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A B S T R A C T   

While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the 
COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles’ 
heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 
diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This 
study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly 
detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate 
(RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and 
evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive 
individuals in the span of four months including their COVID-19 infection phase. The first configuration of the 
framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 
0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 
25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the pre-
symptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning 
framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem.   

1. Introduction 

The COVID-19 pandemic has been one of the most significant global 
events in this decade that have affected the whole world at the same 
time and marked the most crucial struggle of humanity against a highly 
contagious viral pathogen in modern times. The pathogen, namely Se-
vere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), 
commonly known as the coronavirus, has caused approximately 491 
million infection cases with about 6.1 million death tolls worldwide to 
date [1]. Despite the advancement of technology and healthcare 

protocols, the lack of preparedness for utilizing these technologies was a 
major lesson in this pandemic [2–4]. However, researchers from diverse 
sectors have come forward with their innovations and findings to fight 
back this pandemic by making effective use of our existing technologies, 
including the discovery of effective vaccines within the shortest time-
span to date, improvement in the pandemic management employing 
digital technologies, widespread contact-tracing, fast and effective 
diagnosis methods, and new methods for detecting asymptomatic 
carriers. 

SARS-CoV-2 has some similar characteristics (e.g., transmission 
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routes, reproduction number (R0), and incubation period) compared to 
other respiratory viral pathogens, namely SARS-CoV, Middle East Res-
piratory Syndrome Coronavirus (MERS-CoV), and 2009 H1N1 Influenza 
(H1N1-pdm09) [5,6]. However, its presymptomatic infection rate, viral 
shedding duration, and variability of characteristics across different 
countries have made the COVID-19 pandemic more unpredictable and 
harder to contain [6,7]. Moreover, several studies found evidence 
behind its transmission by asymptomatic individuals, which has been 
the most crucial variable in the success of COVID-19 containment 
[8–10]. Contact tracing [11] and frequent testing [12] have been pro-
posed to detect and quarantine the asymptomatic COVID-19 carriers. 
Although reverse transcription-polymerase chain reaction (RT-PCR) has 
a margin of error in the result [13,14], it is still considered the standard 
for testing COVID-19 infection on a mass scale. These measures could 
succeed in a controlled environment with sufficient resources; however, 
their feasibility comes into question for areas with limited resources and 
a higher population density during a surging pandemic. Hence, several 
promising avenues have been explored on the alternate COVID-19 
detection systems for such resource constraint environments. An early 
detection system [15] and a mortality prediction system [16] for 
COVID-19 infection were proposed using blood biomarkers. 

However, continuous monitoring is widely considered a viable 
alternative to direct COVID-19 testing in an attempt to resolve these 
constraints. Ponomarev et al. [17] observed a significant correlation 
between Heart Rate Variability (HRV) and underlying symptoms of 
COVID-19 infection. Heart Rate is the variation of time intervals be-
tween two successive heartbeats. Buchhorn et al. [18] tracked the 
Electrocardiogram (ECG) of a 58-year-old male patient during the span 
of COVID-19 infection with a Holter Monitor and found an abrupt 
decline in HRV and Heart Rate (HR). Nowadays, smartwatches and 
fitness trackers are capable of monitoring essential vitals, e.g., HR, steps, 
burned calories, sleep duration, and sleep stages. Despite having accu-
racy issues among different models and brands of wearable devices, such 
devices are gradually integrated into the healthcare monitoring systems 
[19–21]. Moreover, these wearable devices are non-invasive, well--
connected with smartphones, and used worldwide, which signify the 
potential of such devices in solving the asymptomatic COVID-19 
detection problem. 

Compared to the volume of COVID-19 research, asymptomatic 
COVID-19 detection based on wearable devices has an inadequate 
number of works. Mishra et al. [22] presented an extensive statistical 
study of physiological (Resting Heart Rate) and activity (steps and sleep 
duration) data from 105 subjects, including 32 COVID-positive in-
dividuals, and found alterations in their vitals even before the symptom 
onset. They also claimed that their two-tiered warning system alerts the 
user in the event of an abnormal HR with a 63% detection rate for known 
COVID -infected individuals. Although they explored the correlations of 
these three parameters with the infection, their presymptomatic detec-
tion system employed the difference in Resting Heart Rate (RHR-diff) 
and the ratio of HR and steps. Additionally, Radin et al. [23] also found a 
higher correlation between elevated RHR and increased sleep duration 
with the COVID-19 infection among Fitbit users in 5 states of the United 
States. On the other hand, Quer et al. [24] proposed a complementary 
method to the traditional COVID-19 testing by statistically evaluating 
the self-reported symptom survey along with sensor data from the fitness 
tracker. Moreover, Smarr et al. [25] explored the possibility of using 
wearable devices to monitor elevated body temperature due to the 
COVID-19 infection. 

In addition to the statistical approaches, deep learning methods have 
also been used in COVID-19 infection detection, contact tracing, and 
drug development [26]. Deep learning-based COVID-19 detection sys-
tems using Computed Tomography (CT) scans [27,28] and chest X-ray 
images [29–32] have shown promising performance. Moreover, Bogu 
et al. [33] took their previous statistical work [22] further and proposed 
a Long Short-Term Memory (LSTM)-based autoencoder network to 
detect abnormal RHR individually among the COVID-19-infected 

subjects. However, in contrast to their previous work, they only focused 
on the RHR of 25 COVID-19-infected individuals, and the model could 
predict the aberrant RHR among 23 of them (14 during the presymp-
tomatic stage and 9 after the symptom onset). Although in preprint, this 
work marks the effectiveness of deep learning methods with wearable 
sensor data for detecting COVID-19 infection. More recently, Liu et al. 
[34] proposed a combination of Convolutional autoencoder with the 
contrastive loss on 19 multiple sclerosis patients’ RHR recorded by Fitbit 
smartwatches. With the addition of contrastive loss, their model is 
claimed to perform better than traditional CNN (Convolutional Neural 
Network) or LSTM autoencoders. On the other hand, Chharia et al. 
proposed a deep learning-based Computer-Aided Diagnosis (CAD) sys-
tem to predict whether an immerging pathogen might create a pandemic 
[35]. Furthermore, owing to the advancements in deep learning 
research, several advanced architectures have shown improved perfor-
mances compared to the traditional DenseNet, CNN, and LSTM in a 
variety of domains [36–38]. 

