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In this article, we propose expanding the use of scientific repositories such as Zenodo and
HEP data, in particular, to better study multiparametric solutions of physical models. The
implementation of interactive web-based visualizations enables quick and convenient
reanalysis and comparisons of phenomenological data. To illustrate our point of view, we
present some examples and demos for dark matter models, supersymmetry exclusions,
and LHC simulations.
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1 INTRODUCTION

Practically, any research done in modern physics nowadays is based on (simulated) data. Some
examples include the investigation of the Higgs boson properties, the search and exclusion of new
models for physics beyond the Standard Model at the LHC, the investigation of gravitational waves,
or the identification of dark matter. In all these scientific efforts, the exploration of data with the help
of physical models plays a key role. The models are often complex; i.e., they depend on various
physical parameters and their interpretation may depend on systematic effects described with the
help of additional nuisance parameters.

Traditionally, scientific data are provided by the experiments mainly in the form of one-
dimensional histograms and data analysis typically required a comparison of the model to the
histogram of data. The scientific models investigated were also of low complexity. Predictions of
models that describe physics are typically compared to the data using often time-consuming
simulations of the underlying physical processes for a large number of model parameter sets.
Finally, the best-fit contours of the models are presented in the form of likelihoods or posterior
distributions as functions of a model parameter θ, typically in the form of one- to two-dimensional
figures in scientific publications.

In the field of searches beyond the StandardModel, typically 95% confidence level upper limits are
provided; i.e., model parameter sets are classified between “excluded” and “allowed.”

In order to visualize high-dimensional data, one can use one- or two-dimensional projections
(e.g., some parameter variables have been marginalized or set to best-fit values) or slices of the full
space, but this comes at the cost of information contained in the visualization itself. An example of
such a one-dimensional exclusion contour and a maximum likelihood interval is given in Figure 1.

The problem becomes even more apparent in the combination and comparison of the results of
two different research datasets. To actually visualize data and make a comparison between two
datasets, expert knowledge on the creation of those sets is often needed.

There are exciting visualization tools that solve these problems, but these are not open source
(Ahlberg, 1996; Heer et al., 2008; Lachev and Price, 2018), require technical expertise, or are generic
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tools (Metabase, 2020; Superset, 2020). Moreover, open-source
packages HEPData-explore (Maguire et al., 2017) and ROOT
(Brun and Rademakers, 1997) and Python package Matplotlib
(Hunter, 2007) are the most popular in the High-Energy
Physics community. However, the plots that these tools
produce are not interactive. Besides, ROOT, Matplotlib, and
another popular Python package Plotly. (2020) require
programming expertise.

An open and user-friendly visualization tool would also allow
researchers with limited time (and limited technical skills) to find
new correlations in published data. We believe that such a web-
based and easy-to-use data-visualization tool can generate new
ideas and accelerate science.

Repositories like Zenodo (European Organization For Nuclear
Research and OpenAIRE, 2013) allow us to store likelihood or
exclusion boundaries for thousands to millions of different
parameter sets. Zenodo is today also widely used to publicly
store the results of simulations used in scientific publications.

This article proposes building two additions to this new way of
multivariate data explorations and shows working
demonstrations.

• Interactive visualization of data samples: We believe that
there should also be an easy way to visualize, explore, and
compare multidimensional data. This allows quick and
intuitive visualization and analysis of the model data. We
propose a tool for “online” 1–3 dimensional visualization and
creating histograms of high-dimensional datasets which could be
connected to online repositories such as Zenodo.

•Generalization of data samples:As described in Brooijmans
et al. (2020), the regression and classification with Machine
Learning (ML) allow practical interpolations in between the
provided model solutions. ML-based interpolations are the
best practice also for high-dimensional models. Such tools are
built by the community (or could be automatically built on some
of the Zenodo datasets). This would allow us to determine
exclusion, likelihood, posteriors, etc. for an arbitrary set of
model parameters.

In the following, we discuss a few example cases and provide
links to working demos built on SPOT (Diblen et al., 2018;

Attema et al., 2020) with datasets available on Zenodo via
phenoMLdata.org.

