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Abstract

Objective: Intravenous adenosine induces temporary bradycardia. This is due to the activation of extracellular adenosine
receptors (ARs). While adenosine can signal through any of four ARs (A1AR, A2AAR, A2BAR, A3AR), previous ex vivo studies
implicated the A1AR in the heart-rate slowing effects. Here, we used comparative genetic in vivo studies to address the
contribution of individual ARs to the heart-rate slowing effects of intravascular adenosine.

Methods and Results: We studied gene-targeted mice for individual ARs to define their in vivo contribution to the heart-
rate slowing effects of adenosine. Anesthetized mice were treated with a bolus of intravascular adenosine, followed by
measurements of heart-rate and blood pressure via a carotid artery catheter. These studies demonstrated dose-dependent
slowing of the heart rate with adenosine treatment in wild-type, A2AAR2/2, A2BAR2/2, or A3AR2/2 mice. In contrast,
adenosine-dependent slowing of the heart-rate was completely abolished in A1AR2/2 mice. Moreover, pre-treatment with a
specific A1AR antagonist (DPCPX) attenuated the heart-rate slowing effects of adenosine in wild-type, A2AAR2/2, or
A2BAR2/2 mice, but did not alter hemodynamic responses of A1AR2/2 mice.

Conclusions: The present studies combine pharmacological and genetic in vivo evidence for a selective role of the A1AR in
slowing the heart rate during adenosine bolus injection.
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Introduction

The first published observation that intravascular adenosine

causes a temporary heart block dates back to 1927, when Drury

and Szent-Gyorgyi from the University of Cambridge, United

Kingdom, injected extracts from cardiac tissues intravenously into

a whole animal. They noticed a transient decrease of the cardiac

rhythm and slowing of the heart rate [1]. Following several

purification steps, the authors were able to identify the biologically

active compound of the extract as an ‘‘adenine compound’’ [1]. It

took almost 50 years from these early discoveries of the heart-rate-

slowing effects of ‘‘adenine compounds’’ [1] to the clinical use of

adenosine in treating patients with supraventricular tachycardia

[2]. As of today, intravenous adenosine has remained a mainstay

therapy for diagnosing or treating supraventricular arrhythmias

[3].

Adenosine mediates its signaling effects through 4 adenosine

receptors (ARs): A1AR, A2AR, A2BAR and the A3AR [4].

Previous studies implicated the A1AR in the heart-rate slowing

effects of adenosine. This is based on direct and indirect effects

associated with the activation of cardiac A1ARs. Direct A1AR

signaling effects are thought to lead to a hyperpolarization of sinus

node cells as well as cells of the arterioventricular node (AV node)

primarily by inducing a potassium current through an inward

rectifier potassium channel (IKAdo) [5,6,7]. Indirect effects of

adenosine signaling on the heart rate may involve the ability of the

A1AR to induce an ‘‘anti-adrenergic’’ state by opposing the effect

of sympathetic nervous activation and b1-stimulation by lowering

intracellular cAMP levels [8]. Based on these finding it was

concluded that the A1AR causes the adenosine induced

bradycardia. However, these studies are limited to observations

based on pharmacologic or genetic in vitro studies in a

Langendorff apparatus [9]. At present, comparative genetic in

vivo studies have yet to confirm the selective role of the A1AR in

adenosine-mediated bradycardia.

To elucidate the contribution of individual ARs to adenosine-

induced bradycardia in vivo, we utilized mice with specific

deletions of each individual AR. In addition, we confirmed our

findings utilizing pharmacological approaches in wild-type or

gene-targeted mice for ARs. Consistent with previous ex vivo

studies, we found a selective role for the A1AR in adenosine-

mediated bradycardia in vivo.
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Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies. All experiments were in accordance with the

University of Colorado Denver guidelines for animal care and are

approved by the Institutional Animal Care and Use Committee at

the University of Colorado Denver.

