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SUMMARY

Chromatin is organized in the nucleus via CTCF loops and compartmental domains. Here, we 

compare different cell types to identify distinct paradigms of compartmental domain formation in 

human tissues. We identify and quantify compartmental forces correlated with histone 

modifications characteristic of transcriptional activity and previously underappreciated roles for 

distinct compartmental domains correlated with the presence of H3K27me3 and H3K9me3, 

respectively. We present a computer simulation model capable of predicting compartmental 

organization based on the biochemical characteristics of independent chromatin features. Using 

this model, we show that the underlying forces responsible for compartmental domain formation 

in human cells are conserved and that the diverse compartmentalization patterns seen across cell 

types are due to differences in chromatin features. We extend these findings to Drosophila to 

suggest that the same principles are at work beyond humans. These results offer mechanistic 

insights into the fundamental forces driving the 3D organization of the genome.
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In brief

Using high-resolution Hi-C data and computer simulations, Nichols and Corces show that 

compartments arise as a consequence of interactions among proteins that correlate with the 

presence of H3K27ac, H3K27me3, and H3K9me3, suggesting that human cells contain at least 

three distinct compartments. The same principles apply to other organisms.

INTRODUCTION

The highly organized nature of the eukaryotic nucleus has been evident since experiments 

using immunofluorescence microscopy to determine the subnuclear distribution of various 

proteins and histone modifications showed the existence of several types of nuclear bodies 

(Matera et al., 2009). These nuclear locations, where proteins with related functional 

properties accumulate, have been described more recently as biomolecular condensates 

created as a consequence of liquid-liquid phase separation due to the presence of high 

concentrations of multivalent proteins bound to DNA and RNA, dividing the nucleoplasm 

into functionally distinct compartments (Banani et al., 2017). Some of these nuclear bodies 

appear to be involved in RNA processing or sequestration, but others, such as the nucleolus, 

contain chromatin. These bodies represent distinct nuclear environments that regulate 

exposure of the DNA to various proteins of the nucleoplasm and are therefore essential to 

controlling the activity of genes. For example, active genes can be present in hubs called 

transcription factories, in which expressed genes aggregate together with the transcriptional 
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machinery (Mitchell and Fraser, 2008). Features of chromatin that are associated with 

transcriptional silencing also cluster with one another. Polycomb bodies form via the 

agglomeration of polycomb repressive complex 1 (PRC1) and PRC2 protein complexes that 

silence genes, in part by the trimethylation of H3K27 (Pirrotta and Li, 2012). In addition, 

transcriptionally silenced pericentric heterochromatin colocalizes within the nucleus to form 

chromocenters in some cells, strongly enriched for HP1a and H3K9me3 (Wang et al., 2019). 

Several studies have now shown the ability of chromatin components to drive liquid-liquid 

phase separation in vitro and in vivo. H3K9me3 and HP1 together produce the 

compartmentalization of heterochromatin, and this is also the case for the intrinsically 

disordered regions found in PRC1, RNA polymerase II, and many transcription factors 

(Boija et al., 2018; Ladouceur et al., 2020; Plys et al., 2019; Wang et al., 2019).

With the advent of Hi-C it has become possible to query the organization of the entire 

genome simultaneously at the sequence level (Lieberman-Aiden et al., 2009). Hi-C identifies 

all of the interactions in the genome after fixation with formaldehyde. The resulting contact 

frequency maps prominently display self-associating domains formed by short-range 

interactions among contiguous segments of the genome and can be visualized as “triangles” 

present at the diagonal of Hi-C heatmaps. Classically, these contact domains are called 

compartments and topologically associating domains (TADs). These two types of domains 

originally described distinct phenomena apparent at different length scales in Hi-C maps 

using different computational methodologies, but which have now been shown to overlap 

significantly (Rowley and Corces, 2018). Compartments are defined by principal-component 

analysis (PCA), normally using Hi-C data binned at a 0.5- to 1.0-Mb resolution, and, as a 

consequence, compartments are normally considered to be >1 Mb in size. Compartments 

can contain sequences in an active (A) or silenced (B) transcriptional state and they interact 

with other compartments in the same state to give the plaid pattern observed in the Hi-C 

heatmap. The term “compartment” is used to refer to both the self-interacting contact 

domains present at the diagonal and the ensemble of all of the inter-domain interactions 

among all of the domains in the same transcriptional state. To avoid confusion, we use the 

term “compartmental domains” to refer to self-interacting contact domains present at the 

diagonal of Hi-C heatmaps and “compartment” to refer to all of the interactions among 

compartmental domains in the same transcriptional state. Different from compartmental 

domains, TADs are defined using algorithms that detect switches in the directionality of 

interactions. Analysis of Hi-C data at 1-kb resolution indicates that TADs actually 

correspond to two different types of domains: CCCTC-binding factor (CTCF) loops and 

compartmental domains (Rao et al., 2017; Rowley et al., 2017). CTCF loops are formed by 

the interruption of cohesin extrusion due to the presence of convergent CTCF-bound sites. 

