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Objective: To develop algorithms using convolutional neural networks (CNNs) for automatic segmentation of acute ischemic 
lesions on diffusion-weighted imaging (DWI) and compare them with conventional algorithms, including a thresholding-based 
segmentation.
Materials and Methods: Between September 2005 and August 2015, 429 patients presenting with acute cerebral ischemia 
(training:validation:test set = 246:89:94) were retrospectively enrolled in this study, which was performed under Institutional 
Review Board approval. Ground truth segmentations for acute ischemic lesions on DWI were manually drawn under the consensus 
of two expert radiologists. CNN algorithms were developed using two-dimensional U-Net with squeeze-and-excitation blocks 
(U-Net) and a DenseNet with squeeze-and-excitation blocks (DenseNet) with squeeze-and-excitation operations for automatic 
segmentation of acute ischemic lesions on DWI. The CNN algorithms were compared with conventional algorithms based on DWI 
and the apparent diffusion coefficient (ADC) signal intensity. The performances of the algorithms were assessed using the Dice 
index with 5-fold cross-validation. The Dice indices were analyzed according to infarct volumes (< 10 mL, ≥ 10 mL), number 
of infarcts (≤ 5, 6–10, ≥ 11), and b-value of 1000 (b1000) signal intensities (< 50, 50–100, > 100), time intervals to DWI, 
and DWI protocols.
Results: The CNN algorithms were significantly superior to conventional algorithms (p < 0.001). Dice indices for the CNN 
algorithms were 0.85 for U-Net and DenseNet and 0.86 for an ensemble of U-Net and DenseNet, while the indices were 0.58 
for ADC-b1000 and b1000-ADC and 0.52 for the commercial ADC algorithm. The Dice indices for small and large lesions, 
respectively, were 0.81 and 0.88 with U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 with the ensemble of U-Net 
and DenseNet. The CNN algorithms showed significant differences in Dice indices according to infarct volumes (p < 0.001).
Conclusion: The CNN algorithm for automatic segmentation of acute ischemic lesions on DWI achieved Dice indices greater 
than or equal to 0.85 and showed superior performance to conventional algorithms.
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INTRODUCTION

Diffusion-weighted imaging (DWI) of acute cerebral 
ischemia can indicate the infarct core, which strongly 
correlates with the final infarct volume (1, 2). Accurate 
segmentation of acute ischemic lesions on DWI is crucial 
for evaluating patients and guiding treatment options. 
However, the performance of the currently available 
automated segmentation methods remains insufficient 
relative to manual segmentation by experts, which is 
still considered the ground truth, even though automatic 
segmentations have been repeatedly tried (3-13). Previously 
developed automated segmentation methods have generally 
shown lower accuracy than the ground truth methods, and 
in cases where these methods had higher accuracy, the 
validation was only performed on small datasets (9, 11, 
12). High signal intensity on DWI images with a b-value 
of 1000 (b1000) and low signal intensity on apparent 
diffusion coefficient (ADC) maps are well-known features 
representing acute infarction (14, 15). However, automatic 
segmentation based on thresholding of signal intensities 
seems to have limitations, since the signal intensities 
change over time in acute infarction and also vary across 
different magnetic resonance machines (2, 16). Therefore, 
manual segmentation still plays an important role as the 
reference standard for definition of the maximal visual 
extent of high signal intensities on b1000 images, with the 
ADC images serving as a reference to avoid regions of T2 
shine-through artifacts (3, 17). 

A deep learning algorithm using convolutional neural 
networks (CNNs) was recently introduced and applied to the 
segmentation of acute cerebral ischemia (3). The results 
from this deep learning algorithm were higher than those 
achieved with previous methods such as ADC thresholding 
and conventional machine learning. Using 741 subjects, 
Chen et al. (3) showed a mean accuracy of 0.67 (for the 
Dice coefficient), achieving accuracy values of 0.83 in larger 
lesions. The CNN simulates the organization of the animal 
visual cortex, which consists of multiple layers of neuron-
like computational connections with minimal step-by-step 
processing, and deep learning algorithms with CNNs are 
suitable for classifying images in a large image repository 
(18). Deep learning using a CNN may be a promising method 
for the automatic segmentation of acute cerebral ischemia, 
showing the advantages and characteristics of end-to-
end training and feature learning that automatically and 
adaptively enable the learning of hierarchical representations 

of patterns from low- to high-level features because acute 
cerebral ischemic lesions are often non-dominant and 
multiple with indistinct boundaries, and co-exist with other 
artifacts in images (3, 18).