2 TECHNICALDETAILSOF THESOFTWARE
AND THE WORKFLOW

The primary goal of SPOT is to provide an interactive data
exploration environment for high-dimensional datasets.
Moreover, SPOT aims to facilitate open science, data sharing,
and reuse.

The technical details of SPOT are given in detail in Diblen et al.
(2018). In this section, we will give an overview of the software
components and explain the workflow.

SPOT consists of three components: the SPOT framework, a
front-end, and the SPOT server. The SPOT framework provides
classes for datasets, data views, partitions, aggregation, and
filtering. The front-end is a web-based application that allows
users to upload data, configure dataset properties, and interact
with the data. The dashboard of the front-end provides
interaction. Using the front-end users can download or share
the dashboard provenance files which we will refer to as “session
file” in this paper. Both the server and the front-end are written in
JavaScript.

There are two workflows to use SPOT. In the first one (see
Figure 2), the user uploads the local dataset or the session file to
the web application. 1) The supported data formats are CSV and
JSON. Then the user can start to work on a dashboard. 2) The
data partitioning, filtering, and aggregations run in the web
browser, so users do not need any additional software. It
works even without an Internet connection. When the user
completes the analysis, the session file is shared so that
another user can reuse or alter the analysis. 3) The second
workflow (see Figure 3) is more suitable for big datasets. First,
the datasets are uploaded 1) to the SPOT server which uses a
PostgreSQL database for storage 2). When the user interacts with
the dashboard, SQL queries are sent to the server 3) and the
dashboard view is updated 4). Finally, the session file can be
saved to share the analysis 5). This session can be uploaded to the

FIGURE 1 | A typical exclusion limit curve (left) and a typical maximum likelihood interval (right) as a function of the two parameters M1 andM2. Let us assume that
the hypothetical real physical model has 20 parameters M1–M20.
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front-end to do further analysis using the datasets on the server
6). Both workflows are suitable for internal use such as local
network which may be required due to privacy reasons.

The examples demonstrated in this paper were generated
using server workflow. The session files were uploaded to
Zenodo so that dashboards can be regenerated by the
readers. To be fully transparent, the datasets in our
database are also added to Zenodo so that readers can also
access the raw data. The links and DOIs of the datasets and the
session files are provided.

3 DEMONSTRATION OF INTERACTIVE
VISUALIZATION

phenoMLdata is an online interactive plotting interface to a
database of publicly available datasets, based on the open-
source SPOT framework. A prototype of the website can be
found at http://spot.phenomldata.org.

The tool allows for the creation of histograms, line plots, pie
charts, and scatter plots (both two-dimensional and three-
dimensional) of any (combination) of the variables without
downloading the data to the user’s computer. As conventional
with plotting tools, the properties of these plots, like ranges of the

axes, colors, and points sizes can be customized and made data
dependent.

During the creation of a plot, all available data from the
datasets are plotted. SPOT adds interactivity between the plots
by linking them. In a session with a histogram and a scatter plot
users can, for example, select a region in the scatter plot. The
histogram then automatically alters itself to only show data
contained in the user’s selection, making it possible to filter
data in real time.

Another advantage is the possibility to compare datasets.
The online interface provides access to a database containing
the datasets. Any dataset in this database can be selected for
visualization. By selecting multiple datasets, it is possible to
plot (the same) variables of different datasets in the same
plot. This makes it possible to compare, e.g., exclusion
boundaries of different papers, projected onto any
available plane.

Any visualization made with the tool can be exported as a
provenance file (active session) for sharing. Any other user that
uploads this file can then use the visualizations for themselves and
has access to the full interactive arsenal of SPOT in doing so. This
allows us, for example, to interactively explore and validate data
and to design data selections. The next section showcases this
explicitly: any of the provided examples come with a URL to the

FIGURE 2 | Workflow to use SPOT in client mode.

FIGURE 3 | Workflow to use SPOT in server mode.
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provenance file for that specific example. Uploading this file to
SPOT opens the full interactive version of the said example.

4 EXAMPLES

For each example, we provide the “session URL” in the figure
captions. All the session files can be found on https://doi.org/10.
5281/zenodo.4247860.