This study presents PCovNet, a deep learning-based anomaly detec-
tion framework to detect the aberrant RHR before the symptom onset of 
COVID-19 infection. The underlying model is a Long Short-Term 
Memory (LSTM) Variational Autoencoder (VAE) leveraging the benefit 
of VAE, which is capable of learning smooth latent state representations 
of the input data and producing a reconstructed signal. Based on the 
reconstruction loss, PCovNet can detect anomalies and thus, identifies 
probable COVID infection even before the symptom onset. We evaluated 
the PCovNet framework on the RHR of 25 COVID-19-infected subjects 
recorded via Fitbit smartwatches. The dataset is a part of the phase-1 
study by a group from the Genetics Department of Stanford University 
[22]. Their second study [33] also used the same dataset and used an 
LSTM autoencoder model, but this framework improves the overall 
result by using the Variational Autoencoder (VAE) architecture which 
often learns better latent state representations compared to the vanilla 
autoencoders [39]. Overall, the contributions of this work are as follows. 

Firstly, we introduced PCovNet, an LSTM Variational Autoencoder- 
based framework, for detecting anomalous RHR with two separate 
configurations with different application scenarios. 

Secondly, we validated the use of smartwatch-based RHR monitoring 
systems as a secondary diagnostic tool for continuous health monitoring 
and anomalous RHR detection even before the onset of COVID-19 
symptoms. 

2. Material and methods 

2.1. Dataset 

The research group from Stanford University Genetics Department 
led a study among a cohort of 5262 subjects who finished surveys of 
respiratory disease symptoms, diagnosis, and severity with the explicit 
date via the REDCap (Research Electronic Data Capture) survey web 
platform. Among these subjects, the study also included the smartwatch 
data from 4642 subjects where Fitbit users constitute the majority of 
3325 individuals. However, among the COVID-19 infected Fitbit users, 
only 32 individuals’ data were available during their symptoms and 
diagnosis period [22,40]. 

This study is based on the publicly available dataset which comprised 
these 32 subjects with COVID-19 infection, 15 with other respiratory 
diseases, and 73 healthy individuals, with additional demographic and 
symptom information [40]. Additionally, each subject is identified with 
a particular ID assigned during the data collection. As this study focused 
on the presymptomatic detection of COVID-19 infection, it targeted only 
the COVID-positive subject data from the dataset. For these subjects, 
sleep duration and stage information are also provided with RHR and 
step counts. 

In addition to the sensor data channels and symptom onset date, 
other crucial factors for such a study are the baseline RHR calculation 
and the infectious period determination. The incubation period is the 
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number of days between the day of infection and the symptom onset. 
Several researchers calculated the median incubation period of SARS- 
CoV-2 to vary in different sample groups from 3 days (ranging from 
0 to 24 days) [41] to 5 days (ranging from 1 to 19 days) [42]. In a 
separate study, Li et al. [43] also reported a median incubation period of 
5 days with a 95% Confidence Interval (CI) of 4.1–7.0 days. On the other 
hand, viral shedding denotes the release of viral particles by an 
asymptomatic or symptomatic host. Similar to the incubation period, the 
duration of viral shedding also varies in different studies and can be as 
long as 83 days after the symptom onset [44]. However, the viral load 
(numerical expression of the amount of viral pathogen in a host fluid) 
gradually decreased to the detection limit at about 21 days of symptom 
onset [45]. 

As PCovNet is built for analyzing the RHR abnormality individually, 
we established two criteria for this study.  

A. Each subject must have HR and steps data.  
B. The data collection must span from at least 20 days before the 

symptom onset to 21 days afterward. 

Here, criterion A is essential for RHR calculation, criterion B ensures 
the evaluation of baseline RHR, which is the reference for the model. 
Albeit all data satisfied criterion A, 7 COVID-19, 5 Other illness, and 6 
Healthy subjects did not fulfill criterion B. As a result, the working 
dataset for PCovNet shrunk to 25 COVID-19, 10 Other illness, and 67 
Healthy subjects. The dataset overview is shown in Fig. 1. 

2.2. Data preprocessing 

The raw data provided in the dataset is passed through five separate 
steps and prepared for the anomaly detection model. The raw HR and 
steps are merged to derive the RHR. Afterward, the derived RHR is 
passed through the filtering and resampling stage which filters out the 
daily activity-induced RHR fluctuations. The RHR sequence is split into 
train and test sets in the third stage. The next two stages further process 
the train and test sets to prepare for the model. After training the 
anomaly detector in the sixth step, the losses are used to find out the 
anomalous portions of the signal. The methodology overview is shown 
given in Fig. 2. 

2.2.1. Resting Heart Rate calculation 
As mentioned before, our channel of interest for this study was the 

Resting Heart Rate (RHR), which is not provided in the dataset. There-
fore, in the very first preprocessing step, our goal was to merge the 

separated raw HR and steps data based on the provided timestamps. 
However, albeit processed within the Fitbit devices, the provided 
wearable data do not have the same timestamps and equal frequency. In 
order to fix the intermittent nature of the signal, we used a 1 min rolling 
average filter on the HR and steps channels and then merged HR and 
step channels [22,33]. 

Resting heart rate denotes the heart beats per minute during a resting 
state. In this case, we identified a resting state if a person does not have 
any step count for 12 consecutive minutes, which denotes inactivity 
[33]. Hence, we filtered out the HR unless the step count is zero for 12 
consecutive minutes. Although this step filters out a good portion of the 
data points, it also filters the activity-induced HR elevation, which is 
beneficial for sensing any underlying health condition. 

2.2.2. Filtering and resampling 
Looking closely at 1 min resampled RHR, it was observed that it 

contained numerous short-term RHR fluctuations, which did not persist 
for hours. As our measure of the inactive state was based on the null step 
count for 12 consecutive minutes, the RHR calculated in such a way 
might contain an abrupt elevation due to some other factors, e.g., 
watching a horror movie, playing video games, or having a stressful 
conversation. Moreover, having a festive mood during the holiday might 
cause a temporary RHR elevation [22,33]. Therefore, further filtering 
was necessary to determine the effect of an underlying condition causing 
abnormal RHR. In this step, we filtered the RHR further with a rolling 
average of 400 samples (6 h 40 min) and resampled the filtered data into 
a 1-h period. 

2.2.3. Dataset split 
Mishra et al. divided the RHR of the COVID-19 infection timeline 

into four distinct regions [22]. We identified the spans of these regions 
considering the domain knowledge of symptom onset, incubation 
period, viral load, and viral shedding from previous literature [41–45]. 
These periods are shown in Fig. 3.  