Therefore, we hypothesized that a deep learning 
algorithm using CNN could achieve higher performance 
than conventional methods in the automatic segmentation 
of acute cerebral ischemic lesions, and in this study, we 
intended to develope a deep learning algorithm using 
CNNs to segment such lesions on DWI and to compare 
our CNN-based method with conventional methods using 
thresholding-based segmentation, and with a widely used 
commercial algorithm. 

MATERIALS AND METHODS 

Study Population
This retrospective study was approved by our Institutional 

Review Board, which waived the requirement for informed 
consent. A total of 429 patients (men:women, 269:160; 
mean age, 72 years; age range, 24–98 years) who were 
registered on our stroke registry between September 2005 
and August 2015 were retrospectively enrolled. These 
patients on the registry visited the emergency room because 
of symptoms of acute ischemic stroke and underwent 
magnetic resonance imaging (MRI) including DWI for 
hyperacute to acute infarction.

The demographic and clinical data of the patients 
were collected, including age, sex, body mass index, 
hypertension, diabetes mellitus, hyperlipidemia, obesity, 
alcohol and smoking history, activity and family history 
of stroke, and past medical history such as heart disease, 
history of stroke, and National Institutes of Health Stroke 
Scale rating (Table 1). 

Imaging Acquisition
MRI was performed with various machines, including 

1.5T (Magnetom Avanto, Siemens Healthineers, Erlangen, 
Germany; Genesis Signa, GE Healthcare, Milwaukee, WI, 
USA; Intera, Philips Healthcare, Best, Netherlands) and 3T 
scanners (Ingenia CX, Philips Healthcare; Achieva, Philips 
Healthcare). The parameters for the DWI sequences included 
the following: repetition time, 3000–8000 ms; echo time, 
56–103 ms; flip angle, 90°; matrix, 256 x 256–512 x 512; 
FOV, 220 x 220–250 x 250 mm; number of excitations, 
1–6; number of slices, 20–45; and slice thickness, 3–5 mm; 
b-value, 1000 s/mm2.
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CNN Algorithm
The CNN algorithm was constructed by adding squeeze-

and-excitation blocks to two-dimensional (2D) U-Net with 
squeeze-and-excitation blocks (U-Net) and 2D DenseNet 
with squeeze-and-excitation blocks (DenseNet) architectures 
(19). U-Net and DenseNet are well-known CNN algorithms 
in the semantic segmentation of medical images (20, 
21). The squeeze-and-excitation blocks capture dynamic 
and non-linear channel relationships using squeeze-and-
excitation operations (22). The squeeze operation generates 
channel-wise descriptors that use global average pooling to 
represent the global information of each channel in feature 
maps. The excitation operations consist of fully connected 
layers and a rectified linear unit (23). The squeeze-and-
excitation blocks were added to skip connections and 
dense blocks in U-Net and DenseNet, respectively. In the 
encoder-decoder model, all three types of blocks (encoder, 
bottleneck, decoder) were followed by a squeeze-and-
excitation block (19). Finally, a U-Net with squeeze-and-
excitation blocks (U-Net), a DenseNet with squeeze-and-
excitation blocks (DenseNet), and an ensemble of U-Net 
and DenseNet with squeeze-and-excitation blocks (ensemble 

of U-Net and DenseNet) were constructed for semantic 
segmentation of acute ischemic lesions (Fig. 1). Linear 
intensity normalization was performed to generate arbitrary 
signal intensity values in standardized intensity ranges 
from b1000 images (24) before the deep learning performed 
using the CNN algorithm.

Image Analysis and Processing
Two experienced neuroradiologists with 5 years and 8 

years of experience, respectively, working in consensus 
manually drew regions of interest (ROIs) for acute ischemic 
lesions on DWI. The ROIs were drawn on whole DWI 
slices, based on the maximal visual extent of high signal 
intensities on the b1000 images, with the ADC images 
serving as reference to avoid regions of T2 shine-through 
artifact. These ROIs formed the ground truth data (17). 
These ground truth masks were accomplished using in-
house software running under ImageJ. Two DWIs for the 
ground truth and algorithm masks were co-registered with 
non-rigid methods in each individual subject. The Dice 
indices were calculated between the ROIs from the ground 
truth and algorithms based on the following formula:

Table 1. Patient Characteristics

Variables Training Set Validation Set Test Set
Mean age (range, years) 69.5 (24–97) 75.4 (50–98) 75.5 (50–96)
Male:female 166:80 50:39 53:41
Past medical history (%)

Hypertension 124 (50.4) 50 (56.2) 58 (61.7)
Diabetes mellitus 51 (20.7) 20 (22.5) 35 (37.2)
Hyperlipidemia 33 (13.4) 16 (18.0) 24 (25.5)
Smoking 128 (52.0) 36 (40.4) 36 (38.3)
Family history of stroke 62 (25.2) 17 (19.1) 13 (13.8)

Body mass index 24.0 ± 3.0 24.0 ± 3.5 23.3 ± 3.1
Number of vascular risk factors 2.4 (0–6) 2.5 (0–5) 2.7 (0–5)
Time interval to DWI (days)* 1.0 (0–11) 0.8 (0–4) 0.7 (0–5)

*There were no significant differences in time intervals to DWI among three sets (p > 0.05). DWI = diffusion-weighted imaging

Input Conv + ReLU Conv + ReLUPooling

Hidden layers Classification

Softmax

Squeeze-and-excitation layers

Squeeze Scaling
Excitation GAP

Output
(0–1)

Fully
connectedPooling

Fig. 1. CNN algorithm architecture. CNN = convolutional neural network, Conv = convolutional layer, GAP = global average pooling, ReLU = 
rectified linear unit
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                        2|X ∩ Y|
Dice (X, Y) = __________

                       |X| + |Y|

Deep Learning and Statistical Analysis
The datasets were divided into training (n = 246), 

validation (n = 89), and test (n = 94) sets based on random 
sampling. The Dice index (as an overlapping index) was 
used for evaluation of the algorithms. The CNN algorithms 
were trained and developed using the training and 
validation sets. The algorithms (U-Net, DenseNet, and an 
ensemble of U-Net and DenseNet) were then tested with 
the separate test set (processing time, 12 s per imaging 
slice), and the results were compared with those of two 
in-house thresholding algorithms and a commercial ADC 
thresholding algorithm (OleaSphere, Olea Medical, La Ciotat, 
France). The first in-house thresholding algorithm, referred 
to here as ADC-b1000, automatically segments acute 
ischemic lesions using ADC thresholds, and then adjusts 
them according to the b1000 signal intensity. The second 
in-house thresholding algorithm (b1000-ADC) automatically 
segments acute ischemic lesions according to b1000 signal 
intensity thresholds, and then adjusts them according to 
the ADC map. In the segmentation using b1000 signal 
intensities, we computed the global mean and standard 
deviation (SD) (i.e., μWM and SDWM) for b1000 intensities of 
every voxel within the normal white matter (WM) regions. 
We performed a three-dimensional connected component 
analysis and computed the mean b1000 value for each 
infarct component. Then, we determined the component 
having a mean b1000 value greater than or equal to the 
threshold value T (T = μWM + 1.5 x SDWM). Normalized 
absolute thresholding was applied to the segmentation 
using ADC values. For a given ADC map of each subject, 
we first constructed a quantile curve of ADC intensities 
within the brain mask. From the quantile-intensity curve, 
we found an intersection point between two tangent lines 
with maximum and minimum differential coefficients. The 
ADC maps were normalized by dividing the intensities on 
the ADC map by the intensity at the intersection point. 
Next, the normalized ADC map was thresholded using the 
optimal absolute threshold value of 0.835. The comparisons 
with the commercial ADC algorithm were performed using 
only 75 patients from the test set (from the test set of n = 
94) due to segmentation failure using the commercial ADC 
algorithm. Paired t tests were used to compare the Dice 
indices from the CNN and conventional algorithms according 
to infarct volumes and numbers, b1000 signal intensities, 

time intervals to DWI, and DWI protocols. Permutation 
tests and 5-fold cross-validation were also performed in 
the entire sets, including training, validation, and test 
sets. The infarct volumes in the test set were divided into 
two groups: small lesions < 10 mL, and large lesions ≥ 10 
mL. The number of infarcts (determined as the multiplicity 
parameter) in each subject was analyzed according to 
connected component labeling, with three classes being 
defined (≤ 5; 6–10; ≥ 11). The b1000 signal intensities 
were divided into three groups (< 50; 50–100; > 100). The 
time intervals to DWI were divided into three groups (< 6 
hours; 6–24 hours; > 24 hours from the symptom onset). 
The correlation coefficients (r) between the infarct volume 
defined by each algorithm and the ground truth values 
were also calculated. All statistical analyses were performed 
using the statistical software packages MedCalc for Windows 
(version 15.0, MedCalc Software, Ostend, Belgium) and SPSS 
(version 20.0, IBM Corp., Armonk, NY, USA). Two-sided p 
values less than 0.05 were considered to indicate statistical 
significance.