Animals, Heart Rate and Arterial Pressure Measurements
Experiments were performed in 12- to 14-week-old, previously

described, A1AR2/2[10], A2BA 2/2 [11]or A3AR 2/2 [12] on the

C57BL/6 strain and in A2AR2/2[13] on the CD1 strain or littermate

controls matched in age, gender and weight. In addition, studies in

wild-type mice were carried out in C57BL/6. Mice were anesthetized,

intubated and mechanical ventilated as described previously [14]. A

polyethelene catheter was inserted in the right carotid artery as

described previously [15,16]. The catheter was connected to a

DeltranH pressure transducer (Utah Medical Products Inc., Salt Lake

City, UT, USA) located at the same hydrostatic level as the mouse,

which was connected to the CyQ BMP02 system (CyberSense, Inc.,

Nicholasville, KY, USA) designed to measure invasively systolic,

diastolic, pulse pressure, mean arterial blood pressure (MAP) and

heart rate (HR). Due to a sampling rate of 1,000 Hz, the device

automatically calculates HR from the amplitude of the pressure signal.

To correct HR measurement by the BMP02 for movement artifact

etc. an electrocardiogram (ECG) monitor (Hewlett-Packard, Böblin-

gen, Germany) was connected throughout the experiments. Adeno-

sine was given via the arterial catheter in a volume of 100 mL. All mice

were euthanized following the experimental protocol utilizing a lethal

dose of pentobarbital followed by cervical dislocation.

Pharmacological Compounds
Adenosine was dissolved in 0.9% NaCl solution (1 mg/ml).

DPCPX was dissolved in Ethanol (stock solution10 mmol/l). All

solutions were prepared on the day of the experiment. DPCPX

was applied by i.p. injection in dose of 1 mg/kg 30 min prior to

adenosine treatment. This dose of DPCPX was described

previously to sufficiently block A1AR [17]. All substances were

purchased from Sigma-Aldrich.

Data Analysis and Calculation
The mean of HR and MAP at 30 s prior to the injection of drugs

were taken as baseline values. The lowest value after drug injection

was taken as the minimum (HR or MAP). The percentage of

maximal change of HR and MAP was calculated using the formula:

Percent change = Minimum/Baseline*100. Data were compared by

2-factor ANOVA or by Student t test when appropriate. Data are

expressed as mean6SEM. Values of P,0.05 were considered

statistically significant. For statistical analyses, GraphPad Prism 5.0

software for Windows XP (GraphPad Software, San Diego, Calif)

was used, calculation of percentage of change were performed using

Excel 2007H (MicrosoftH, Redmond, WA, USA).

The authors had full access to and take full responsibility for the

integrity of the data. All authors have read and agree to the

manuscript as written.

Results

Wild type mice show decrease heart rate and mean
arterial pressure in response to adenosine bolus injection

Results from previous studies suggest that adenosine induces

bradycardia by activation of A1AR. This is based on pharmaco-

logic or genetic ex vivo studies. However, comparative in vivo

studies on the heart-rate slowing effects of adenosine in gene-

targeted mice for individual ARs have not been performed. To

study the effects of vascular adenosine injection on the heart-rate,

we inserted a polyethylene catheter into the common carotid

artery (see Figure 1). Next, we injected 25, 50 mg or 100 mg of

adenosine via the carotid artery catheter. Higher doses of

adenosine were also tested, however did not show additional

effects on the heart-rate (data no shown). Adenosine caused a dose

dependent decline in heart rate (Figure 2A) and blood pressure

(Figure 2B). With increasing doses, magnitude and duration of the

response increased. Injection of a corresponding volume of vehicle

solution (150 ml normal saline) also caused a decrease in HR

(Figure 2C) and blood pressure (Figure 2D), however to a much

smaller extent than adenosine. Taken together, these data show

that intravascular bolus injection of adenosine is associated with a

dose-dependent slowing of the heart rate in this murine model

system, consistent with the notion of adenosine-induced heart

block seen in patients following adenosine-treatment of supraven-

tricular tachycardia.

