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SUMMARY

Prevention of hypoglycemia (glucose <70 mg/dL) during aerobic exercise is a major
challenge in type 1 diabetes. Providing predictions of glycemic changes during and
following exercise can help people with type 1 diabetes avoid hypoglycemia. A
unique dataset representing 320 days and 50,000 + time points of glycemic mea-
surements was collected in adults with type 1 diabetes who participated in a 4-
arm crossover study evaluating insulin-pump therapies, whereby each participant
performed eight identically designed in-clinic exercise studies. We demonstrate
that even under highly controlled conditions, there is considerable intra-participant
and inter-participant variability in glucose outcomes during and following exercise.
Participants with higher aerobic fitness exhibited significantly lower minimum
glucose and steeper glucose declines during exercise. Adaptive, personalized ma-
chine learning (ML) algorithms were designed to predict exercise-related glucose
changes. These algorithms achieved high accuracy in predicting the minimum
glucose and hypoglycemia during and following exercise sessions, for all fitness
levels.

INTRODUCTION

Physical activity has been shown to reduce cardiovascular risk factors in people with type 1 diabetes (Bohn
et al., 2015) and regular physical exercise has recently been shown to result in improved time in target
glucose range (70-180 mg/dL) (Riddell et al., 2020a). However, exercise is also known to cause substantial
changesin glucose. These changes in glucose vary per exercise modality (Bussau et al., 2006; Colberg et al.,
2016; Lascar etal., 2014; Moniotte et al., 2017; Reddy et al., 2018; Yardley et al., 2013) and are most dramatic
during steady aerobic exercise (Riddell et al., 2020b). There is an increased risk of hypoglycemia during ex-
ercise that occurs because of altered muscular uptake of glucose during exercise, and delayed hypoglyce-
mia that can occur on nights following exercise because of changes in insulin-sensitivity (Man et al., 2009;
McMahon et al., 2007; Reddy et al., 2019; Wahren, 1977). These dynamic processes underlying glucose up-
take are compounded by regular bouts of exercise (Boulé et al., 2005; Steenberg et al., 2019). Although
regular exercise can improve overall health, avoiding hypoglycemia during exercise is a known challenge
for people with type 1 diabetes (Wilson et al., 2020b).

Continuous glucose monitoring technologies (CGM) can provide real-time alerts to the occurrence of hypogly-
cemia (<70 mg/dL) or hyperglycemia (>180 mg/dL) during exercise. In addition, although certain commercial
CGM systems like the Dexcom CGM have recently been reported to achieve 13.3% mean absolute relative error
(MARE) during aerobic activity (Guillot et al., 2020), use of CGM alone is not sufficient to prevent hypoglycemia.
Commercially available automated insulin delivery (AID) systems have been shown to improve time in glucose
target range across real-world daily activities (Brown et al., 2019; Garg et al., 2017), but the exercise modalities
of these systems are limited to user-selected modifications to basal insulin and target glucose during
announced physical activity (MiniMed 670G System User Guide, Medtronic, 2017; t:slim X2 Insulin Pump
with Control-IQ Technology User Guide, Tandem Diabetes Care, 2020) (Wilson et al., 2022). AID algorithms
that incorporate real-time physical activity data to prevent hypoglycemia typically reduce automated insulin,
and in the case of dual-hormone systems, increase glucagon in anticipation of glucose drops during aerobic
exercise (Castle et al., 2018; Jacobs et al., 2016; Wilson et al., 2020a). Furthermore, adaptive AID algorithms
that incorporate activity data have been developed to estimate an individual’s plasma insulin and future
glucose concentrations for the purpose of personalizing insulin delivery (Hajizadeh et al., 2018a, 2018b).
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However, even these systems do not completely eliminate exercise-induced hypoglycemia. Consensus state-
ment guidelines have been developed to help people with type 1 diabetes make decisions regarding modifi-
cation of insulin dosages and carbohydrate intake before and during exercise (Moser et al., 2020; Riddell et al.,
2017), but people with type 1 diabetes will oftentimes need to use trial-and-error approaches to learn how to
avoid hypoglycemia during exercise. Both automated hormone delivery and decision support systems
currently lack the ability to accurately predict exercise-induced changes in glucose. In addition, there can be
significant interpersonal and intrapersonal variability in glucose changes during exercise. Exercise-related
glucose changes in people with type 1 diabetes have notyetbeen precisely quantified in individuals and across
populations when considering different insulin therapies, or baseline fitness levels.

Machine learning is a powerful tool whereby machines are designed to solve problems or perform sophis-
ticated tasks and can even help to make medical decisions, or provide decision support, for diabetes man-
agement. Machine learning approaches have been used in disease detection (Li et al., 2018), insulin dose
modification through decision support (Tyler and Jacobs, 2020; Tyler et al., 2020), and can be expanded to
provide exercise decision support directly to a person living with type 1 diabetes, or to AID systems in order
to adjust insulin during physical activity (Reddy et al., 2019; Wilson et al., 2020a). Although algorithms that
have been designed to predict future glucose exhibit relatively low root mean squared error (RMSE) during
non-exercise periods (14.0 mg/dL-18.0 mg/dL) (Mosquera-Lopez and Jacobs, 2021; Pérez-Gandia et al,,
2010; Zecchin et al., 2012; Zhu et al., 2020), recent studies have indicated that the accuracy of these algo-
rithms is oftentimes far worse during exercise (46.16 mg/dL) (Hobbs et al., 2019). Machine learning models
have already been developed to predict changes in glucose immediately following aerobic exercise (Ben
Brahim et al., 2015; Hobbs et al., 2019; Reddy et al., 2019; Romero-Ugalde et al., 2019); in addition, when
integrated with a decision support system, increase the minimum glucose measured during in-clinic exer-
cise sessions (Breton et al., 2018). Still, these algorithms oftentimes have poor accuracy during real-world
scenarios (Hobbs et al., 2019), demonstrate large variability in performance between individuals (Xie and
Wang, 2020), and have not been evaluated across varying physical fitness levels.

Population machine learning models are trained on a group of people and are designed to provide pre-
dictions for all people. However, a personalized model learns an individual’s unique physiology to improve
prediction accuracy for an individual. Personalized models can be designed by training machine learning
models specifically on an individual’s data (Romero-Ugalde et al., 2019), by clustering a number of similar
people into groups before model training and then training a model on that cluster (Contreras et al., 2017,
Montaser et al., 2019), or by adapting a model in real-time using newly observed data to improve glucose
predictions (Hajizadeh et al., 2018b; Hobbs et al., 2019). It is not yet clear how personalization impacts the
prediction accuracy of exercise-related changes in glucose.

