1000 μm (gray), confluent on the diagonal). d, 

The effect of correlations on the information encoded when the network is active. On 

average, correlations increase the information transmitted when the network is active.
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