Figure 1. Invasive measurement of hemodynamic parameters
in mice. Mice were anesthetized with pentobarbital, mechanical
ventilation was instituted and mice were ventilated using pressure-
controlled settings (inspiratory pressure of 15 mbar, positive end-
exspiratory pressure 5 mbar, 60% inspired oxygen concentration). The
common carotid artery was cannulated utilizing a polyethylene tube.
The arterial catheter was connected to a pressure transducer which
automatically calculated the HR by analyzing the amplitude of the
pressure signal. For verification of heart measurements, an electrocar-
diogram (ECG) monitor was connected throughout the experiment.
Values were recorded to computer hard drive for further analysis.
doi:10.1371/journal.pone.0006784.g001

Adenosine and Bradycardia

PLoS ONE | www.plosone.org 2 August 2009 | Volume 4 | Issue 8 | e6784



Genetic deletion of the A1AR abolishes adenosine-
induced slowing of the heart-rate

After having established a murine model for studying adeno-

sine-mediated slowing of the heart rate in vivo, we next assessed

the contribution of individual ARs. Based on studies indicating

A1AR signaling in the negative chronotropic effects of adenosine,

we first pursued studies in previously characterized mice gene-

targeted for the A1AR [10]. In contrast to our findings in wild-type

mice, the heart-rate slowing effect of vascular adenosine infection

was abolished in gene-targeted mice for the A1AR (Figure 3).

Taken together, these studies provide genetic in vivo evidence for

the A1AR in the heart-rate slowing effects of vascular adenosine.

Negative chronotropic effects of vascular adenosine are
maintained in mice gene targeted for A2AAR, A2BAR or
A3AR

Since all 4 ARs are expressed in murine cardiac tissues [11], we

next studied the contribution of other ARs to the heart-rate

slowing effects induced by adenosine bolus injection. For this

purpose, we treated A2AAR2/2, A2BAR2/2 or A3AR2/2 with

incremental doses of intravascular adenosine. As shown in

Figure 4, the heart rate decreased in all tested genotypes to a

similar degree. In fact, we observed no difference between gene-

targeted mice or their corresponding littermate controls. These

studies provide genetic evidence that even though the A2AAR,

Figure 2. Changes of blood pressure and heart-rate following vascular adenosine injection. Following insertion of a catheter into the common
carotid artery, mean arterial blood pressure and heart rate were measured. Intravascular bolus injection of adenosine as indicated. (A, B) Wild type mice
received vehicle (normal saline) or adenosine at indicated doses (100 ml). (C, D) Relative change in mean arterial blood pressure or heart-rate. (A, B: *p,0.05;
n = 8; mean6SEM).
doi:10.1371/journal.pone.0006784.g002
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A2BAR or A3AR are expressed on cardiac tissues [11,18], they do

not mediate the heart-rate slowing effects of adenosine.

A1AR inhibitor DPCPX abrogates adenosine-induced
bradycardia in wild-type mice

The data gathered so far suggest that the A1AR plays an

important role in hemodynamic responses to systemic adenosine.

In order to circumvent possible adaptive mechanisms that might

be present in gene targeted mice (biological compensation), we

next sought to further characterize the role of A1AR using a

pharmacological approach. Here we utilized the effect of the

selective A1AR inhibitor DPCPX (1 mg/kg i.p.) in wild type mice

[17,19,20]. Figure 5A and B show that bradycardia to systemic

adenosine is strongly attenuated following the administration of

DPCPX. Taken together, such studies suggest that pharmacolog-

ical inhibition – similar to genetic deletion – of the A1AR dampens

adenosine-dependent heart-rate responses in vivo.