Herein we characterize the impact of aerobic exercise on glucose changes using a unique dataset collected
during highly controlled, aerobic exercise sessions in adults with type 1 diabetes. Glucose variations are char-
acterized per participant, insulin therapy, and are further explored with respect to baseline physical fitness.
Personalized machine learning models were then designed to estimate the minimum glucose during aerobic
exercise and 4 h following the start of exercise, and to quantify the impact of personalization on model accuracy.
We considered three machine learning algorithms, including a multivariate adaptive regression spline (MARS)
model (Friedman, 1991), a previously described logistic regression model (Breton et al., 2018), and an autore-
gressive (AR) model based on a previously described autoregressive model with exogenous inputs (ARX) (Ro-
mero-Ugalde et al., 2019). The dataset used to train and benchmark the approach was collected in a previously
published study whereby aerobic exercise was performed 8 times per study participant underidentical exercise
intensity and duration, meal content and timing conditions, and across multiple diabetes management strate-
gies including automated insulin delivery, automated insulin and glucagon delivery, insulin pump therapy with
predictive low-glucose suspend, and standard insulin pump therapy (Castle et al., 2018). The findings obtained
from this unique dataset can serve as a benchmark for comparison with other adaptive prediction algorithms,
because we anticipate that the repeatability of the changes in glucose will be substantially reduced under free-
living exercise conditions compared with these controlled conditions.

RESULTS
Variations in blood glucose dynamics during identically designed exercise scenarios

To evaluate the repeatability of exercise-related glucose changes, participant glucose outcomes were ob-
tained from 20 adults with type 1 diabetes who each performed eight identically-designed aerobic exercise
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Figure 1. Change in blood glucose measured during identical aerobic exercise sessions

(A) The change in glucose measured during eight identical exercise sessions across a 4-arm clinical study. The boxplot represents the median and IQR of the
change in glucose measured during exercise, cross symbols represent outlier values and each whisker extends to the most extreme data point that is not an
outlier (n = 158 observations of SMBG data from 20 participants, whereby each participant is represented by eight SMBG observations, and participant 18 is
represented by six SMBG observations).

(B-E) The change in glucose measured during aerobic exercise within a given insulin therapy. The black x symbol represents the change in glucose measured
during an exercise session, and there are two x symbols per participant per study arm. The line drawn between two black x symbols represents the difference
in glucose outcomes measured between the two identically-designed exercise sessions (n = 158 observations of SMBG data from 20 participants across four
study arms, whereby participants are represented by two observations per study arm, and data is not available for participant 18 in the standard of care study
arm). The open black circle represents the change glucose measured from the start of exercise, to the minimum glucose measured 4 h after exercise, and
these outcomes are connected by a dotted black line (n = 160 observations of CGM data from 20 participants across four study arms, whereby participants
are each represented by two observations per study arm).

sessions at 70% VO,max for 43.2 min on average (N = 160 observations). To control for additional variability
in glucose trends that can impact exercise-related glucose changes, the in-clinic exercise sessions were de-
signed such that participants consumed a self-selected breakfast at 8 a.m., daily activities at 10 a.m., lunch
at 12 p.m., and performed exercise at 2 p.m. Meals of identical nutritional content were consumed at the
same time, and aerobic treadmill exercise was performed at the same time for each of the eight in-clinic
visits. Figure 1 shows the variability in the changes in blood glucose during exercise for each participant
across the entire study (Figure 1A) and also organized by insulin therapy (Figures 1B-1E). The difference
in exercise-related blood glucose changes measured during highly controlled exercise sessions (Figures
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1B-1E, connecting dashed and solid lines) are reported as the difference averaged across all study arms,
per participant in Table 1. Glucose dropped during exercise for nearly every exercise session, and glucose
dropped further in the 4 h period after exercise was concluded for some subjects (Figures 1B-1E, circles).
Despite highly repeatable exercise conditions, food intake, and glucose management strategies, there was
still substantial intra-participant variability of the change in glucose during exercise across all eight
identical exercise scenarios, ranging across participants from 23.1 mg/dL (participant 13) to 56.4 mg/dL
(participant 9) (Table 1). Although variability is smaller for some participants when looking at the two exer-
cise sessions performed under a given diabetes management strategy, substantial variability in glucose
changes during exercise is still observable for other study participants (Figures 1B-1E). The average change
in blood glucose during exercise and variability in this change is reported per therapy arm and per partic-
ipant in Table 1.

Physical fitness impacts changes in glucose observed during physical activity

Baseline aerobic fitness was assessed by VO,max norms for men and women using a rating scale from the
American College of Sports Medicine (American College of Sports Medicine’s Complete Guide to Fitness &
Health by Barbara Bushman, 2017) that ranks individuals on a scale of very poor, poor, fair, good, excellent,
and superior. We found that participants with higher aerobic fitness (rated as good, excellent, and superior
VO,max) exhibited significantly lower minimum glucose during aerobic exercise than those with lower
aerobic fitness (rated as very poor, poor, and fair VO,max) (average minimum glucose 75.9 mg/dL vs
103.1 mg/dL, p < 0.001). Participants with higher aerobic fitness also exhibited lower CGM-measured min-
imum glucose compared with participants with lower aerobicfitness in the 4-h following the start of exercise
(70.4 mg/dL vs 85.4 mg/dL, p < 0.001). In addition, the higher aerobic fitness participants had significantly
steeper glucose drops during exercise (—2.2 mg/dL/min vs —1.8 mg/dL/min, p < 0.05) (Figures 2A-2C). Par-
ticipants with higher aerobic fitness exhibited lower glucose values across the in-clinic study days (Figures
2D and 2E), with significantly lower glucose during activities of daily living when they were physically active
(p < 0.05), during the aerobic exercise, and in the overnight period following in-clinic aerobic exercise.

Population model predictions achieve good prediction accuracy

Three types of population machine learning models were designed: a MARS model to predict minimum
glucose following exercise, a logistic regression model to predict hypoglycemia following exercise, and
an AR model to predict CGM values at the end of exercise. Features used to model minimum glucose during
and after exercise were extracted from the data collected during each of the in-clinic exercise sessions (N =
160 exercise sessions) and are defined in Table S1. Leave-one-participant-out cross-validation was used
during algorithm training to develop generalizable predictive models (Figure S1). Accuracy of the three ma-
chine learning models to predict minimum blood glucose at the end of exercise and also CGM-measured
minimum glucose during the 4 h following the start of exercise are reported in Table 2. The population MARS
model estimated minimum glucose during exercise with an MAE of 20.0 mg/dL; a sensitivity of 63%, and an
accuracy of 67% to predict hypoglycemia when cross-validated across all 20 participants with each partici-
pant left out during the training. The population logistic regression model achieved a sensitivity of 64% and
accuracy of 61% in predicting hypoglycemia during exercise when cross-validated on all 20 participants. The
population AR model exhibited worse MAE than the MARS model, 23.8 mg/dL, and achieved the highest
sensitivity (71%) and accuracy (81%) to predict CGM-measured glucose <70 mg/dL 40 min after the start
of exercise, when cross-validated across all 20 participants.