1. Baseline Period: It is the region before 20 days of the symptom onset. 
RHR during this period is considered normal.  

2. Non-infectious Period: This region spans from 20 days to 10 days 
before the symptom onset. Despite having similar RHR to the base-
line period for the majority of the symptomatic individuals, a handful 
might show viral shedding during this period [45].  

3. Infectious Period: This region is most likely to contain anomalous 
RHR, which spans from 7 days before the symptom onset to 21 days 
after that. 

Filtered Dataset Distribution

Heart Rate (bpm) per Minute

Step Count per Day

Sleep Duration (hr) per Day

Data Channels

Fig. 1. The dataset distribution for the study is shown in the left pie chart. Three available data channels are shown in the right plot. There are colorful strips in 
between the two charts denoting the availability of the channel immediately to the right in the certain subject class indicated by the color. 
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4. Recovery Period: In most cases, after the SARS-CoV-2 infection, the 
RHR comes back to the baseline after 21 days from symptom onset, 
which is marked by the recovery period. However, the possibility of 
viral shedding and having prolonged aberrant RHR is not zero; 
hence, this region is not labeled normal in this study. 

We employed personalized training for each user where the model is 
trained on the normal RHR data of a user and evaluated for anomalous 
RHR for that user only. Based on the characteristics of the four above- 
mentioned regions, the whole dataset is divided into two sets - train 
set and test set. The train set for each subject contains only the Baseline 
Period data which represents the normal RHR of that user. On the other 
hand, the test set contains the other three periods, which may include 
normal RHR as well as anomalous RHR. Moreover, an additional vali-
dation set is separated from the train set just before the model training, 
which constitutes 5% of the train set chosen randomly. 

2.2.4. Standardization and segmentation 
Standardization is the process of removing the mean from a dataset 

and scaling it to unit variance. Before training the PCovNet model, the 
whole dataset is standardized based on the train set. For a train set, Xtrain, 
the mean (μtrain) and the standard deviation (σtrain) of the train set are 
calculated at first. Then the test set, Xtest , is transformed based on the 
mean and standard deviation of the train set, which is shown in Equation 
(1). 

X
′

test =

(
Xtest − μtrain

σtrain

)

(1) 

To implement it in the PCovNet framework, we used the Stand-
ardScaler module from the Scikit-Learn Python package [46]. After the 
standardization of the datasets, the RHR sequences are divided into 
smaller segments by shifting a window of the same size by 1 h. This step 
serves two purposes - it shapes the input sequence into a fixed-length 
sample and increases the sample size for training the model by 

Raw Resting
Heart Rate

Augmented
Train Set

Resting
Heart Rate

Resting Heart Rate Calculation

Train SetHeart Rate Step Count

Train
Sequence

Test
Sequence

Test Set Detected
Anomalies

Filtering and Resampling

Train-Test Split

Augmentation

Anomaly Detection (AD)
Model Training

Result

Evaluation Criteria

Trained
Model

Standardization and 
Segmentation

Fig. 2. Methodology overview of the anomaly detection framework using PCovNet.  

Infectious Period
-7 Days to 21 Days

Non-Infectious PeriodBaseline Period
< -20 Days

Recovery Period
> 21 Days

Symptom Onset

Train Set Test Set

Test Set (normal) Test Set (normal)Test Set (anomaly)

Fig. 3. Four stages of COVID-19 infections are shown here - baseline period, non-infectious period, infectious period, and recovery period. Only the data from the 
baseline period is kept in the training set and the rest constitutes the test set. The test set contains both anomalous and normal data. For evaluation, samples only 
within the infectious period are considered anomalous. 
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making several sub-sequences from a single long sequence. 

2.2.5. Augmentation 
Augmentation is the process of creating new training data from the 

existing dataset. It is a widely used technique in the image domain for 
fixing the class imbalance and creating additional data for the data- 
hungry neural nets. In contrast to the image domain, time-series 
augmentation has rarely proven any significant development in a 
model’s performance, rather causing declination. For example, rotating 
a cat picture still results in a cat picture but rotating an audio signal can 
completely change the morphology. Although time-series augmentation 
is more likely to cause unrepresentative data, the data processing steps 
in this study ensured a potential usage for the augmentation. We 
employed seven techniques to augment the original train dataset [47, 
48]. 

1. Scaling: A value from a Gaussian distribution (mean 1, standard de-
viation 0.1) is chosen and multiplied with the signal to change its 
original amplitude.  

2. Rotation: An arbitrary rotation is applied to the original signal which 
causes horizontal mirroring.  

3. Permutation: It creates perturbation in the original signal by slicing it 
into 1 to 4 same length segments and randomly permuting them.  

4. Magnitude Warping: This technique multiplies the original signal with 
a curve generated by a cubic spline with four knots. The knots are 
chosen randomly from a Gaussian distribution (mean 1, standard 
deviation 0.2).  

5. Time Warping: Like Magnitude Warping, a curve is generated by a 
cubic spline, but in this case, the curve is used to perturb the tem-
poral locations of the original data points of the sequence.  

6. Window Warping: This method takes a portion of the original window 
and changes its frequency by a factor of 2 or 0.5.  

7. Window Slicing: It takes 90% of the original window by slicing it 
randomly. 

These augmentation techniques increase our number of training 
samples by seven times for each subject. 

2.3. Anomaly detection model 

This study approaches the presymptomatic COVID-19 detection task 
as an anomaly detection task. The use of an autoencoder is a widely 
adopted approach learn the representations from a feature map, where 
the encoder learns the latent attributes, and the decoder learns to decode 
the original signal from the latent attributes [49]. The low dimension-
ality of the latent space works as a bottleneck for the model to recon-
struct the input. Whereas the conventional autoencoders return points in 
the latent space based on the input, the Variational Autoencoders (VAE) 
return a distribution. One problem of autoencoders is the discrete latent 
space, which sometimes occurs from overfitting. On the other hand, a 
regularization is introduced in the VAE due to the architecture, which 
forces the latent space distribution towards a normal distribution. Such 
regularization checks the overfitting and creates continuity in the latent 
space. Hence, the PCovNet model inherits Variational Autoencoder 
(VAE) architecture with LSTM units in contrast to the Long Short-Term 
Memory Networks-based autoencoder (LAAD) architecture employed in 
the previous study [33]. 

For the encoder and decoder blocks, PCovNet adopts LSTM-based 
architecture, which is often preferred in a wide variety of time-series 
classification and regression problems due to its sequence learning ca-
pabilities [50]. To facilitate the sequence input capability of LSTM units, 
the input data for the model is structured in a three-dimensional array, 
where the dimensions respectively denote the number of samples, 
number of time steps in a sequence (window), and number of channels 
(features). 