CTCF loops can be visualized in Hi-C heatmaps by strong punctate signals at the summit of 

the domain, whereas compartmental domains lack this signal. CTCF loops disappear from 

Hi-C heatmaps obtained in cells depleted of CTCF or RAD21, whereas compartmental 

domains remain (Nora et al., 2017; Rao et al., 2017). Furthermore, compartmental domains 

are present in regions of the genome containing sequences in the same active or inactive 

transcriptional state and can be identified by PCA using 5- to 10-kb bin sizes. Neighboring 

regions in separate compartmental domains interact less frequently and represent a 

compartmental switch or border. In this way, the compartmentalization of the genome 
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creates both local compartmental domains and distant compartmental interactions. Domains 

referred to as TADs in the literature are either compartmental domains, CTCF loops, or a 

combination of the two (Rowley and Corces, 2018).

As described above, compartmental domains can be captured by PCA of the Pearson 

correlation maps of each chromosome. The first principal component (PC1) or eigenvector 

captures the dimension with the highest variance. This vector has been classically divided 

into two sets of values because the corresponding sequences in the genome correlate well 

with transcriptionally active and inactive regions, and thus are called A and B, respectively 

(Lieberman-Aiden et al., 2009). This categorization performs well across mammalian cell 

types and therefore the compartmentalization of the genome is generally thought of as 

binary. However, results from microscopy and epigenetic information (i.e., covalent histone 

modifications and/or DNA methylation) suggest that the transcriptional state of the genome 

is more complex, and that the two-state classification is an oversimplification. While PCA 

remains the standard and most common method for calling compartmental domains, some 

analyses have more closely examined compartmentalization using more sophisticated 

techniques. The use of a hidden Markov model to cluster interchromosomal interactions 

resolved the active A and inactive B compartments into 2 active and 4 inactive compartment 

subtypes in GM12878 cells. These subcompartments differ according to various chromatin 

features, including post-translational histone modifications, replication timing, and measures 

of nucleolar and lamin association (Rao et al., 2014). However, the subcompartments within 

A and B do not differ substantially in which chromatin features are enriched. Other studies 

have also successfully used polymer simulations to reproduce the compartmental 

organization of the genome using chromatin-defined states (Annunziatella et al., 2018; 

Buckle et al., 2018; Chiang et al., 2019; Cook and Marenduzzo, 2018; Falk et al., 2019; 

Nuebler et al., 2018; Qi and Zhang, 2019). PCA-derived compartment calls in diverse cell 

lines, and tissues invariably find A/B compartmentalization patterns, but the epigenetic 

features enriched in those A/B patterns can differ between cell types. Notably, several 

studies have found the heterochromatin-associated histone modification H3K9me3 strongly 

enriched in B compartments (Dixon et al., 2015; Falk et al., 2019). However, this 

modification is only found enriched in the single B4 subcompartment in GM12878 cells, 

which is predominantly found only on chromosome 19 (Rao et al., 2014). Therefore, the 

binary A/B compartmentalization of the genome is far simpler than what would be predicted 

from microscopy analyses of nuclei in which a large variety of biomolecular condensates 

composed of different epigenetic features have been observed.

Here, we examine two cell types, GM12878 and HCT-116, with divergent compartmental 

definitions in an attempt to better understand the different patterns of compartmental 

domains seen between different human cells and investigate the potential role of the forces 

responsible for this aspect of genome organization, with the goal of reconciling observations 

derived from Hi-C analyses and microscopy-based studies. The results suggest a consistent 

model of genome organization and offer insights into the mechanistic underpinnings of 3D 

genome compartmentalization.
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RESULTS

Dynamic compartmentalization across human cells

To better understand the mechanisms underlying the formation of compartmental domains 

and their compartmental interactions, we compared high-resolution Hi-C datasets containing 