For longer prediction horizons of 4 h after the start of exercise, the population MARS model exhibited a
MAE of 20.1 mg/dL, and a sensitivity of 62% and an accuracy of 56% to detect CGM-measured hypoglyce-
mia when cross-validated across all 20 participants. The results of the logistic regression model to predict
hypoglycemia during exercise and 4 h following the start of exercise were similar both during exercise and 4
h after exercise. The logistic regression model achieved a sensitivity of 63% and accuracy of 58% to detect
CGM-measured hypoglycemia when cross-validated across all 20 participants. The AR model was not de-
signed for the 4-h predictive window and therefore results are not shown.

Prior exercise-related changes in glucose help to predict future nadir glucose

The benefit of personalization was evaluated by first considering whether the inclusion of participant exer-
cise history, or data collected during previous exercise sessions, can improve accuracy to predict the min-
imum glucose during exercise. To do this, a second MARS model was designed that also incorporates
participant exercise history features (Table S2). Exercise data features that were found to be predictive
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Table 1. Changes in glucose during exercise, and results of the best performing ML models to predict minimum glucose in the 4 h following exercise

Average difference

Mean Glucose Predictive measured during
Drop During Standard Low-Glucose  Single-hormone Dual-hormone identical exercise ~ Ex model® Ex model®, 4-h model® 4-h model®
Participant ID Exercise [mg/dL] Care Arm Suspend Arm AP Arm AP Arm [mg/dL] MARE [%] RMSE [mg/dL] MARE [%] RMSE [mg/dL]
17 —92.4 + 240 —-745 £+ 106 —-79.5+ 35 —122.0 £ 12.7 —93.5 £ 31.8 20.8 11.9 8.5 13.8 10.0
2° —100.3 + 23.4 -107.0+ 14 -1220+14 —106.5 £ 12.0 —-65.5 £ 120 9.5 17.6 13.8 24.9 18.5
8 —41.4 £ 37.2 —-61.0 £ 39.6 -54.0+ 255 11.0 £ 9.9 —-61.5 £ 3.5 27.8 1.7 15.9 26.1 33.5
42 —91.1 £ 47.6 —132.0 £ 58.0 —93.0 + 354 —-93.5 £ 573 —46.0 £ 22.6 61.3 19.1 16.9 17.9 131
5° —104.1 + 28.4 —740 £ 255 —-1050 + 255 —110.0 + 36.8 —127.5 £ 49 32.8 22.7 21.4 253 18.8
6 —118.5 &+ 48.1 —-119.5 £ 134 -1275+£91.2 —-965 %573 —-130.5 £ 544 765 24.2 41.9 21.9 30.6
7° —83.6 £ 54.4 —79.5 £ 460 —109.5 £ 1025 —43.5 + 10.6 -101.8 £ 52.0 74.6 10.2 8.0 10.5 8.4
8° —101.1 £ 39.1 —145.5 + 48.8 —106.5 £ 20.5 —-86.0% 57 —66.5 + 31.8 37.8 235 20.1 18.3 15.2
9° —86.6 + 56.4 —37.3 £ 343 —65.0 % 56.6 —111.5 £ 615 —-132.5 £ 53.0 726 171 17.2 33.1 43.2
107 —97.8 £ 50.0 —-71.0 £ 28 —745 £ 1011 —126.5 £ 29.0 —119.0 £ 36.8 60.0 28.9 35.0 15.7 28.9
" —94.4 £+ 33.9 —955 £ 148 —-93.0 & 63.6 —106.5 + 54.4 —82.5 + 14.8 52.3 23.5 24.6 22.8 23.0
127 —55.4 £+ 26.7 —20.8 £ 15.2 —66.0 + 22.6 —83.0 £ 57 -520 £ 71 17.9 221 41.0 17.8 213
13 —36.0 £ 23.1 —9.0+ 28 —48.0 £ 15.6 —27.0 +£ 18.4 —60.0 £ 9.9 16.5 16.3 151 13.0 12.4
14 —112.6 + 42.8 —98.0 +£ 46.7 —-102.0 £ 651 —-97.8 4+ 357 —152.5 £ 29.0 624 19.5 24.6 19.3 18.5
15 —88.1 £ 36.7 —104.5 £ 827 —-1025 £ 17.7 -73.0 £ 113 —725 £ 163 45.3 16.1 15.9 16.1 16.8
167 -77.1 £33.9 -575+177 —-450+ 255 9154276 -114.5 £ 16.3 30.8 234 20.4 19.8 21.0
17 —69.4 £+ 38.0 -230+ 198 -111.5+0.7 —795 £ 17.7 —63.5 £ 36.1 26.3 22.0 28.1 22.8 32.0
18 —97.0 £ 48.7 N/A -1155 £ 2.1 —135.0 £ 4.2 —40.5 £+ 431 23.3 19.4 23.5 39.0 53.5
19 —74.0 £ 23.6 —78.0 £ 25,5 —68.0 + 12.7 —95.0 £ 15.6 —-55.0 £ 33.9 310 20.0 30.1 253 29.0
207 —63.0 £ 54.0 —140.0 £ 21.2 -54.5 + 20.5 -13.0 £33.9 —445 £ 262  36.0 20.1 20.1 225 19.0
Mean + Std —84.2 £+ 43.26 —80.4 £ 46.6 —87.1 £429 843 £ 442 —84.1 £ 40.7 408 + 20.9 195+ 47 221 +94 213 £68 233+ 113

Participant 18 SMBG data was not available for the standard-care arm, and is not reported.

“indicates participants with higher aerobic fitness.

Pindicates the performance of the model designed to predict minimum glucose at the end of exercise, specifically, the MARS model designed with exercise history and adaptive personalization.
“indicates the performance of the model designed to predict minimum glucose within 4-h following the start of exercise, specifically, the MARS model that underwent adaptive personalization.
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Figure 2. Differences in glycemic response across baseline physical fitness

Boxplots represent the median and IQR of the data, cross symbols represent outlier values and each whisker extends to the most extreme data point that is
not an outlier. * represents significant differences p < 0.05 between boxplot groups as determined by an independent t-test. ** represents significant
differences p < 0.05 between boxplot groups as determined by Wilcoxon rank-sum test. O represents significant differences p < 0.05 between sensor
glucose as determined by a Wilcoxon rank-sum test.

(A) The slope of glucose during aerobic exercise is significantly steeper in participants with higher aerobic fitness (n = 88 observations collected from 11
participants) than participants with lower aerobic fitness (n = 70 observations collected from nine participants) (average trend —2.2 mg/dL/min vs —1.8 mg/dL/min,
p = 0.03).

(B) The minimum glucose measured during aerobic exercise is significantly lower in participants with higher aerobic fitness (n = 88 observations collected
from 11 participants) than in participants with lower aerobic fitness (n = 70 observations collected from nine participants) (average minimum glucose
75.9 mg/dL vs 103.1 mg/dL, p = 4.7 x 107%).

(C) The minimum glucose measured by CGM in the 4-h following the start of aerobic exercise is significantly lower in participants with higher aerobic fitness
(n = 88 observations collected from 11 participants) than in participants with lower aerobic fitness (n = 70 observations collected from nine participants) and
(average minimum glucose 70.4 mg/dL vs 85.4 mg/dL, p = 3.3 x 107°).