2.3.1. LSTM-VAE architecture 
The architecture of the PCovNet model is primarily divided into two 

major blocks - encoder and decoder. Moreover, we used LSTM layers in 
both blocks with tanh as activation and sigmoid as recurrent activation.  

1. Encoder Block: This block contained a cascade of LSTM layers, where 
the unit size denoted the number of extracted features in each LSTM 
layer. These LSTM layers with decreasing unit numbers ensured 
higher-level feature encoding by the network. Each LSTM layer, 
except the last one, returned the same number of timesteps 
(sequence) as the input, and the last encoder LSTM layer returned 
two vectors (mean vector and variance vector) with the same 
dimension as the latent vector. A sampling function was used to 
make the final latent vector from these two. This sampling function 
employed a reparameterization technique, where a randomly 
sampled vector with the latent space dimension was taken from a 
unit Gaussian distribution. Afterward, this vector was used to 
transform the mean and variance vectors into the final latent vector. 
The reason for such a sampling method was to ensure the back-
propagation process to learn the appropriate parameters for the 
mean and variance vector during the training steps which would 
result in a Gaussian-like latent space.  

2. Decoder Block: Generally, a decoder block of an autoencoder is the 
mirror image of the encoder block. Likewise, for this VAE architec-
ture, the LSTM layers were mirrored in shape. As opposed to the 
encoder block, all the LSTM layers were configured to return se-
quences with the same length as the input timesteps. After the last 
LSTM layer, a Dense layer with a Time-Distributed wrapper was used 
to denote the fully-connected operation on the last LSTM layer 
output sequence. As a result, the output shape was converted back to 
the input shape. 

According to Fig. 4, for an input sequence x, the LSTM units extract 
features in successive encoder layers and output two vectors μx = g(x)
and σx = h(x) with the same dimension as the latent vector. These two 
vectors are sampled with the random normal vector ε to get the final 
latent vector z, which is shown in Equation (2). 

z = μx + σx × ε (2)  

2.3.2. Loss calculation 
In general, the anomaly detection task employs only the recon-

struction loss; however, due to the VAE architecture and the Gaussian 
nature of the latent space, a second loss was employed in this study. 

Reconstruction Loss: The most commonly used loss for any represen-
tation learning model is the reconstruction loss, where a Mean Squared 
Error (MSE) is calculated between the input and the reconstructed 
output. For the input sequence x and reconstructed sequence x̂ = f(z), 
Equation (3) shows the reconstruction loss. 

Lossreconstruction = MSE[x, x̂] = |x − f (z) |2 (3) 

KL Divergence Loss: Kullback-Leibler (KL) Divergence is a statistical 
method of determining the difference between two distributions. A VAE 
architecture tends to convert the latent space distribution to a Gaussian 
one, so the KL Divergence method can be used to determine the distri-
bution loss (Equation (4)). Moreover, employing the KL loss along with 
the reconstruction loss adds regularization to the model. 

LossKLD = KLD[N(μx, σx) − N(0, 1) ] = KLD[N(g(x), h(x) ), N(0, 1) ]
(4) 

Total Loss: The total loss of the model is the summation of these two 
losses shown in Equations (3) and (4). 

Losstotal = Lossreconstruction + LossKLD

= |x − f (z) |2 + KLD[N(g(x), h(x) ), N(0, 1) ] (5) 
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2.4. Threshold calculation 

The anomaly detection model is trained individually and a 5% 
validation set is randomly chosen from the train set for model validation. 
After training, the whole train loss is calculated by taking the mean 
absolute loss value of the data points per sample. Based on the losses 
from each sample, the framework calculates the threshold in two ways.  

1. Statistical Threshold Estimation (STE): In this method, the threshold 
was determined to be the three standard deviations above the mean 
of the training loss.  

2. MinMax Threshold Estimation (MTE): The maximum value in the 
training loss was set to be the threshold in this method. As the ab-
solute values of individual datapoint losses were taken for training 
loss determination, all the losses are positive. Hence, the minimum 
threshold is redundant in our case. 

In both threshold methods, if the test loss (calculated in the same way 
as the training loss) was greater than the threshold, the sample was 
marked as an anomalous one. 

3. Experimental results 

Despite choosing LSTM-VAE as the anomaly detector, we conducted 
several experiments to achieve the best performance from the PCovNet 
framework. As described in Subsection 2.3, we evaluated the PCovNet 
framework with two threshold methods and each showed a different 
performance than the other one in terms of the evaluation metrics. 
However, apart from the threshold calculation techniques, the anomaly 
detection model has been the same for each user. Moreover, a separate 
anomaly detection model was trained and evaluated for each user. The 
overall number of samples in the train and test dataset per subject are 
shown in Supplementary Appendix 1. 

3.1. Experimental setup 

During the training process, Adam optimizer [51] was used with 
learning rate, α = 10− 4, β1 = 0.9, and β2 = 0.999. We used a batch size 
of 64 and the maximum epoch was set to 1000 along with an early 
stopping callback criterion, which was defined with the patience of 50 
epochs on validation loss to avoid overfitting. Besides, another callback 

criterion was used to get back to the last checkpoint with minimum 
validation loss. 

The deep learning part of the experiment was conducted in Python 
programming language with Keras [52] and TensorFlow [53] packages. 
Moreover, for data analysis and processing, we used Numpy [54] and 
Pandas [55,56] packages of Python. For training purposes, we used 
Google Colab with GPU support. The overall hardware specification was - 
Processor: Intel(R) Xeon(R) CPU @ 2.30 GHz, RAM: 13 GB, GPU: NVI-
DIA Tesla K80. Moreover, we generated all the figures in this work using 
Matplotlib [57] and Seaborn [58] libraries. 

3.2. Evaluation metrics 

This study had a well-defined train set, which constitutes the base-
line RHR determined by the literature and the subject-reported symptom 
onset date. However, due to the lack of ground truth, we had to rely on 
the literature to determine the infectious period of each subject. More-
over, the goal of this study compelled us to consider the rate of pre-
symptomatic detection along with the model performance for anomaly 
detection. Hence, we relied on two sets of evaluation metrics:  

1. Statistical Metrics: Based on the domain knowledge, we have assumed 
that all samples within the infectious period are anomalous ones. 
Therefore, the number of detected anomalies within the infectious 
period is True Positive (TP) and outside the infectious period is False 
Positive (FP). On the other hand, the number of timestamps labeled 
as normal by the model, if within the infectious period, is denoted as 
the False Negative (FN). The remaining predicted samples are 
marked as True Negative (TN). Based on these four parameters, 
Precision and Recall are calculated. 