4.1 Example 1: SUSY-AI
A primary goal of particle physics is to find signals that are
predicted by extensions of the Standard Model. These extensions
always come with several new parameters, such as the masses and
couplings of new particles. The ATLAS experiment provides in
ATLAS collaboration. (2015) for a 19-dimensional model of new

physics (the so-called pMSSM) and about 310,000 realizations of
this model (with randomly selected parameter sets) the
information whether this parameter set is excluded (or not) by
ATLAS measurements. We want to emphasize that such data are
of great use. Online visualizations could encourage (traditionally
conservative) experimental collaborations to continue providing
high-dimensional data.

These 310,000 model configurations with binary exclusions
allowed the construction of an ML classifier to predict the
exclusion contour in the full 19-dimensional model space (see
Caron et al., 2017). The investigation of the exclusion of the 19-
dimensional model parameters is, nevertheless, typically still
done through two-dimensional projections.

However, storing the data in a database with an interactive plot
tool would solve this problem. The reader can then simply take
the actions that interest them. In this example, a subset of the data

FIGURE 4 | The example projection made of a subset of the data in ATLAS collaboration (2015). The graph on top shows the projection on two of the 19 free
parameters and the colors indicate the average exclusion for the model configurations in each for the bins. The two graphs on the bottom can be used to make cuts on
two of the remaining 17 parameters. Interactive dashboard of these graphs can be accessed here.
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from ATLAS collaboration. (2015) is saved so that every
projection and every slice can now be plotted. Figure 4 shows
an example of an exclusion plot that can be made, in which colors
indicate the average exclusion in each bin. Using the dynamic
links between the plots in this figure, one can make on-the-fly
slices in the project plot using the plots on the bottom, allowing
for a quick and full exploration of the high-dimensional dataset.
This shows that a tool like this could be used to accompany papers
with an effectively unlimited number of (exclusion) plots and
projections based on the data used in writing the paper.

4.2 Example 2: Galactic Center Excess
Model Solutions
In Achterberg et al. (2017) and Achterberg et al. (2015), a 19-
dimensional theoretical model1 was tested against a measurement
of an excess in the Galactic Center (GC), which was observed
during the analysis of gamma rays.

In this work, a very small area of the parameter space was
found that could explain this excess and lead to a particular
candidate for dark matter. In these papers, various scatter plots
are shown to highlight where in the parameter space these
solutions are. However, these various two-dimensional plots
are merely slices in the 19-dimensional parameter space. From
a theoretical standpoint, we know that this parameter space is
very complex: it contains delta peaks, step functions, and high-
dimensional correlations. The 2D diagrams therefore do not
show the complete information contained in 19D space. In
addition, mapping all the combinations of 19D space would
require 171 scatter plots, and this still does not show the
correlations shown in more than two dimensions.

Another researcher might be interested in a scatter plot or
histogram that is not in the paper because this person needs it to
design an experiment to verify if the dark matter candidate exists.
As this plot is not in the paper, this person needs to contact the
authors and hope that they still have the results of this paper in
high-dimensional format.

Additionally, while different theoretical models will have
different input parameters, the output parameters will most
likely overlap. For example, all dark matter models must
predict the mass and cross section of the dark matter
candidate, and all models that match the GC excess derive a
likelihood. By focusing on these overlapping parameters, one
can compare the results of different theoretical models in the
same plots and have a very fast and convenient way to compare
the results of different papers. An example of the recreation of
the plots in Achterberg et al. (2017) can be found in
Figures 5, 6.