DPCPX attenuates bradycardia in AR gene targeted mice,
except A1AR2/2 mice

To further study the influence of A1AR on hemodynamic

responses to adenosine, we next investigated the effect of the

Figure 3. Adenosine bolus injections in gene-targeted mice for the A1AR. Following insertion of a catheter into the common carotid artery,
mean arterial blood pressure and heart rate were measured A1AR2/2-mice received bolus injection of vehicle or indicated doses of adenosine (100 ml)
via the carotid artery catheter. (A, B) Heart-rate and blood pressure responses to 100 mg of adenosine compared to wild type mice. (C, D) Relative
changes in heart-rate and mean arterial blood pressure. Note: A1AR2/2-mice experience no change in HR following bolus injection of adenosine. (n = 7–8;
WT n = 8, *p,0.05 A1AR2/2 vs WT; #p,0.05 compared to adenosine-vehicle; mean6SEM;).
doi:10.1371/journal.pone.0006784.g003

Adenosine and Bradycardia
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A1AR antagonist DPCPX in mice with genetic deletion of ARs.

As shown in Figure 6, treatment with DPCPX prevented bra-

dycardia after systemic adenosine bolus injection in A2AAR2/2

and A2BAR2/2 mice. As expected, DPCPX had no effect in

A1AR2/2 mice. Taken together these studies suggest selectivity of

DPCPX for the A1AR, and confirm our genetic studies that

adenosine-mediated slowing of the heart-rate is selectively

mediated by the A1AR.

Figure 4. Effect of systemic adenosine administration in AR gene targeted mice. Following insertion of a catheter into the common carotid
artery, mean arterial blood pressure and heart rate were measured. A2AAR2/2, A2BAR2/2 orA3AR2/2 received bolus injections of vehicle solution or
indicated doses of adenosine in 100 ml of vehicle. Change in heart-rate and mean arterial pressure compared to littermate control mice. (A, B)
A2AAR2/2 (C, D) A2BAR2/2 (E, F) A3AR2/2 (n = 6–8, *p,0.05 compared to adenosine-vehicle; mean6SEM).
doi:10.1371/journal.pone.0006784.g004
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Discussion

Extracellular adenosine represents an endogenous distress

signal, particularly generated under injurious conditions such as

hypoxia or ischemia [21,22]. Under such circumstances, extracel-

lular adenosine signaling plays a critical role in attenuating

hypoxia-induced tissue injury and inflammation [4,23]. It elicits its

signaling effects through any of four ARs, which are highly

conserved among vertebrates [4]. In addition to its role in

hypoxia-adaptation [18,24,25] and attenuation of inflammation

[26,27,28], adenosine is known to cause significant slowing of the

heart rate, when injected intravenously. In this study, we

investigated the contribution of different ARs to the heart-rate

slowing effects of vascular adenosine utilizing genetic and

pharmacological in vivo approaches. We found that adenosine

caused a dose dependent decrease in heart rate in wild type mice,

which was completely abolished in gene-targeted mice for the

A1AR or following pre-treatment with the A1AR antagonist

DPCPX. In contrast, studies in A2AAR2/2, A2BAR2/2 or

A3AR2/2 mice demonstrated heart-rate slowing following vascular

adenosine injection, suggesting a high degree of selectivity for the

A1AR-mediated role in slowing of the heart-rate.

Figure 5. Effect of A1AR antagonist DPCPX on adenosine-induced slowing of the heart-rate. Following insertion of a catheter into the
common carotid artery, mean arterial blood pressure and heart rate were measured after injection of vehicle or adenosine at indicated doses (volume
of 100 ml). All animals received 1 mg/kg of the A1AR antagonist DPCPX (i.p., 30 min prior to the experimental procedure) or vehicle. (A, B) Heart-rate
or mean arterial blood pressure at indicated time points. (C, D) Relative changes of heart-rate or mean arterial blood pressure (n = 4, * indicates p,0.05
compared to DPCPX treatment; #indicates p,0.05 compared to adenosine-vehicle injection; mean6SEM).
doi:10.1371/journal.pone.0006784.g005
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The present studies closely relate to studies of central nervous