Precision =

∑
TP

∑
(TP + FP)

=
#Detected anomalous samples within the infectious period

#Total detected anomalous samples
(6)  

Recall =

∑
TP

∑
(TP + FN)

=
#Detected anomalous samples within the infectious period

#Total samples within infectious period
(7) 

Input

redoceDredocnE

Output
LSTM
Layers

LSTM
Layers

Fig. 4. The backbone of the LSTM Variational Autoencoder. The encoder block spans from the LSTM layers (which takes input sequence, x) to the latent vector, z. 
The decoder layers take z as input and output the reconstructed sequence, x̂. 
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However, this assumption to mark all samples within the average 
infectious period is not completely accurate, since the incubation period 
might vary for each individual. Nevertheless, such an assumption gives 
us a good insight into the usability of this framework in our purpose. As 
there is no exact ground truth provided, we considered Precision in this 
regard, which quantifies the anomaly detection capability of the model 
within the infectious period. To compare with the LAAD framework 
[33], we also considered F-beta, weighing Precision heavily over Recall 
(β = 0.1), where F-beta is represented as follows: 

F-beta =
(1 + beta2) x Precision x Recall

beta2 x Precision + Recall
(8)    

2. Problem-Specific Metric: In this study, the infectious period is 
considered to span from 7 days before the symptom onset to 21 days 
after the symptom onset. For presymptomatic detection of COVID 
infection, another significant metric to consider is the presymptom-
atic detection rate. It is the percentage of subjects the model iden-
tified as COVID-19-infected before the symptom onset. 

3.3. Experiments on model parameters 

Four experiments were done to determine the best properties for the 
PCovNet framework. Details specifications of these experiments are 
described in the following part. 

3.3.1. Network depth 
Increasing the number of layers in a neural network often results in 

more complex feature learning, but the model itself becomes prone to 
overfitting. We trained several networks with an increasing number of 
LSTM layers in both encoder and decoder blocks of the PCovNet model. 
For each case, we used augmentation on training data with the seg-
mentation of 8 samples per window, and the model latent vector 
dimension is kept constant at 16. We evaluated 1 to 4 layers of depth for 
encoder and decoder LSTM layers with both thresholding methods. The 
detailed result of this experiment is given in Table 1. 

From the above observations, we concluded that the MTE threshold 
method gave the best statistical metrics at depth 2 and the STE method 
showed the best problem-specific metrics (presymptomatic detection 
rate) at depth 2. So, we used PCovNet with 2 LSTM layers in both 
encoder and decoder blocks, and depending on the objective (pre-
symptomatic COVID-19 detection or only anomalous RHR detection), 
the thresholding method was varied. 

3.3.2. Latent space dimension 
Similar to an autoencoder depth, setting the optimum dimension of 

the latent space is another significant experimental task for training a 
successful anomaly detector. The role of the latent space is to encode the 
underlying features from the training samples, which are used by the 
decoder to reconstruct the original input. Hence, increasing the 
dimension of the latent space creates more encoded features that tend to 
overfit the model. Although the VAE architecture has inherent regula-
rization property, increasing the dimension of the latent space beyond a 

certain value still might not give the best performance. Conversely, 
decreasing the latent space dimension results in fewer encoded features, 
which beyond a certain point fails to represent the input data well 
enough; hence, the model performance degrades. Moreover, we used 
augmentation on the training dataset segmented at 8 samples per win-
dow and MTE as the thresholding method. 

The experiment agreed with the prior theoretical assumption with 
varying latent space dimensions. According to Table 2, the best statis-
tical and problem-specific metrics were found at the latent space 
dimension of 16. Moreover, increasing and decreasing the dimension of 
the latent layer from 16 degraded both metrics. Hence, we adopted the 
latent space dimension of 16 in our PCovNet LSTM-VAE model. 

3.3.3. Window size 
Setting the appropriate window size not always depends on the 

model, but varies based on the application domain. As mentioned in 
Subsection 3.2, the PCovNet framework resamples RHR into a 1-h 
period. We varied the window period per segment from 4 h to 12 h 
and evaluated the results. In each case, the model dimension (2 LSTM 
layers with a latent layer dimension of 16) and the thresholding method 
(MTE) are kept constant. 

From the results shown in Table 3, we found that decreasing the 
window interval increased the Precision, Recall, and F-beta; however, 
the problem-specific metrics did not follow the same trend. The number 
of patients where the framework failed to detect was minimum with the 
window interval of 8 h, which declined with either the increase or 
decrease in the window size. On the other hand, window size 8 showed 
close performance to the best performance in terms of statistical metrics. 
As the primary target of this study was anomalous RHR detection, we set 
the window size to 8 h. 

3.3.4. Effects of augmentation 
The main challenge of using augmentation techniques in the time- 

series domain is the change in the inherent properties of the signal. 
On the other hand, deep learning models tend to learn better with the 
increasing volume of relevant train data. The PCovNet model is trained 
on individual subject data, where each sample window of the training 
dataset has 8 data points with a sampling interval of 1 h. As a result, for 
each train set, the number of raw samples is very low. Therefore, we 
experimented with 7 augmentation techniques which increased the train 
set volume by 7 times. For this experiment, we chose the window size of 

Table 1 
Evaluation of the framework varying LSTM block depth and threshold method.  

LSTM Layers Threshold 
Method 

Precision Recall F-beta Early 
Detection 

Delayed Detection Failed Detection 

128 MTE 0.94 0.217 0.909 12 9 4 
128, 64 MTE 0.946 0.234 0.918 11 11 3 

128, 64, 32 MTE 0.924 0.261 0.902 10 12 3 
128, 64, 32, 16 MTE 0.911 0.276 0.890 12 11 2 

128 STE 0.924 0.24 0.899 18 7 0 
128, 64 STE 0.904 0.274 0.883 20 5 0 

128, 64, 32 STE 0.906 0.284 0.887 15 10 0 
128, 64, 32, 16 STE 0.891 0.3 0.874 18 7 0  

Table 2 
Evaluation of the framework varying the latent space dimension.  