4.3 Example 3: LHC Collider Simulation
Events and Human Finding Signals
A benchmark dataset containing > 108 simulated high-energy
collision data has been provided by participants of the initiative
and the 2019 Les Houches workshop (Brooijmans et al., 2020).
The generated LHC events correspond to a center-of-mass energy
of 13 TeV. Events for the background and signal processes are
generated using the event generator MG5_aMC@NLO v6.3.2
(Madgraph) and versions above (Alwall et al., 2014). Also,
a quick detector simulation with Delphes3 (cf. de Favereau
et al., 2014) was performed and the high-level objects like jets,
b-jets, electrons, muons, and photons have been
reconstructed. The charge, object type, and four vectors
(energy E, transverse momentum pT , pseudorapidity η, and
azimuthal angle ϕ) are stored for each object. A description of

FIGURE 5 | From left the right, top to bottom, plots 6c, 7c, 7b, 8 (top left and bottom left), 9 (top left and center left), and 6a from Achterberg et al. (2017) are
visualized using SPOT. The interactive dashboard of this data set can be accessed here.

1A version of the pMSSM model was also used in the previous example
(Section 4.1).
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the requirements and the data structure can be found in
Brooijmans et al. (2020).

This dataset can be useful for various phenomenological
studies. One of the goals is to develop and compare new
strategies for searching for signals from new physics. Here,
it is interesting to see which regions of phase space are selected
by new signal detection algorithms. Cuts of such machine
learning-based algorithms are typically represented by a
complicated multidimensional hypersurface of the four
vectors and objects. An online interactive multidimensional

visualization tool such as SPOT would allow us to quickly
compare, e.g., where improvements in the algorithm should
have been made.

An example of a SPOT session with these data can be found in
Figure 7. Here, a comparison is made between a possible gluino
signal from supersymmetry and the expected background events.
All events are from this simulated dataset, but only 824.556 are
loaded in the database to prevent high strain and necessary disk
space on the server. The events are chosen randomly from the 108

events in the full dataset.

FIGURE 6 | Copy of Figure 5A in Achterberg et al. (2017). This plot has been recreated in SPOT and a screenshot is shown in Figure 5. The figure is the same as
the plot in the top left.

FIGURE 7 | SPOT-based comparison of a possible LHC signal (here, a gluino production from supersymmetry) and background. Parts of a figure can be turned off
to filter them out in the other figures. In this example, the gray bars in the left histogram are turned off, so in the middle and right figures, only the data points with high MET
are shown. The interactive dashboard of this dataset can be accessed here.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6269986

Diblen et al. Interactive Visualization of Multi-Dimensional Data

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


It would be interesting to create a challenge where people can
search for the signal by applying selection criteria by hand.Would
they be better than machine learning-based anomaly detection
algorithms? A signal region found by a “human” could be used as
a “data derived” signal region in an independent dataset, similar
to that proposed by ATLAS in Aaboud. (2019).

4.4 Example 4: Fermi Point Source Catalog
The Fermi FL8Y Point Source catalog (Fermi, 2018) contains a list
of found point sources using eight years of Fermi data. It is a big
table containing the locations and properties of various types of
point sources. If one would be interested to quickly check where
the most unresolved point sources are, the catalog has to be
downloaded and then you have to write a visualization script to

filter out the unresolved point sources and plot the latitude and
longitude of the corresponding rows. This requires technical
knowledge and is quite time-consuming for such a simple check.

Alternatively, in SPOT, it requires only a few clicks to generate
these plots and conclude that they mainly lie in the Galactic Plane
(where also most of the diffuse background radiation is). An
example visualization of this dataset can be found in Figure 8.

5 CONCLUSION

In this note, we propose the expansion of scientific repositories
such as Zenodo to allow easy web-based visualization of data. We
show some examples where such visualization could speed up

FIGURE 8 | SPOT visualization of the FL8Y Fermi Point Source catalog (Fermi, 2018). Parts of a figure can be turned off to filter them out in the other figures. In this
example, all point source classes except the unknown class are turned off, so the locations and pivot energies of only the unknown point sources are shown in the top
and bottom right plots. The interactive dashboard of this dataset can be accessed here.
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science. Additionally, it would be an important step to encourage
the HEP community to study physical models and publish results
in their full dimensionality. This would allow and encourage a
revision of the results with different model parameters, the search
for anomalies (or errors) in the published data, the generalization
of the results with ML, and a better comparison of the scientific
publication.

We would like to emphasize that the development and the
maintenance of such a tool must be a collaborative effort. We
hope that the community will realize the importance of our
solution so that we can build these tools together.
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