system (CNS) adenosine signaling in the regulation of blood

pressure, temperature and sleep-awake cycle. Of particular

interest has been the non-specific adenosine receptor antagonist

caffeine. As such, caffeine is a CNS stimulant, having the effect

of temporarily warding off drowsiness, restoring alertness and

elevating blood pressure and heart-rate. In fact, caffeine is the

world’s most widely consumed psychoactive substance. The

question through which adenosine receptors the stimulating

effects of caffeine are mediated has been the center of several

research studies. First evidence comes from studies in gene-

targeted mice for the A2AAR [13]. The authors found that

A2AAR2/2 mice showed attenuated exploratory activity,

whereas caffeine, which normally stimulates exploratory behav-

Figure 6. Effect of A1 adenosine receptor (AR) antagonist DPCPX in AR gene targeted mice. Following insertion of a catheter into the
common carotid artery, mean arterial blood pressure and heart rate were measured after injection of vehicle or adenosine at indicated doses (volume
of 100 ml). All animals received 1 mg/kg of the A1AR antagonist DPCPX (i.p., 30 min prior to the experimental procedure) or vehicle. Relative changes
in HR and MAP are displayed. (A, B) A1AAR2/2 (C, D) A2AAR2/2 (E, F) A2BAR2/2 (n = 4;* p,0.05 compared to DPCPX treated mice; #p,0.05 compared to
adenosine-vehicle; mean6SEM).
doi:10.1371/journal.pone.0006784.g006

Adenosine and Bradycardia
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ior, became a depressant of exploratory activity. In addition,

these mice had higher blood pressure and increased heart-rate

[13]. A second study in genetic models confirmed that caffeine

mediated arousal involves the A2A and not the A1AR [29].

Only recently, a very elegant and complete study from the

research group of Bertil Fredholm extended these findings

towards the physiological contributions of A1 and A2A

receptors in the regulation of heart rate, body temperature,

and locomotion as revealed using knockout mice and caffeine

[30]. Here, the authors studied heart rate, body temperature,

locomotor activity, and oxygen consumption in awake mice

lacking one or both of the A1AR or A2AAR using telemetry and

respirometry, before and after caffeine administration. When

compared with wild-type littermates, HR was higher in male

A1AR2/2 mice but lower in A2AAR2/2 mice. A single dose of

an unselective beta-blocker abolished the HR differences

between these genotypes, thus indicating that the studied

differences involve central nervous system mediated alterations

of heart rate and blood pressure. Taken together, these studies

indicate that the A2AAR plays an important role in the

modulation of oxygen comsumption, locomoter activity by acute

and chronic caffeine administration. There is also evidence for

effects of higher doses of caffeine being independent of both the

A1AR and the A2AAR [30].

Consistent with our studies indicating a role of the A1AR in

mediating acute responses to adenosine bolus injections, other

studies from Bertil Fredholm’s group indicated that the A1AR is

involved in the regulation of heart rate, body temperature and

locomotor activity, but the magnitude of the involvement is

different in males and females [31]. Female mice had higher heart

rate, body temperature and locomotion, both during daytime and

during the night. Awake A1AR2/2 mice had a slightly elevated

heart rate, and this was more clear-cut in males. Heart rate was

also higher in Langendorff-perfused denervated A1AR2/2 hearts.

Futhermore the bradycardic response to the adenosine receptor

agonist 2-chloroadenosine is absent in isolated A1AR2/2 hearts,

which was demonstrated in very elegant studies from the research

group of John Headrick [9]. At present it remains somewhat

unclear how the central and peripheral mechanisms of adenosine

receptor dependent regulation of blood pressure and heart rate act

in concert.