RESULTS

Performance of the CNN Algorithm for Segmentation of 
Acute Cerebral Ischemia

The segmentation performances are presented in 
Table 2. The Dice indices show a plateau from the 70th 
cumulative percentile (n = 172) (Fig. 2). Representative 
cases are presented in Figures 3 and 4. The Dice indices 
were as follows: U-Net, 0.85; DenseNet, 0.85; ensemble 
of U-Net and DenseNet, 0.86. The Dice indices for small 
and large lesions, respectively, were 0.81 and 0.88 with 
U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 
with the ensemble of U-Net and DenseNet. There were no 
significant differences (p > 0.05) in the Dice indices of the 
CNN algorithms in relation to the multiplicity of infarcts, 
the b1000 signal intensities, the time intervals to DWI, and 
DWI protocols. However, there were significant differences (p 
< 0.01) in the Dice indices of the CNN algorithms between 
small and large lesions (Fig. 5).

Performance Comparisons between CNNs and 
Conventional Algorithms 

The Dice indices for the conventional methods were as 
follows: ADC-b1000, 0.58; b1000-ADC, 0.58; commercial 
algorithm, 0.52. The CNN algorithms were superior to the 
ADC-b1000, b1000-ADC, and the commercial algorithm 
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(p = 0.001). The Dice indices for small and large lesions, 
respectively, were 0.50 and 0.63 with ADC-b1000, 0.54 
and 0.61 with b1000-ADC, and 0.41 and 0.58 with the 
commercial algorithm. There were significant differences 
(p < 0.01) in the Dice indices of the conventional methods 
between small and large lesions, except in the b1000-ADC 
method.

The correlation coefficients for the infarct volume 
between the algorithms and ground truths were 0.78 (95% 
confidence interval [CI], 0.68–0.85) for ADC-b1000, 0.75 
(CI, 0.65–0.83) for b1000-ADC, 0.7 (CI, 0.56–0.80) for the 
commercial algorithm, 0.99 (CI, 0.98–0.99) for U-Net, 0.98 

(CI, 0.97–0.99) for DenseNet, and 0.98 (CI, 0.98–0.99) for 
the ensemble of U-Net and DenseNet.

DISCUSSION

In this study, the CNN algorithms showed superior 
performance to the conventional methods in the 
segmentation of acute cerebral ischemia. The CNN 
algorithms showed Dice indices of ≥ 0.85, which were 
significantly better than those for the conventional 
segmentation methods, which showed Dice indices less 
than 0.6. The high segmentation performance of > 0.8 
achieved with the CNN algorithms was preserved in subjects 
with small lesions and scattered infarcts, irrespective of 
the multiplicity of infarcts or their b1000 signal intensity. 
Therefore, we believe that the CNN algorithm could replace 
the conventional methods for automated segmentation of 
acute cerebral ischemia.

Automatic segmentation for acute cerebral ischemia 
is still challenging, even though previous reports have 
presented promising performances. Thresholding-based 
algorithms were preferentially considered in conventional 
methods because of the distinct high signal intensity of 
DWI and low ADC values in hyperacute to acute cerebral 
ischemia. Commercial software such as ‘Rapid Processing 
of Perfusion and Diffusion’ (RAPID) and OleaSphere adopt 
technical means based on low ADC values. However, the 
optimal ADC cutoff values for acute cerebral ischemia can 
vary, even though a cutoff value of 600 x 10-6 mm2/s is 

Table 2. Performances of Algorithms

Algorithm

Performance

Averaged
Dice Index*

Pooled Dice 
Index 

(Variance)*

P
CNN vs. 