Latent 
layer 

Precision Recall F- 
beta 

Early 
Detection 

Delayed 
Detection 

Failed 
Detection 

4 0.933 0.245 0.907 10 10 5 
8 0.944 0.239 0.917 11 10 4 
12 0.942 0.242 0.915 14 6 5 
16 0.946 0.234 0.918 11 11 3 
32 0.941 0.238 0.914 10 8 7 
64 0.923 0.259 0.899 11 10 4  
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8 and kept the PCovNet model properties constant (2 LSTM layers with 
128 and 64 units in both encoder and decoder, latent space dimension of 
16). 

The results in Table 4 showed that augmentation increased all met-
rics for both threshold methods. In our task of aberrant RHR detection, 
the anomaly was mostly dependent on the RHR value fluctuations 
compared to the baseline RHR. 

Prior literature [17,18] suggested that COVID-19 causes elevation, 
declination, and abrupt changes in one’s RHR from the baseline. 
Therefore, we assumed that the baseline RHR modified within a very 
limited range by the augmentation techniques was less likely to 
misrepresent the baseline RHR. On the other hand, such careful 
augmentation would result in a larger train set aiding the model per-
formance. The above comparison was certainly commensurate with the 
prior assumptions. 

3.4. PCovNet model 

Based on the results of our experiments, we built our PCovNet 
framework with the LSTM layer depth of 2, latent space dimension of 16, 
and the window size of 8 for making the train and test set, and employed 
the augmentation techniques. Moreover, as mentioned in Section 3.3.1, 
we considered both MTE and STE threshold methods for evaluation 
because each showed superiority in performance over the other based on 
the metric type. Furthermore, there were 225 trainable and 6 non- 
trainable parameters in the model. The detailed architecture of our 
PCovNet LSTM-VAE model is illustrated in Fig. 5. 

As an example of the anomalous RHR detection process and the 
model training, Fig. 6 illustrated the RHR, anomaly detection model 
losses, loss distribution, and loss curve of a COVID-19 infected subject 
(id - ASFODQR). Fig. 6a and b were aligned along the x-axis as per date 
to relate the RHR changes with the model losses. From top to bottom, the 
figures depicted the RHR, model losses with MTE threshold, and model 
losses with STE threshold, respectively. The anomaly predictions for all 
COVID-19 subjects for the MTE and the STE methods are respectively 
shown in Supplementary Appendix 7 and 8. Fig. 6c illustrated the loss 
distribution, which showed both threshold methods and how the 
anomalous RHR was divided from the normal one based on the losses. 
Although the MTE threshold line was leading for this subject, the STE 
threshold also led in several subjects (Supplementary Appendix 6). 
Although the maximum epoch was set to 1000, according to Fig. 6d, the 
model trained a little over 400 epochs for this subject. This was the result 
of the early stopping criterion to avoid overfitting. The actual number of 
epochs also varied from subject to subject, which was shown in Sup-
plementary Appendix 5. 

3.5. Experiments on PCovNet framework performance 

As mentioned in Section 2.1, our study consisted of 25 COVID-19, 10 
Other illness, and 67 Healthy subjects. We evaluated the performance of 
PCovNet with both MTE and STE threshold methods on these three 
groups. 

3.5.1. COVID-19 group 
As per the literature, the RHR of COVID-19 infected individuals tends 

to deviate from the baseline RHR. The PCovNet framework also found 
notable anomalous RHR per day for most of the COVID-19 subjects 
during the infectious period. The anomalous RHR detection rate per day 
was illustrated in Fig. 6a along with the infectious period and the 
symptom onset date. The STE threshold method was more sensitive to 
the MTE one, which resulted in more presymptomatic detection as 
shown in Table II. Conversely, the MTE method showed a less anoma-
lous RHR detection rate but failed to detect any anomaly for 3 subjects 
(Fig. 7a, Table 1). Anomaly predictions for the Other illness and Healthy 
groups were shown in Supplementary Appendix 2 and 3 respectively. 

Fig. 7b illustrated the first anomaly detection for each COVID-19 
subject in the span of the infectious period for both the MTE and the 
STE threshold method. According to the figure, the MTE method showed 
44% presymptomatic (11 of 25), 44% post-symptomatic (11 of 25), and 
12% (3 of 25) failed cases. On the other hand, the STE method resulted 
in 80% presymptomatic (20 of 25), 20% post-symptomatic (5 of 25), and 
no failed classes. 

3.5.2. COVID-19 vs other illness vs healthy groups 
We trained and evaluated PCovNet for 25 COVID-19 and 10 Other 

illness subjects along with 67 Healthy subjects individually. The COVID- 
19 and the Other illness groups had predefined symptom onset dates in 
the provided dataset; however, the Healthy group does not have 
symptom onset dates. To evaluate, whether the model misidentified 
healthy RHR sequences as anomalous, we took a baseline period of 23 
days from the beginning of the RHR sequences of each Healthy subject. 
Afterward, we set the symptom onset at the 66.7 percentile of the 
remaining sequence. Fig. 8 showed the combined F-beta scores for each 
group for MTE and STE threshold methods. The box plot showed that the 
median of the COVID-19 subjects is the greatest of the three groups. On 
the other hand, the Healthy group showed F-beta spanning from 0 to 1 
for both MTE and STE threshold methods with a median approximately 
at 0.5. Such performance signified that the model does not effectively 
detect anomalies within our imaginary infectious period with normal 
RHR, which is desired for a good anomaly detector. 

Moreover, Fig. 9a illustrated the elevated and decreased RHR from 
the baseline periods of three groups, which were calculated based on the 
RHR sequences of the subjects. This figure showed that COVID-19 sub-
jects had the greatest median elevated RHR, whereas the lowest median 
decreased RHR was observed for the Other illness group. Additionally, 
Fig. 9c showed the RHR difference from the baseline for each subject 
within these two groups. We can that only one subject (AV2GF3B) 
among the COVID-19 group showed a significantly high RHR elevation 
compared to all other subjects. For all other subjects within these two 
groups, the RHR differences seemed comparable. This proves that only 
RHR differences might not be a good metric to differentiate COVID-19 
from Other illness with the given data. 

Table 3 
Evaluation of the framework varying the window size.  

Window 
size 

Precision Recall F- 
beta 

Early 
Detection 

Delayed 
Detection 

Failed 
Detection 

4 0.952 0.208 0.919 12 7 6 
6 0.947 0.215 0.916 13 7 5 
8 0.946 0.234 0.918 11 11 3 
10 0.917 0.250 0.893 13 6 6 
12 0.888 0.296 0.870 15 6 4 
16 0.89 0.329 0.876 11 9 5  

Table 4 
Evaluation of the framework based on augmentation and threshold method.  