While there is some overlap between these studies of Bertil

Fredholm’s group [30,31] and our present data, the main

differences between both studies are the mechanisms of adenosine

receptor mediated alterations in blood pressure, heart rate and

locomotion. While the studies above mainly focus on the

consequences of caffeine – a CNS stimulant that works through

inhibition of CNS adenosine receptors [30] or at baseline heart

rate levels without adenosine stimulation [31] – the present studies

address the role of peripheral adenosine receptors located in the

heart in mediating adenosine-dependent slowing of the hear-rate

following intravascular adenosine injection. In fact, intravascular

injection of adenosine is performed on a routine basis in patients

during the treatment of supraventricular tachycardia [3]. As such,

the present studies were performed in an in vivo setting following a

time interval of 30 s after adenosine receptor activation, while the

studies of Bertil Fredholm’s group examined non-anesthetized

mice over several days [30,31], or ex vivo Langendorf prepara-

tions [31].

Previous studies had shown that the A1AR can influences the

ion current in cardiac pacemakers, causing slower atrioventricular

nodal conduction, causing bradycardia as seen in this study [6,7].

The A1AR promoter is highly active in the atrium [32], leading to

high A1AR mRNA levels [31]. In fact, expressional levels of the

A1AR are higher in the atrium as compared to the ventricle

[33,34]. Furthermore, activation of A1AR by adenosine causes an

inhibition of adenylate cyclase, which results in decreased

intracellular levels of cAMP [35]. Thus, A1AR activation

counteracts the effect of the b1-adrenoceptor, which activates the

adenylate cylcase and increases cAMP levels [8]. In fact, in

transgenic mice, overexpressing the A1AR, it was shown that the

b-adrenoceptor sensitivity/reactivity was impaired, despite the

fact, that there is an enhanced b-adrenoceptor density in these

mice [36,37]. Moreover, isolated perfused hearts from A1AR

overexpressing mice had a lower resting heart rate when

compared to control animals [38]. Similarly, previous studies

hypothesized that the activation of the A1AR may also be a

potential cause for bradycardia in patients following cardiac

transplantation. In fact, these studies showed that administration

of the unspecific adenosine receptor antagonist theophylline leads

normalization of the heart rate in cardiac transplant recepients

[39]. However, as of to date it seems unclear whether the A1AR

has an influence on the heart rate under physiological conditions in

vivo. There are reports that A1AR deficient mice have similar

heart-rate as wild type controls [20]. In contrast, when hearts from

A1AR2/2 mice are isolated, the heart rate measurements reveal a

higher heart-rate than in wild-type mice [31]. In the current study

in anesthetized mice, we did not see a difference in baseline heart-

rate when comparing A1AR2/2 mice to littermate controls.

However, since anesthesia sufficiently blocks the influence of

sympathetic nervous system on the heart, we cannot draw

conclusion on the HR in the alert state. Other reports stated that

male A1AR2/2 mice have a higher heart rate than wild type

littermates, suggesting that gender might influence A1AR function

of regulating HR [30].

Other ARs have also been suggested to influence the heart

rate in mice. A2AAR2/2 deficient mice have a higher blood

pressure and heart rate when compared to wild type mice [13].

In the present study the response to intravascular adenosine of

A2AAR2/2 mice was not altered when compared to that of

littermate controls. These findings suggest that the A2AAR does

not influence the cardiac conductance system directly in response

to systemic adenosine. It seems plausible that A2AAR, rather,

influences HR via central nervous system mediated mechanisms

[40].

Systemic adenosine, as used in present studies could simulta-

neously influence two important variables of the blood pressure:

cardiac output and vascular resistance. In the present study the

intravascular administration of adenosine leads to a decrease in

the mean arterial pressure, simultaneously with the observed

slowing of the heart-rate. It is important to point out that from

the current data, it is difficult to conclude which AR might

mediate the decrease in MAP (adenosine-mediated vasodilata-

tion). Both variables (HR and MAP) were altered simultaneously

in the experimental protocol. Various studies have assessed the

influence of ARs on arterioles and different adenosine receptors

might be involved in arteriolar dilatations, however there is

evidence that the A2AAR might play the most important role

[41,42,43,44].

Taken together, the present studies reveal a critical role of the

A1AR to adenosine bolus injection induced bradycardia in vivo.

A2AAR, A2BAR and A3AR [7] do not influence the response to

intravascular adenosine.
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