(D) IQR of sensor glucose obtained from participants during in-clinic study days 1 and 4. Participants with higher aerobic fitness exhibit significantly lower
glucose during activities of daily living and aerobic exercise, and in the nighttime following exercise (p < 0.05). The lower aerobic fitness group is represented
by gray area (n = 72 sensor traces collected from nine participants). The higher aerobic fitness group is represented by magenta area (n = 88 sensor traces
collected from 11 participants). During the in-clinic exercise study visits, activities of daily living were performed starting at 10 a.m., and exercise at 70%
VO,max was performed at 2 p.m. The number of sensor traces from 9 p.m.—12 a.m. is lower for both groups (lower fitness, n = 34, higher fitness, n = 44),
representing data only from study day 1, whereas participants exited the clinical study on day 4 and overnight sensor data is therefore not available.

(E) IQR of sensor glucose across the entire 4-day study. The lower aerobic fitness group is represented by gray area (n = 36 sensor traces collected from nine
participants). The higher aerobic fitness group is represented by magenta area (n = 44 sensor traces collected from 11 participants).

of future glucose trends included (1) the participant’s average metabolic expenditure measured during
other aerobic exercise sessions, and (2) the average change in glucose measured during other aerobic
exercise sessions by the participant. When evaluated on the holdout set, the MARS model that included
exercise history reduced MAE by 39%, from 23.4 mg/dL to 14.3 mg/dL, improved sensitivity to predict hy-
poglycemia during exercise from 50% to 73%, and improved accuracy from 75% to 81% (Table 2). Cross-
validation across all 20 participants showed that the inclusion of participants’ exercise history into the
MARS model reduced MAE from 20.0 mg/dL to 17.6 mg/dL, improved sensitivity from 63% to 66% to detect
hypoglycemia, and improved accuracy from 67% to 70%.

Forlonger prediction horizons of 4 h, the MARS model that included exercise history performed similarly to

the MARS model that was designed without exercise history, when cross-validated across all 20 participants
(Table 2).
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Table 2. Comparing the effect of adaptation on the performance of models designed to predict exercise-related changes in glucose
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Population model

Personalized model, coefficient adaptation

Comparison between
population model and
personalized model

[Sensitivity, specificity]

[Sensitivity, specificity]

RMSE (MAE) [mg/dL] (Accuracy) [%] RMSE (MAE) [mg/dL] (Accuracy) [%] A MAE [%] A Accuracy [%]
Predicting minimum glucose at the end of exercise
MARS model
Training, 16-fold CV 24.1(19.2) [73, 671 (69) - - - -
Validation, Holdout Set 26.5 (23.4) [50, 86] (75) 23.1(19.6) [70, 86] (81) —16.2 +8.3
Validation, 20-fold CV 24.6 (20.0) [63, 63] (67) 23.0(18.1) [61,78] (78) -9.5 +16.17
MARS model + exercise history features
Training, 16-fold CV 23.1(18.2) [75, 65] (68) - - - -
Validation, Holdou® Set 18.7 (14.3) [73, 86] (81) 19.7 (15.8) [73, 95] (88) +10.1 +7.7
Validation, 20-fold CV 22.6 (17.6) [66, 69] (70) 22.1(17.5) [51,83](77) -0.6 +10.1°
AR model: Population model®
Training, 16-fold CV 28.8 (22.7) [71, 94] (83) - - - -
Validation, Holdout Set 32.8(28.6) [59, 871 (72) 27.6 (233) [59, 87] (72) -18.7 +0
Validation, 20-fold CV 29.6 (23.8) [71,91](81) 27.7 (22.0) [76, 90] (83) -7.4 +3.1
Logistic regression
Training, 16-fold CV - [66, 67] (66) - - - -
Validation, Holdout Set - [73, 76] (75) - [73, 90] (84) - +12.5
Validation, 20-fold CV - [64, 56] (61) - [68, 61] (70) - +15.5°
Predicting minimum glucose 4 h after exercise
MARS model®
Training, 16-fold CV 25.8 (19.7) [67, 68] (68) - - - -
Validation, Holdout Set 25.7 (21.6) [18, 76] (56) 21.5(163) [33, 96] (78) -24.8 +38.9
Validation, 20-fold CV 25.1(20.1) [62, 51] (56) 23.3(18.3) [56, 70] (68) -9.0 +21.4° %
(Continued on next page) ®)
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Table 2. Continued

Population model

Personalized model, coefficient adaptation

Comparison between
population model and
personalized model

[Sensitivity, specificity]

[Sensitivity, specificity]

RMSE (MAE) [mg/dL] (Accuracy) [%] RMSE (MAE) [mg/dL] (Accuracy) [%] A MAE [%] A Accuracy [%]

MARS model + exercise history features”

Training, 16-fold CV 24.8 (18.6) (79, 61] (69) - - - -

Validation, Holdout Set 30.7 (26.1) [29, 61] (47) 23.0 (16.0) [56, 96] (84) —38.8 +80.0

Validation, 20-fold CV 26.3 (21.1) [74, 52] (57) 23.9 (18.2) [57, 70] (69) -13.8 +20.0
Logistic regression”

Training, 16-fold CV - [57,72] (65) - - - -

Validation, Holdout Set - 132, 77] (50) - 153, 92] (69) - +37.5

Validation, 20-fold CV - [63, 50] (58) - 164, 74] (70) - +20.4°

Values represent the mean performance across participants.

Training is performed with data from n = 16 participants, whereas the holdout set includes data from n = 4 participants.

The 20-fold validation includes data from all n = 20 participants.

#indicates that the significance p < 0.05 determined Wilcoxon signed-rank test for paired, nonparametric data comparing the change in error or accuracy on a per-participant basis.
These models return predicted CGM, not SMBG values. The AR model is only designed to predict glucose approximately 43.2 min after the start of exercise, and the results for a 4 h prediction horizon are not

shown.
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Adaptive personalization improves the accuracy of predictive models

The benefit of personalization was also investigated through adaptation of the machine learning models to
better predict individual participants’ exercise-related glucose changes. Stochastic gradient descent (An
overview of gradient descent optimization algorithms, Ruder, 2016) was used to incorporate the exercise
information obtained from a participants exercise session (e.g., data collected during their first study visit)
to update the population model parameters. The adapted model was then used to predict the same par-
ticipant’s outcomes for a separate, held-out exercise session (e.g., their second study visit). This adaptation
procedure was repeated for each held-out exercise session, enabling the machine learning model param-
eters to adapt to an individual’s data over time as more exercise sessions were observed. Personalization of
the model coefficients through stochastic gradient descent adaptation improved the accuracy of all of the
predictive algorithms (see Table 2) to estimate glucose during exercise and 4 h after the start of exercise.
The improvement from adaptation was not influenced by the order of the observed exercise sessions, and
we report the results from the original order before shuffling. Gradient descent adaptation of model
coefficients reduced the predictive error of the MARS model from an MAE of 20.0 mg/dL to an MAE of
18.1 mg/dL, reduced sensitivity from 63% to 61%, and significantly improved the 20-fold cross-validation
accuracy of the MARS model in predicting hypoglycemia during exercise from 67% to 78% (p < 0.05).
The predictive error per-participant can be seen in Table 1. Adaptation of the logistic regression parame-
ters improved the sensitivity to predict hypoglycemia during exercise from 64% to 68%, and significantly
improved the accuracy from 61% to 70% (p < 0.05), when cross-validated across all 20 participants. Adap-
tation of the AR model improved the cross-validation MAE from 23.8 mg/dL to 22.0 mg/dL, and improved
the sensitivity to detect hypoglycemia during exercise from 71% to 76% and accuracy from 81% to 83%.