Conventional 
Algorithms†

Small vs. 
Large Infarct 

Volume

Multiplicity  
of Infarcts

b1000 Signal 
Intensity  
of Infarcts

Time 
Interval
to DWI

MR Machines
or Protocols

U-Net with SE‡ 0.8515 0.8216 (0.0098) 0.001 0.001 0.154 0.593 0.062 0.332
DenseNet with SE‡ 0.8479 0.8089 (0.0122) 0.001 0.001 0.215 0.606 0.180 0.539
Ensemble of U-Net and 
  DenseNet‡ 0.8581 0.8219 (0.0054) 0.001 0.001 0.170 0.684 0.158 0.110

ADC-b1000 0.5786 0.5985 (0.0304) 0.001 0.263 0.049 0.019 0.561
b1000-ADC 0.5830 0.6005 (0.0259) 0.134 0.130 0.091 0.003 0.204
Commercial ADC 0.5185 0.5614 (0.0301) 0.001 0.783 0.011 0.303 0.237

*Averaged Dice index was calculated in test set and pooled Dice index was calculated in training, validation, and test sets, †CNN 
algorithms were compared with ADC-b1000, b1000-ADC, and commercial ADC algorithms in terms of Dice indices. p values from 
comparisons showed statistical significances both for averaged and pooled values, ‡There were no significant differences in Dice indices 
among three CNN algorithms (p > 0.05). ADC = apparent diffusion coefficient, b1000 = b-balue of 1000, CNN = convolutional neural 
network, DenseNet = DenseNet with squeeze-and-excitation blocks, MR = magnetic resonance, SE = squeeze-and-excitation blocks, U-Net 
= U-Net with squeeze-and-excitation blocks
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generally used (6). Therefore, other automatic segmentation 
methods have been developed, including machine learning 
approaches. Although another previously studied automatic 
segmentation method for DWI of acute cerebral ischemia 
presented a high diagnostic performance with a Dice index 
of 0.89 (13), the patient numbers used for the validation 
were very small (n = 10). Other previous segmentation 
methods have been subject to similar limitations, with the 
studies focusing on the development of new methods with 
insufficient validation and using low numbers of subjects in 
the training and validation sets. These studies and their Dice 
indices and patient numbers are as follows: Prakash et al. (9), 

Dice index = 0.6, n = 13; Maier et al. (11), Dice index = 0.65, 
n = 37; Mah et al. (4), Dice index = 0.79, n = 38; Mohd Saad 
et al. (10), Dice index = 0.84, n = 30; and Charoensuk et 
al. (8), Dice index = 0.85, n = 6. In the studies that were 
validated by substantial numbers of subjects, the newly 
developed segmentation methods seemed to require further 
development, as indicated by the following performances: 
Peng et al. (12), Dice index = 0.76, n = 98; Chen et al. (3), 
Dice index = 0.67, n = 741; and Boldsen et al. (5), Dice 
index = 0.61, n = 108. The common limitations of these 
segmentation methods make them difficult to apply in actual 
clinical practice. In this study, however, we validated the 

Fig. 3. 78-year-old woman with acute infarcts in left inferior frontal lobe and left temporal lobe. Dice indices were 0.68 in 
ADC-b1000, 0.61 in b1000-ADC, 0.69 in commercial ADC, 0.95 in U-Net, 0.96 in DenseNet, and 0.96 in ensemble of U-Net and DenseNet 
algorithms for two large acute infarcts with total infarct volume of 53 mL and total of three lesions (white ROI, ground truth; red ROI, algorithm 
alone; pink, overlapped region between ground truth and algorithm). ADC = apparent diffusion coefficient, b1000 = b-value of 1000, DenseNet = 
DenseNet with squeeze-and-excitation blocks, ROI = region of interest, U-Net = U-Net with squeeze-and-excitation blocks
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segmentation method with 426 subjects and obtained good 
segmentation performance with a Dice index above 0.85.

Chen et al. (3) recently reported the segmentation 
performance of a CNN algorithm tested on a large group 
of subjects (n = 741) with acute cerebral ischemia. They 
presented a mean Dice index of 0.67 for the segmentation 
performance over the total subject group. They developed a 
CNN algorithm involving two processes: using an ensemble 
of N adapted DeconvNets (EDD net) to optimize lesion 
segmentation, and then removing false positives from the 
detected lesions with a MUlti-Scale Convolutional Label 
Evaluation Net (MUSCLE net). The EDD Net was developed 
from the DeconvNet (25), which is one of the generic 

CNN architectures for semantic segmentation (3). In this 
study, we developed a segmentation method using U-Net 
and DenseNet (which are also well-known generic sematic 
segmentation algorithms), combining them with squeeze-
and-excitation networks. U-Net adopts U-shaped symmetric 
architectures with an encoder to capture the context and 
a decoder to enable precise localization with upsampling 
operators; this enables precise segmentation tasks, even 
with small training images (20). DenseNet is also an 
effective semantic segmentation algorithm with high 
performance that requires fewer parameters than traditional 
networks. DenseNet connects each layer to every other 
layer in a feed-forward fashion and adopts multiple densely 