2.5–5 billion contacts from two cell types: the lymphoblastoid GM12878 cell line and 

colorectal carcinoma HCT-116 cells. We took the Pearson correlation of the distance-

normalized interaction maps to display the correlation of interactions of each bin with each 

other bin. This method can be used to visualize compartmental domains and their 

interactions because genomic regions in the same compartment will have highly correlated 

interaction frequencies and will have a high score in the correlation map. Figures 1A and 1B 

show the Pearson correlation maps for chromosome 4 of GM12878 and HCT-116, 

respectively. This chromosome shows very different organizations between the two cell 

lines. Both possess clear compartmental domains along the diagonal of the map and 

compartmental interactions as seen by the plaid pattern away from the diagonal, but both 

differ considerably between the two cell lines. We sought to explore whether differences in 

the epigenetic profiles of the chromosomes of these two cell types could explain their 

distinct compartmentalization patterns. We compared the distribution of H3K27ac, which is 

correlated with transcriptional activity, H3K27me3, which is correlated with transcriptional 

silencing, and H3K9me3, which is also correlated with transcriptionally inactive sequences, 

to the Pearson correlation maps in these cells. These three histone modifications were 

chosen due to their largely non-overlapping distributions, substantial presence in the 

genome, and observed correlations with compartmental features. We also tested H3K4me1, 

H3K4me2, H3K4me3, H3K36me3, H3K9ac, H3K79me2, H4K20me1, and global run-on 

sequencing (GRO-seq), but these modifications do not correlate as well with compartmental 

features (Figures S1A–S1C). We also performed PCA at 100-kb resolution and show PC1 in 

both cell lines (Figures 1A and 1B). Remarkably, GM12878 and HCT-116 show very 

different distributions of H3K9me3. In HCT-116 cells, large H3K9me3-rich domains 

correlate with prominent compartmental domains that are strongly correlated with one 

another in their Hi-C interaction frequencies. GM12878, however, lacks these large 

H3K9me3-rich domains and correspondingly lacks the prominent compartmental domains 

associated with them.

To quantify these observations, we used PC1 to call A and B compartmental domains in 

GM12878 and HCT-116 cells and measured the relative enrichments of chromatin features 

on their chromosomes (Figure 1C). In GM12878 cells, A/B compartmentalization strongly 

follows transcriptional activity/inactivity, with histone modifications associated with active 

transcription such as H3K27ac, H3K4me3, and H3K36me3 all enriched in A compartmental 

domains and depleted in the B compartment of chromosome 4, while modifications 

associated with silenced chromatin such as H3K27me3 show an inverse pattern (Figures 1C 

and S1A). In HCT-116 cells, however, A compartmental domains in chromosome 4 are not 

strongly enriched for histone modifications associated with transcriptional activity, including 

GRO-seq, which is a direct measure of transcription. Instead, binary compartmental 

delineation using PC1 divides the chromosome into a transcriptionally inactive H3K9me3-

rich portion and the remainder, which consists of both transcriptionally active and inactive 
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regions enriched in H3K27me3. In contrast, H3K9me3 in chromosome 4 of GM12878 is 

enriched in A compartmental domains and presents very differently on the chromosome as 

sporadic peaks rather than contiguously enriched domains (Figures 1C and S1A). Given that 

B compartmental domains in chromosome 4 of HCT-116 cells are depleted of 

transcriptionally active sequences, we asked why the corresponding A compartmental 

domains are not strongly enriched for transcribed sequences. A simple explanation for this 

phenomenon is that transcriptionally inactive regions of HCT-116 not containing H3K9me3 

correlate more closely in their interaction frequencies with transcriptionally active regions. 

Thus, the A compartment in these cells as defined by PCA is composed of a conglomeration 

of all H3K9me3-poor chromatin, both transcriptionally active and inactive, leading to only a 

mild enrichment for active histone modifications. These observations differ from canonical 

definitions of A compartmental domains, which are enriched for transcriptionally active 

features, indicating that binary PCA compartmental classifications in HCT-116 differ 

fundamentally from those of GM12878.

To examine more closely the mechanisms underlying the formation of compartmental 

domains, we focused on a 65- to 95-Mb region on chromosome 4 and used a resolution of 

25 kb to call compartments using PCA (Figures 1E and 1F). In HCT-116 cells, this region 

contains instances of all 4 clusters found in chromosome 4. Compartmental domains present 

in the A compartment defined by PCA in GM12878 cells are highly enriched in H3K27ac 

with respect to those in the B compartment, whereas H3K27me3 and H3K9me3 are 

similarly enriched in both A and B compartments (Figures 1E, 1G, and S1B). However, in 

HCT-116 cells there is a clear enrichment of both H3K9me3 and H3K27me3 in the B 

compartment corresponding to compartmental domains and interactions absent in GM12878 

cells (Figures 1F, 1G, and S1B). These findings, showing differential enrichment of active 

and repressive histone modifications in the A and B compartments in different cell lines, are 

surprising, since it is generally assumed that the A compartment contains transcriptionally 

active genes and the B compartment is enriched in silenced sequences independent of the 

cell type. This suggests that the canonical binary classification of A and B compartments is 

insufficient to represent the properties and mechanisms by which compartmental domains 

form in these cells.