Forlonger prediction horizons of 4 h following the start of exercise, adaptation reduced the predictive error
and improved the accuracy of all of the models. The personalization through adaptation of the MARS
model coefficients significantly reduced the MAE from 20.1 mg/dL to 18.3 mg/dL, reduced sensitivity
from 62% to 56%, and significantly increased the accuracy to predict CGM-measured hypoglycemia 4 h
following exercise from 56% to 68% (p < 0.05). The adaptation of the MARS model designed to include prior
exercise session metrics reduced the MAE from 21.1 mg/dL to 18.2 mg/dL, reduced sensitivity from 74% to
57% and increased the accuracy to detect CGM-measured hypoglycemia 4 h following exercise from 57%
to 69% when cross-validated across all 20 participants. Adaptation of the logistic regression model
increased sensitivity from 63% to 64%, and significantly improved the accuracy from 58% to 70% (p <
0.05) to predict CGM-measured hypoglycemia in the 4 h following exercise when cross-validated across
all 20 participants.

Figure 3 shows the Parkes consensus grid of the MARS model cross-validation across all 20 participants in
predicting glucose at the end of exercise. Personalization of the population MARS model increased the
number of observations in the consensus error grid region A from 110 observations to 115 observations,
with no changes inregions C, D, or E. When exercise history was included in the design of the MARS model,
adaptation increased the values in region A to 118 observations, with no observations in regions D and E
and 99.4% of observations in the combined A + B regions (Figure 3C).

Physical fitness impacts predictive performance

The MARS models performed equivalently for higher fitness vs. lower fitness study participants in terms of
mean absolute relative error (Table 3). The AR performed worse for the higher fitness participants than the
lower fitness participants. The accuracy to detect hypoglycemia during exercise, and in the 4 h following
start of exercise, was nominally lower in all machine learning models when evaluated on participants
with higher aerobic fitness. Adaptation improved the accuracy to predict hypoglycemia for participants
with higher and lower aerobic fitness, and across both prediction horizons (Table 3).

DISCUSSION

Herein we demonstrate that there is substantial variability in glucose changes during aerobic exercise in
people with T1D even under highly repeatable food intake and exercise conditions, and that these changes
are impacted by baseline physical fitness levels. We also present adaptive glucose-forecasting algorithms
and demonstrate how personalization and prior history can improve the accuracy to predict minimum
glucose during and following aerobic exercise. To our knowledge, this is the first analysis of exercise-
related glucose changes and prediction strategies using an ideal dataset of highly regimented, identical
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Figure 3. Consensus Error Grid for models predicting minimum glucose at the end of exercise

The regions of the consensus error grid indicate the clinical impact of prediction errors. Observations that land in regions
A and B indicate safe predictions. Observations that lay in regions C, D, and E may result in clinical errors such as missed
hypoglycemia, or false positive hypoglycemia that results in excessive carbohydrate intake. The percentage of
observations falling within each region is listed below each figure.

(A) Population MARS model validation (n = 158 observations of exercise data collected from 20 participants) without
including prior exercise history.

(B) The MARS model predictions after personalization of population model coefficients (n = 158 observations of exercise
data collected from 20 participants).

(C) The predictions of the MARS model that incorporates exercise history features, with additional personalization of the
model coefficients (n = 158 observations of exercise data collected from 20 participants).

study exercise visits. and across multiple insulin therapies. In the published clinical study dataset used to
train the proposed predictive algorithms (Castle et al., 2018), the specific variations in glucose during ex-
ercise were not presented and a demonstration of differences between individuals with varying aerobic
fitness was not presented. The data demonstrate that individuals living with type 1 diabetes will experience
considerable variability during exercise, even when exercise occurs in the context of identical meals, exer-
cise intensity and duration, insulin therapy, and scheduled daily activities. For some participants, the
magnitude of this variability was diminished when examined within the context of an individual insulin ther-
apy. From a clinical perspective, this highlights the challenge and uncertainty that individuals face during
aerobic exercise; even if someone could undertake the exact same daily activities, meals, and exercise
practices, there will be differences in their glucose outcomes during exercise. Part of this variability is ex-
plained by insulin therapy and insulin-on-board, but there are many other factors such as activity level in the
days preceding exercise, and stressors such as sleep quality, illness, or timing of menstrual cycle that affect
insulin sensitivity and glycemia following exercise. In addition, baseline physical fitness can also have a sig-
nificant impact on glycemic outcomes during exercise. The high intra-participant and inter-participant vari-
ability in glucose trends during exercise presents an opportunity for adaptive machine learning approaches
to help people with type 1 diabetes avoid acute and long-term complications related to hypoglycemia.

The impact of exercise on glucose trends during exercise, and across participants with varying physical
fitness levels, is still an open question (Moser et al., 2020; Yardley and Sigal, 2021). Although an inverse rela-
tionship has previously been observed between the regularity of exercise and the rate of severe hypogly-
cemia (Bohn et al., 2015), it has also been reported that participants with higher aerobic fitness exhibit a
greater risk of hypoglycemia (Al Khalifah et al., 2016). We contribute definitive findings that participants
with higher aerobic fitness exhibit significantly steeper glucose trends during exercise, experienced signif-
icantly lower glucose at the end of exercise, and exhibit nominally lower variability in their glycemic out-
comes. This may be because of physiologic differences; regular exercise impacts muscle fiber content
(Yan et al., 2010), and a single bout of exercise can prime muscle for future glucose uptake (Steenberg
et al., 2019). Behavioral differences are also a factor, as participants with higher aerobic fitness may sustain
physical activity and metabolic expenditure longer and more consistently than participants with lower aer-
obic fitness. In addition, although participants with varying aerobic fitness exhibited significantly different
glucose outcomes following exercise, personalized metrics such as VO,max and fitness ranking require in-
clinic evaluation and are not yet feasible features for incorporation into the design of accessible predictive
algorithms. It was also observed that participants with higher aerobic fitness were shown to have
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Table 3. Comparing the effect of aerobic fitness on the performance of models designed to predict exercise-related changes in glucose