Fig. 4. 75-year-old man with acute infarcts in left inferior frontal lobe and left temporal lobe. Dice indices were 0.68 in ADC-b1000, 
0.61 in b1000-ADC, 0.69 in commercial ADC, 0.95 in U-Net, 0.96 in DenseNet, and 0.96 in ensemble of U-Net and DenseNet algorithms for 
multiple small and large acute infarcts with total infarct volume of 142.43 mL and total of nine lesions (white ROI, ground truth; red ROI, 
algorithm alone; pink, overlapped region between ground truth and algorithm). 
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connected patterns, the so-called “dense blocks” (26). We 
developed the modified CNN by combining squeeze-and-
excitation with two useful and effective CNN segmentation 
algorithms. However, one of the major difficulties in 
applying these segmentation methods to medical imaging 
is the loss of fine-grained information as a result of pooling 
in an encoding layer. To alleviate this problem, methods 
for enhancing the relationship with features significantly 
increased performance by introducing skip connection. 
The squeeze-and-excitation operations may help improve 
segmentation for discontinuous or small lesions, such as 
acute ischemic lesions, on DWI. Therefore, our proposed 
method is regarded as a fully CNN for segmenting size-

invariant infarct lesions.
Chen et al. (3) reported segmentation performances 

of 0.61 for small lesions and 0.83 for large lesions. Our 
CNNs showed a high segmentation performance of 0.8 
even in small lesions. Furthermore, the degree of DWI 
signal intensity and scattered lesions did not affect 
the segmentation performance. In addition, the DWI 
protocols in this study varied considerably because of the 
retrospective study design and substantial outside images. 
However, the segmentation performances were preserved 
across the different protocols and machines.

The conventional segmentation methods showed inferior 
results to the CNN algorithms. The threshold-based methods 

Fig. 5. 76-year-old man with acute infarcts in left frontal and parietal lobe. Dice indices were 0.45 in ADC-b1000, 0.31 in b1000-ADC, 0.40 
in commercial ADC, 0.66 in U-Net, 0.63 in DenseNet, and 0.68 in ensemble of U-Net and DenseNet algorithms for multiple small acute infarcts 
with total infarct volume of 8.9 mL and total of 17 lesions (white ROI, ground truth; red ROI, algorithm alone; pink, overlapped region between 
ground truth and algorithm).
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and commercial version showed Dice indices of 0.58 and 
0.52, respectively. Although the threshold-based methods 
were in-house algorithms, their performance outcomes 
were higher than those reported by Boldsen et al. (5). 
They reported Dice indices of 0.4 (threshold-based methods 
using DWI signal intensity) and 0.3 (threshold-based 
methods using ADC values) in 108 patients with acute 
cerebral ischemia (5). In this study, the commercial ADC 
algorithm showed a strong correlation with the ground 
truth data in terms of volume, as did the RAPID system in a 
previous study (6). Therefore, the conventional algorithms 
evaluated in this study had similar or superior segmentation 
performance to the conventional algorithms described in 
previous reports. Nevertheless, the CNN algorithms showed 
superior segmentation performances to the conventional 
algorithms.

This study is subject to several limitations. First, the 
CNN algorithm was validated in only a single referral 
center using a retrospective registry. Therefore, the CNN 
algorithm requires external validation with prospectively 
enrolled patients or a strictly controlled registry. Second, 
although we tried to enroll as many patients as possible 
and demonstrated the saturated performance of the CNN 
algorithm as the patient number increased, further data 
may be warranted. Third, inter-observer variability was 
not evaluated in this study, even though the achieved 
Dice index of 0.84 is within or out of the range indicating 
inter-observer variability. Further investigations regarding 
the reproducibility of this new algorithm are therefore 
warranted.

In conclusion, the CNN algorithm for automatic 
segmentation of acute ischemic lesions on DWI achieved 
Dice index values greater than or equal to 0.85 and 
showed superior performance to conventional algorithms. 
Our segmentation method showed a stable segmentation 
performance across the various DWI protocols, even in 
subjects with small and scattered lesions, and irrespective 
of the multiplicity or b1000 signal intensity of the infarcts.
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