Threshold Augmentation Precision Recall F-beta Early 
Detection 

Delayed 
Detection 

Failed Detection 

MTE No 0.915 0.268 0.893 10 10 5 
MTE Yes 0.942 0.237 0.915 11 12 2 
STE No 0.892 0.289 0.874 16 8 1 
STE Yes 0.917 0.271 0.896 20 5 0  
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However, Healthy group box plots in Fig. 9a showed both elevated 
and decreased RHR, but they were closer to the baseline compared to the 
other two groups. A detailed RHR difference of the Healthy group was 
illustrated in Supplementary Appendix 4 which showed a very little 
deviance of RHR from the baseline. The distributions of the detected 
anomalous RHR duration by the model were depicted in Fig. 9c. Two 
sides of the violin plots showed the distributions for MTE and STE 
threshold methods. The violin plot of the COVID-19 group stretched the 
farthest. On the other hand, whereas the medians of COVID-19 and 
Other illness distributions were within 50–100, the medians of the 
Healthy distributions were close to zero. This reconfirmed the model’s 
ability not to label the normal RHR during the imaginary infectious 
period as an anomalous one. Moreover, 9d illustrated the total anoma-
lous RHR hours per subject during the infectious period for COVID-19 
and Other illness groups. Although total anomalous RHR was higher 
for 6 COVID-19 subjects, others did not show any significant differences 
from the Other illness group. This further reconfirms the model’s 
inability to detect COVID-19 exclusively among different illnesses. On 
the other hand, the detected anomalous hours are far less for the Healthy 
subjects than for the rest (Supplementary Appendix 4). 

4. Discussion 

The PCovNet framework was trained on a subset of a phase 1 study 
performed by the Genetics Department of Stanford University, where 
among the cohort of 5262 subjects only a fraction of subjects had 
smartwatch data during COVID-19 infection. However, they only made 
the 32 Fitbit users’ data with COVID-19 infection publicly available with 
the symptom onset information [40]. However, among the given 32 
COVID-19 infected subjects, only 25 met our study criterion mentioned 
in Section 2.1. For the train set, we identified the baseline RHR based on 
prior literature. Since there was no clear way of determining the 
anomalous ground truths, we took the infectious period, defined in 
several prior research, as the anomalous period [41–45]. As a result, we 
prioritized the Precision score, which quantifies the model’s perfor-
mance in detecting anomalies within the infectious period [33]. As the 
actual infectious period for each subject may vary, the Recall scores do 
not represent a good insight into the model’s performance, and in 
practice, they were quite low. Hence, we calculated the F-beta score 
penalizing the Recall instead of F1. However, compared to the other 
deep learning-based work on this dataset, PCovNet (MTE) showed an 
increase in Precision, F-beta scores, and PCovNet (STE) showed a higher 
presymptomatic anomaly detection rate. 

4.1. Comparison with previous study 

We compared the PCovNet framework with the first deep learning- 
based presymptomatic COVID detection framework, LAAD [33], 
which was also individually trained on the 25 COVID-positive subjects of 
the same dataset. At first, the statistical matrices, namely TP, FP, TN, FN, 
Precision, Recall, and F-beta were calculated for each subject individu-
ally. For reporting the overall score, the authors of LAAD averaged all 25 
instances but ignored the ones where the framework failed to make any 
successful anomaly detection. In our investigation based on their 
per-subject reported metrics, those two failed cases result in zero or 
undefined values. Hence, ignoring these failed cases would make the 
overall reporting unrepresentative of the whole study. To circumvent 
this problem, we took an alternative approach of calculating the overall 
TP, FP, TN, and FN by summing them for each subject and then calcu-
lating Precision, Recall, and F-beta from those four matrices. For a fair 
comparison, we recalculated the statistical metrics based on the 
per-subject TP, FP, TN, and FN scores provided in the LAAD article [33]. 
We also reproduced the results of the LAAD model from their pipeline 
provided on GitHub. Although we could not get the same result due to 
the stochastic nature of the deep learning models, our reproduced results 
were close to their reported ones. 

The dataset only provided the symptom onset date for each COVID- 
19 infected individual, but no actual infection date. Hence, we relied on 
the literature [41–45] to derive the infectious period and formulated the 
experiments accordingly. However, in reality, this infectious period may 
vary for each subject. Based on the definitions of Precision and Recall 
mentioned in Equations (6) and (7), our objective is to optimize the 
model so that most of the predictions are made in the infectious period. 
Therefore, among the statistical metrics, we put more weight on Preci-
sion than on Recall and calculated F-beta accordingly. 

From the comparison presented in Table V, the PCovNet model with 
the MTE threshold method performed the best in statistical metrics. 
Moreover, it resulted in an above 5% Precision increase and above 2% F- 
beta increase from the reported LAAD results. Conversely, the STE 
threshold method showed a slight increase in Precision, but a slight 
decrease in Recall and F-beta. In terms of failed detection cases, PCovNet 
with the STE threshold method detected anomalous RHR for all subjects, 
whereas the LAAD failed for two subjects. Moreover, the presymptom-
atic detection was also increased by 6 subjects compared to LAAD. On 
the other hand, the MTE threshold method showed a decline in pre-
symptomatic detection by three subjects and failed detection by one. 
Overall, the MTE threshold method with PCovNet showed a notable 
increase from LAAD in terms of statistical metrics and the STE threshold 
method showed significant development in presymptomatic detection. 

From the architectural point of view, in contrast to the autoencoder 

Fig. 5. The detailed architecture of PCovNet LSTM-VAE architecture.  
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Fig. 6. Training summary of subject ID ASFODQR (a) The Resting Heart Rate (b) Anomaly Detector Losses for MTE and STE threshold (c) Training and testing loss 
distribution (d) Loss curve during the LSTM-VAE training. 

F.F. Abir et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 147 (2022) 105682

11

Fig. 7. (a) The top and bottom heatmaps illustrate the anomalous RHR detection rate per day for each user for MTE and STE threshold methods, respectively. (b) The 
bar charts showed the number of subjects identified with anomalous RHR in the infectious period for the first time. The presymptomatic and post-symptomatic 
detection are indicated in varying colors. 