Accuracy [%] MARE [%]
Lower VO,max Higher VO,max Lower VO,max Higher VO,max
Model Personalization n =70 obs n = 88 obs n =70 obs n = 88 obs
Predicting minimum glucose during exercise
MARS Model Population 73 65 23 20
Adaptation 84 72 20 20
MARS Model + Exercise History Population 74 65 19 19
Adaptation 86 70 19 20
AR Model Population 88 75° 16 38°
Adaptation 85 82 16 34°
Logistic Regression Population 65 55 - -
Adaptation 72 65 - -

Predicting minimum glucose in the 4 hours following exercise

MARS Model Population 57 55 25 21
Adaptation 70 69 22 20

MARS Model + Exercise History Population 63 52 25 24
Adaptation 69 68 23 20°

Logistic Regression Population 58 56 = =
Adaptation 72 63 = =

®indicates that the significance p < 0.05 as determined by Wilcoxon rank-sum test for nonparametric data, comparing algorithm performance on participants with
higher aerobic and lower aerobic fitness rankings.

significantly lower CGM across the entirety of the 4-arm clinical study; sensor readings for these partici-
pants were significantly lower during activities of daily living, exercise, and in the nighttime and 48-h
following aerobic exercise. This precise knowledge can help to inform new strategies to help people of
different fitness levels avoid exercise-related hypoglycemia.

Other groups have presented various methods to predict glucose during exercise. Reddy et al., 2019 devel-
oped a hypoglycemia prediction algorithm during exercise using a decision tree and random forest algo-
rithm. This random forest model utilized data within the first 10 min of aerobic exercise to form predictions,
and achieved an 86% sensitivity and 87% specificity to hypoglycemia. This approach does not describe
adaptation or personalization of models or utilize exercise history. It was also limited in that it required
data during the first 10 min of exercise to estimate hypoglycemia which makes it impossible for the algo-
rithm to provide automated hormone dosing or decision support before the start of exercise. The algo-
rithms proposed in this manuscript do not use data during the exercise event. The proposed algorithms
were designed for use before the start of exercise, for the purpose of modifying hormone doses and/or
carbohydrate intake. The AR model that we evaluated in this paper was presented originally in Romero-
Ugalde et al. as an ARX model, where the model was designed to predict CGM values at 30 min following
aerobic stair-step exercise, and achieved an RMSE of 7.75 mg/dL (Romero-Ugalde et al., 2019). We
repeated the methods described in Romero-Ugalde et al. and while we discovered this method achieves
fair accuracy to predict CGM <70 mg/dL, we were unable to achieve the performance that was previously
reported. Although the AR model, based on the ARX model described by Romero-Ugalde et al., did not
achieve the same predictive error as the MARS model, the adaptation methods presented herein improved
the accuracy of the AR model to predict CGM <70 mg/dL and reduced the RMSE. Because the AR model
only included the 0, 10, and 20-min CGM data points as feature inputs, we explored whether including the 5
and 15-min CGM data points would improve the accuracy of the AR model. However, we found that when
including these data points, there was no statistically significant improvement in the accuracy. This was
likely because the CGM data points at 0, 10, and 20 min were smoothed, and so they included information
from the 5 and 15 min data points. Breton et al. developed a hypoglycemia prediction algorithm utilizing
the contextual physical activity predictors identified by Ben Brahim et al. (Ben Brahim et al., 2015). The ac-
curacy of this model was not reported and does not describe personalization (Breton et al., 2018). In the
current paper, we used identical features described by Breton et al. and demonstrated the performance
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of the model. We additionally showed that adaptation can significantly improve the performance in pre-
dicting hypoglycemia during exercise. Each of the prior publications as well as our findings identified
the importance of CGM or SMBG measurements at the start of exercise as a critical predictive feature.
The current manuscript extends the work done previously by emphasizing the importance of personaliza-
tion and physical fitness considerations when designing glucose forecasting algorithms during exercise.

Personalization of the population-based machine learning models was shown to improve the accuracy in
almost every model-framework, across both short-term and long-term prediction horizons, and across
all validation scenarios. Adaptation of model parameters using stochastic gradient descent was shown
to significantly improve the accuracy of detecting hypoglycemia during exercise for the MARS and logistic
regression models. In addition, adaptation of the MARS and AR models improved overall accuracy of pre-
dictions in terms of MAE. Personalization of the MARS framework that included exercise history as an input
feature significantly improved predictive accuracy to detect hypoglycemia during exercise. The personal-
ized MARS models exhibited similar RMSE values for both short-term and long-term prediction horizons.
This is likely because of the study design whereby participants were most active during exercise, and were
instructed to rest until dinner. In addition, for some participants, the nadir glucose occurred during exercise
and was equivalent for both prediction horizons. In real-world scenarios, predictive RMSE may be higher
when people do activities that introduce variability in glucose in the 4-h period. Taken together across
all of the models and validation strategies presented in Table 2, personalization resulted in an average
reduction in minimum glucose error estimations by 12.9% and an average increase in hypoglycemia predic-
tion accuracy of 21.0%. The strength of the personalization methods presented in this manuscript is the
simplicity of the gradient descent approach, which is computationally inexpensive and can be imple-
mented easily in other predictive frameworks with just a few lines of code.

In summary, individuals on insulin pump therapy who perform aerobic exercise under highly regimented, nearly
identical conditions and intensities will experience day-to-day variations in exercise-related glucose changes
during and following exercise. Baseline physical fitness significantly impacts changes in glucose during exer-
cise. Under these controlled conditions, glucose data at the start of exercise, as well as data from prior exercise
sessions are informative of anticipated changes in glucose during future exercise sessions across participants of
varying physical fitness levels. In addition, although machine learning models can predict the expected
changes in glucose during exercise and can be personalized to provide more accurate predictions, further
work is needed to accurately predict hypoglycemia in participants with higher baseline physical fitness. Further
studies are forthcoming to determine the performance of our adaptation strategy on at-home exercise session
data across participants with varying physical fitness. The scientific community is invited to apply this bench-
marking dataset in their research by contacting the lead author for access to the data.

Limitations

As a limitation, the candidate model structures described here must be compatible with gradient-based opti-
mization procedures, and further evaluation is required before being implemented in other nonlinear model
frameworks such as neural networks or decision tree structures. The models in this paper were designed and
evaluated on in-clinic exercise data; future studies examining at-home exercise sessions will be required to
develop algorithms for real-world use. Our analysis utilized data from 20 participants, and accounts for 320 cu-
mulative days of real-world data, 160 days of which represent in-clinic exercise data, with over 50,000 data time
points. Although the sample size is small, we propose that this analysis reflects an ideal scenario, and that these
results reflect the upper bound of adaptation performance and glucose variability.

PRIOR PUBLICATION

Parts of this study were presented as a poster at the American Diabetes Association 78" Scientific Sessions,
Orlando, Florida, June 22-26 2018
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data

Human Participant Data Castle et al. (2018) N/A
Software and algorithms

Matlab 2019b Mathworks, Natick, MA. www.mathworks.com N/A
Multivariate Adaptive Regression Spline Friedman (1991) N/A
Logistic Regression Model for Hypoglycemia Breton et al. (2018) N/A
Prediction

AR Model for Exercise Glucose Prediction Romero-Ugalde et al. (2019) N/A
Stochastic Online Gradient Descent Algorithm Ruder, S. (2016). An overview of gradient N/A

descent optimization algorithms. arXiv preprint
arXiv:1609.04747

RESOURCE AVAILABILITY
Lead Contact

Further information and requests for data and code should be directed and will be fulfilled by the lead con-
tact, Peter G. Jacobs (jacobsp@ohsu.edu).

Materials availability
This study did not generate unique reagents or materials.

Data and code availability

® De-identified human participant research data used in this analysis was granted for this analysis, and
further data sharing is restricted and is not publically available. No standardized data types are reported
in this manuscript. Data requests can be submitted to the lead contact. These requests are assessed on a
case-by-case basis and require completion and signature of a sharing agreement, as defined by the Or-
egon Health & Science University Institutional Review Board (OHSU IRB). Summary statistics have been
reported in the main manuscript.

® The algorithms designed in this manuscript are listed in the key resources table. The code used to
perform the formal analysis of restricted participant data is available from the lead contact upon reason-
able request.

® Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects and study setting

This analysis was performed upon approval of OHSU Institutional Review Board, study number 00019659.
This analysis utilized data obtained during a previous clinical study (Castle et al., 2018). The data was
collected from 20 adults with type 1 diabetes (N = 20, 14 F, Age 34.5 + 4.7y, duration diabetes 19.7 +
8.6y, BMI 26 + 5.7, HbA1C 7.5 £ 0.8, VOomax 37.1 & 9.6) who participated in a 4-arm study. Each study
arm consisted of 4 days of either (1) single-hormone automated insulin therapy, (2) dual-hormone (insulin
and glucagon) automated therapy, (3) predictive low glucose suspend CGM-augmented pump therapy, or
(4) standard of care CGM-augmented pump therapy. Participants visited the clinic on days 1 and 4 of each
study arm. During in-clinic study visits, participants consumed a self-selected breakfast, lunch and dinner
and performed aerobic exercise in the afternoon. Each participant consumed the same meals at the
same time and performed the same physical activity at the same time for each of the 8 in-clinic visits (4
arms X 2 days). Participants underwent VO,max testing using a modified Bruce protocol while wearing
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a gas-collecting mask. They performed aerobic exercise with graded work intensity every 3 minutes until
volitional exhaustion or plateau of oxygen consumption. During the study, aerobic exercise was performed
at 70% VO2max and was designed to last for 40 minutes. Participants sometimes exercised for less than
40 minutes if for example, their glucose dropped below 70 mg/dL. Participants sometimes exercised for
longer than 40 minutes if they needed to stop in the middle of exercise for some reason. The average
length of exercise across all participants was 43.2 + 14 minutes. Participant accelerometer and heartrate
data were obtained using ZephyrLife BioPatch devices (Zephyr, Annapolis, MD). The automated insulin and
glucagon delivery systems were controlled using a custom exercise-aware algorithm (Jacobs et al., 2015)
installed on a Google Nexus smart phone. This automated delivery system wirelessly communicated the
t:slim pumps (Tandem, San Diego, CA) and G5 CGM sensors (Dexcom, San Diego, CA) via Bluetooth. Dur-
ing the control arm, participants used their own insulin pumps. The insulin pumps in this study were filled
with aspart insulin (Novo Nordisk, Plainsboro, NJ). This secondary analysis utilized participant data ob-
tained from G5 devices, t:slim devices, ZephyrLife BioPatch devices and self-monitored blood glucose
(SMBG) Contour Next devices (Bayer, Whippany, NJ).

METHOD DETAILS
Model input features and outcome measures

The participant data collected by the study devices during each of the in-clinic exercise sessions was processed
for predictive exercise features and glucose outcomes following exercise (N = 160 exercise sessions). No ob-
servations were excluded from analysis on the basis of artifacts in the time series data, such as noise in CGM
data due to calibration or movement, or signal dropout. The input features derived from the clinical data are
defined in Table S1. Additional features describing participant exercise history are defined in Table S2. The final
input features for each model were determined from Greedy sequential variable selection (Whitney, 1971), or
reproduced as described in previous publications (Breton et al., 2018; Romero-Ugalde et al., 2019). The algo-
rithms were trained to predict (1) the minimum glucose from the start of exercise to the end of exercise as
measured using self-monitored blood glucose (SMBG) or continuous glucose monitor (CGM), and (2) minimum
glucose 4 hours following the start of exercise as measured by CGM. SMBG measurements were measured by
all participants at the start and end of exercise per study protocol, however SMBG was not always measured in
the 4 hour period following exercise therefore CGM is used for the 4-hour prediction model. Participant age,
sex, and VO,max were used to classify each participant into categories of higher (including good, excellent,
and superior VO,max) aerobic fitness or lower (including very poor, poor and fair VO,max) aerobic fitness,
as defined by the American Society of Sports Medicine VO,max aerobic fitness norms (American College of
Sports Medicine’'s Complete Guide to Fitness & Health by Barbara Bushman, 2017).

Development of the population models

Three machine learning models were investigated to predict glucose outcomes during aerobic exercise.
The first model is a MARS model was designed to predict minimum blood glucose during exercise, and
minimum CGM-measured glucose in the 4 hours following exercise. The second model is a logistic regres-
sion model designed to predict hypoglycemia during exercise, and in the 4 hours following exercise. The
third model developed was an AR model to predict CGM values approximately 43.2 minutes after the start
of exercise. To investigate if exercise history is predictive of future glucose trends, a fourth model, a person-
alized MARS model was designed that incorporates participant exercise history features as inputs to the
model (Table S2). Each population model was designed using a training set, which consisted of data
from 16 participants. The population machine learning models were trained using leave-one-participant-
out cross-validation, meaning the input features and model parameters were selected using fifteen of
the participants in the training set, and then performance was evaluated on the sixteenth held-out partic-
ipant. The machine learning models were then evaluated on data from a holdout set, which consisted of
data from the 4 participants who were not used in the training set. These 4 holdout participants were
sampled to ensure that they were representative of the population and had the same frequency of hypo-
glycemia and minimum glucose as the training set. The general predictive accuracy of the models were also
evaluated using a 20-fold leave-one-participant-out cross-validation, where the model parameters were re-
trained on 19 participants and the model performance evaluated on 1 held-out participant (Figure S1).

MARS model to predict low SMBG after exercise

A MARS model implements a linear regression framework that also considers the numerical range of the
predictors. Each input feature (Table S1) was processed into paired hinge-functions, representing the
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feature values above and below a specific hinge point (i.e., SMBG values above and below a hinge point of
150 mg/dL are considered separate variables with separate model coefficients). Candidate hinge points for
a given feature were determined by sorting observations within a feature and selecting every 5th value for
efficiency. The optimal hinge points were determined from the set of candidate hinge points during super-
vised training of the algorithm. Next, Greedy sequential variable selection (Whitney, 1971) was used to iter-
atively identify optimal hinge-functions to predict minimum glucose during exercise. The MARS model
coefficients were designed using a weighted regression; this approach places a penalty on MARS model
misestimation of observations with glucose <70 mg/dL. This essentially minimizes predictive error as
well as improves sensitivity and specificity of the algorithm to detect hypoglycemia. The final model struc-
ture used to predict the minimum glucose during aerobic exercise is shown in Equation (1). The model
coefficients (in this case, Bo, B1, B2, and B3z along with the hinge points are solved for each short-term
and long-term prediction horizon model separately during model training.