F.F. Abir et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 147 (2022) 105682

12

(AE) in the LAAD framework, the variational autoencoder in PCovNet 
introduces regularization and continuous latent space representation. 
Although the AE and VAE are generative networks by architecture, and 
both have encoder and decoder units at their core, their latent vector 
(encoder output) are different. For AE, the latent vector often contains 
discrete sets of values resulting in an irregular latent space. During 
decoding, any value from the irregular latent space can result in 
meaningless output. Moreover, this phenomenon often results in over-
fitting. Conversely, the VAE encoder maps the latent vector into a 
gaussian distribution resulting in a continuous latent space. Alterna-
tively, such continuity introduces explicit regularization when the 
model is in the training phase [59]. Thus, due to the inherent regulation 
of the VAE architecture in PCovNet, the model learns the important 
features better and shows better decoding during the testing process in 
contrast to the LAAD. This is validated by the results in Table V. 

Although a few other recent studies have validated smartwatch- 
based COVID-19 detection systems, their study objective, experiment 
setup, evaluation criteria, and dataset are not the same as this experi-
ment. Hence, we could not compare these quantitative results with ours. 
In one such study, Liu et al. proposed a contrastive convolutional 
autoencoder-based system on the HRV data. The method achieved un-
weighted average specificity of 90.6%, sensitivity of 100%, and recall of 
95.3% [34]. In another study, Hijazi et al. extracted both time and fre-
quency domain features from the HRV data collected by smartwatches 
and predicted COVID-19 infection at least two days before the symptom 
onset. The combination of HRV and survey-based assessment features 
reached maximum Precision, Recall, and F-score of 0.91, 0.88, and 0.89, 
respectively [60]. While these studies aimed at the abnormal HRV 
detection associated with COVID-19 infection, the experiment on pre-
symptomatic detection and detailed investigation of Other Illness and 
Healthy groups are missing. 

4.2. Utility of PCovNet 

According to the results shown in Section 3.5, RHR elevation was 
spotted among the COVID-19 and Other Illness groups as mentioned in 
prior studies [17,18,22]. However, the results in Section 3.5.1 showed 
the performances of the two threshold methods and among them, STE 
showed higher sensitivity compared to MTE. The high sensitivity of the 
STE method might result in false alarming, which could be filtered by 
the anomaly strength or the anomaly duration for an alarming system. 
On the other hand, the high Precision rate is generally desirable for a 
detection system not used with duration-based post-processing. Hence, 

based on the objective of an application, either MTE or STE methods can 
be adopted. 

Moreover, the experiment with COVID-19, Other Illness, and 
Healthy groups signifies that, despite the elevation and decrease in RHR 
for the Healthy group within the demo infectious period, the elevation 
pattern is more prominent in the other two groups. However, similar to 
the previous studies [22,33], the RHR elevation patterns in COVID-19 
and Other Illness groups are not conclusive of a certain infection in 
PCovNet. This signifies that PCovNet, like other wearable-based sys-
tems, is not useable as the sole diagnosis tool for COVID-19, and 
certainly cannot replace laboratory-based testing, i.e., RT-PCR. 

However, as an everyday companion, smartwatches can monitor the 
RHR continuously and the results showed potential for PCovNet to 
detect anomalous RHR directly related to COVID-19 infection. Thus, this 
system can be used as a tool for continuous monitoring and contact 
tracing, which is the primary concern with laboratory-based systems. 
Upon getting the alerts from PCovNet enabled smartwatches, the in-
dividuals can take the laboratory test and isolate themselves, which has 
immense utility for prioritizing laboratory testing during resource- 
constraint scenarios as well. 

4.3. Future directions 

Although we have achieved a promising result to use PCovNet with 
smartwatches for detecting COVID-19 before the symptom onset, there 
are several future directions that can be explored to make the system 
more robust. 

Firstly, a larger dataset is needed to make such a framework more 
reliable. The greater dataset volume should include a larger baseline 
sequence as well. Due to the nature of the study, a large number of 
annotated data having the COVID-19 infection timeframe is a mammoth 
task. For example, we got only 25 subject data to work with among 3325 
Fitbit users in the cohort. Hence a collaborative approach is necessary 
among the leading wearable device manufacturers and researchers. 

Secondly, this study included only the COVID-19 infected individuals 
who experienced aberrant RHR due to SARS-CoV-2 infection. However, 
a good number of infections might cause RHR abnormalities. Prior 
works [22,33] showed, and we verified that subjects with COVID-19 
infection and other illnesses show a similar elevation, declination, and 
abrupt fluctuations in RHR. The probable reason behind this failure 
might be the HR sensing ability of the wearable device sensors or the 
lack of infection effects on the HR. This can be further examined with a 
larger cohort; however, there is a financial and technological bottleneck 
for implementing high-quality HR sensors in wearable devices for such a 
large cohort. 

Thirdly, although the dataset contained sleep information for the 
COVID-19-infected subjects, it was irregular and sparse. Moreover, the 
sleep stages can be a significant parameter for detecting diseases, which 
the wearable sensors often cannot determine reliably [22]. 

5. Conclusion 

This study proposes an anomaly detection framework with LSTM- 
VAE to identify the underlying COVID-19 infection during the pre-
symptomatic period based on the RHR of 25 COVID-positive subjects. 
The RHR was derived during the preprocessing steps of the framework 
using the HR and steps data collected by the Fitbit smartwatch. The 
model was trained and evaluated separately for each subject. However, 
the framework reported two thresholding parameters each showing 
better performance in two separate priorities - detecting anomalous RHR 
in the infectious period (presymptomatic and post-symptomatic detec-
tion) and detecting anomalous RHR before the symptom onset. 

Overall, this study showed that despite the sensing constraint of 
wearable devices, they have the potential for continuous health moni-
toring. Although any diagnosis solely based on such devices is still not 
reliable, they can act as alerting companions for immediate diagnosis. 

β

Fig. 8. Comparison of F-beta Scores among three group.  
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(a) (b)
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Fig. 9. (a) The distribution of elevated and decreased RHR during the infectious period for all three groups (b) Violin plot of the anomalous RHR hours of all subjects 
during the infectious period for all three groups (c) Box plot of the difference in RHR per subject of COVID-19 and Other illness group (d) Bar plot of the total 
anomalous RHR hours per subject of COVID-19 and Other illness group. 

Table 5 
Comparison of PCovNet with the previous work.  

Models Precision Recall F-beta Early 
Detection 

Delayed 
Detection 

Failed Detection 

LAAD 0.894 0.331 0.895 14 9 2 
LAAD (Reproduced) 0.887 0.307 0.87 12 10 3 

PCovNet (STE) 0.904 0.274 0.883 20 5 0 
PCovNet (MTE) 0.946 0.234 0.918 11 11 3  
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We are optimistic that more comprehensive studies on wearable devices 
will enable us to contain infectious diseases more efficiently in the 
future. 
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