Minimum glucose during exercise = £,

+ ﬁ1 * max(O, CGMStar‘t of Exercise — 254) [%] (Equation 1)
m
+ 6 max(O, CBGestart of Exercise — 124) [d_f]
+ 63max (07 HR1O minutes prior to exercise 971 5) [BPW
mg
+ 64 CGM TrendZS minutes prior d_L
min

AR model to predict CGM following exercise

Romero-Ugalde et al. developed predictive models to forecast CGM measurements during aerobic exer-
cise (Romero-Ugalde et al., 2019). We used the methods and features described by Romero-Ugalde et al. to
reproduce the population AR model that utilizes CGM data. In this approach, the CGM data is smoothed
using a 1%-order simple moving average, whereby data-at time t is averaged with the preceding data at
time t-5. We found that the AR model using only CGM data and no exogenous inputs performed better
than when including exogenous inputs. The AR with exogenous inputs (ARX) described in Romero-Ugalde
et al. utilized raw activity data metrics from a different activity sensor than the one used in our study, and this
may explain why they got better performance using an ARX model than using an AR model. We present the
design and results of the AR model that achieved the highest accuracy during model validation. The exer-
cise sessions in our dataset lasted on average for 43.2 + 14 minutes, therefore the AR model was designed
to predict CGM at approximately 43.2 minutes following the start of exercise. The final model structure is
shown below in Equation (2) where the coefficients Bo, B1, B2, and B3 are solved for during model training.

CGM 40 minutes after the start of exercise = 3,
+ 81SmMoothCGMstart of Exercise [%] (Equation 2)

mg
+ ﬁz SmOOthCGMm minutes preceding exercise [ dL
mg
+ 63 SmoothCGMao minutes preceding exercise [ aL

[ e |

Logistic regression to predict hypoglycemia

Breton et al. published a logistic regression model to predict hypoglycemia during exercise. We used the
identical variables described by Breton et al., 2018 to train a population logistic regression model to pre-
dict the occurrence of hypoglycemia during aerobic exercise and in the 4 hours following exercise. The in-
puts to this model were the CGM at the start of exercise, the average CGM trend in the hour preceding
exercise, and the ratio of the active insulin (IOB) at the start of exercise to the participant’s total daily insulin
requirement (TDIR). The participant TDIR is defined as the total insulin dosed per day on average. The
model is shown in Equation (3) where the coefficients Bo, B1, B2, and B3 are solved for during model training.

Probability of Hypoglycemia = logit | 8o + 81CGMstart of Exercise [Tlﬂ
(Equation 3)
2 10B ise | Units
. dL Start of Exercise
+ B,Average CGM Trendpyior Hour e + B3 DR {Units}
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MARS model personalized with exercise history

The methods described above were used create a second personalized MARS model that incorporates ex-
ercise history from a given participant. The model was designed by identifying the optimal features
included in Table S1, and also exercise history features included in Table S2 that describe participants’
glucose dynamics during prior exercise sessions. The population model to detect minimum CGM-
measured glucose during exercise is shown below in Equation (4) whereby the coefficients Bo-Bs were
solved for each short-term and long-term prediction horizon model separately during training of the
model.

Minimum glucose during exercise = 4

+ :61 max(O, CGMStarT of Exercise — 254) [%] (Equation 4)
m
+ 62max(oa 254 — CGMStan of Exercise) [d_f:|

+ 63maX<0, HR10 minutes prior to exercise — 97.1 5) [BPM]

+ ﬁ4max(07Average ACGIVIother exercise sessions T 8492) [%}

+ ﬁsmax(07 —84.92 — Avel’age 4 CGMother exercise sessions) [%}
+ 5émax(07 5.97 - Avel'age METother exercise sessions)[MET]

Real-time model adaptation

To determine the impact of adaptation on prediction accuracy, the population model parameters were
adapted to each participant left-out of model training using data from the participant’s exercise observa-
tions. Stochastic gradient descent (An overview of gradient descent optimization algorithms, Ruder, 2016)
was used to update the population model parameters using the participant’s most recent observed exer-
cise session, and the adapted model was then used to predict the same participant’s outcomes of the next
exercise session. This adaptation procedure was repeated successively for each held-out exercise obser-
vation, updating the population model parameters over time to better reflect a held-out participant's
glucose dynamics as each exercise session was observed. In order to determine if the order of the exercise
sessions impacted prediction accuracy, the order of the 8 identical exercise sessions were shuffled four
times and the adaptation procedure was repeated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameter details are included here; additional parameters, including the number of observa-
tions and the precise statistical tests, are included in the figure and table legends. Significance testing
was performed on a per-participant level, df = 19, to compare the change in error and accuracy to detect
hypoglycemia before and after personalization. Normality of data was assessed using the Kolmogorov-
Smirnov test to determine the appropriate statistical tests. The differences in model error before and after
personalization were evaluated using a two-tailed paired t-test for parametric data, and a two-tailed Wil-
coxon signed-rank test for non-parametric data, significance level of alpha = 0.05. The differences in
glucose outcomes for participants in different physical fitness categories were evaluated using a two-tailed
students t-test for parametric data, and a two-tailed Wilcoxon rank-sum test for non-parametric data, sig-
nificance level alpha = 0.05. Glucose outcomes measured during exercise for each participant was explored
with a boxplot, whereby the centerline of the boxplot indicates the median measurement and box edges
represent the 25" and 75" percentiles, cross symbols represent outlier values and each whisker extends to
the most extreme data point that is not an outlier. Model performance was assessed using root mean
squared error (RMSE), mean absolute error (MAE), as well as the sensitivity, specificity and accuracy to
detect observations with level 1 hypoglycemia (< 70 mg/dL). Leave-4-participant-out cross-validation
was used to create a receiver operating curve for each algorithm to determine the optimal predictive
threshold to detect hypoglycemia. The optimal threshold for each algorithm was then used to evaluate al-
gorithm sensitivity, specificity, and accuracy to detect hypoglycemia for left-out participant data (Figure S1).
The Parkes consensus error grid analysis (Parkes et al., 2000) was used to determine the clinical impact of
the algorithm predictions. Model design and assessment, and statistical analysis were performed in Matlab
2019b (MathWorks, Natick, MA). A power analysis was performed previously for the published clinical
study; a study size of 20 participants was sufficient to detect a —3.3% change in % time-in-hypoglycemia
and a 16.3% change in % time-in-target glucose (70-180 mg/dL), for >80% power and an alpha = 0.0125
(Castle et al., 2018).
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