Conserved principles underlie dynamic compartmentalization

To further explore the complex compartmentalization logic observed in GM12878 and 

HTC-116 cells, which appears to follow different rules in the two cell lines and cannot be 

explained by a simple binary division of PC1, we used the unsupervised k-means clustering 

algorithm to identify compartmental clusters in both cell types (Pedregosa et al., 2011). The 

primarily binary A/B organization of chromosome 4 in GM12878 cells obtained by PCA can 

be reproduced by two clusters obtained via unsupervised k-means clustering (Figures 1A 

and 1E). However, four clusters are required to produce a meaningful classification of 

chromosome 4 that correlates with the Hi-C heatmap in HCT-116 cells (Figures 1B and 1F). 

As expected, one of these four clusters corresponds directly to H3K9me3-rich regions, 

whereas a second one correlates strongly with H3K27ac. Surprisingly, the two other clusters 

are both transcriptionally inactive with distinct chromatin features, one highly enriched for 

H3K27me3 and the last lacking all three histone modifications (Figures 1D and 1H). Only 
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H3K9me2 is enriched in this compartment (Figure S1A). Therefore, chromosome 4 in 

HCT-116 appears to have four distinct compartmental domains. Interactions among each 

type give rise to the complex plaid pattern in the Hi-C heatmap, forming compartment A 

(transcriptionally active), B (H3K27me3-rich), C (H3K9me3-rich), and D (enriched in 

H3K9me2 but depleted of standard active and silencing histone modifications). This 4-

compartment nomenclature corresponding to enrichment in each of these different histone 

modifications is used in the rest of the article. We note that the enrichments of epigenetic 

features in chromosome 4 A and D clusters of HCT-116 cells correspond well to the A and 

B compartments of chromosome 4 in GM12878 cells, with the exception of H3K9me3 

enrichment in the A compartment of GM12878 (Figures 1C and 1D).

We then sought to understand why H3K9me3 is enriched in different compartmental 

domains in HCT-116 versus GM12878 cells. The distribution of H3K9me3 in these two cell 

types is very different, with GM12878 chromosomes typically having narrow peaks of 

signal, whereas HCT-116 chromatin tends to have large consistently enriched plateaus. At 

least two possible hypotheses could explain these different distribution patterns. One 

possibility is that H3K9me3 regions compartmentalize differently in the two cell types due 

to different nuclear environments determined by cell identity and physiology. A second 

explanation is that H3K9me3 regions compartmentalize differently due to distinct 

distributions of this histone modification as a consequence of transcriptional differences 

between the two cell types. Analysis of chromosome 19 offers an opportunity to distinguish 

between these two possibilities, since this chromosome contains large domains of H3K9me3 

in both GM12878 and HCT-116 cells. Chromosome 19 of GM12878 cells shows a strong 

correlation between the presence of H3K9me3 and the formation of strong compartmental 

domains (Figure 1I), as was seen on chromosome 4 of HCT-116 cells, and these H3K9me3 

compartmental domains are similar in chromosome 19 of both cell types (Figure 1J). The 

similarity between H3K9me3 domains in chromosome 19 of GM12878 and HCT-116 cells 

suggests that the nuclear environment is not responsible for the differences observed in other 

chromosomes. Strikingly, the histone modification profiles and the A/B compartments 

defined by PC1 also closely match between the two cell lines (Figure 1K). k-means 

clustering was then performed in both cell types with three clusters, since chromosome 19 

lacks large regions devoid of any signals that would fall into the D cluster. The resulting 

cluster calls closely match each other (Figure 1L). The high correspondence in k-means 

cluster definitions is mirrored by the relative signal enrichments in each cluster. In contrast 

to chromosome 4, the compartments called by PCA and by k-means showed similar 

enrichments for various histone modifications in chromosome 19 (Figures 1L and S1C). The 

alignment of chromosome 19 in histone modification profiles and compartmental 

organization in HCT-116 and GM12878 fits a model in which these histone modifications, 

or a chromatin feature correlated to them, drive chromosomal compartmentalization, and 

suggests that the underlying forces driving compartmentalization are consistent between 

these cell types. We suggest that the diverging compartments seen in chromosome 4 are the 

result of distinct chromatin profiles and that the resulting conflicting histone modification 

enrichments for the A and B compartments of chromosome 4 between these cell lines do not 

reflect differences in the underlying chemistry driving compartmentalization. The 

enrichment of H3K9me3 in the active compartment of GM12878 chromosome 4 can be 
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explained as the inability of small narrow peaks of H3K9me3 to drive compartmentalization 

against entropic mixing. Their proximity to other active compartmentalizing features may 

further inhibit their self-segregation. Alternatively, since these short regions containing 

H3K9me3 are much smaller than the 25-kb bins used to perform the clustering analyses, it is 

possible that compartmental calls performed at a higher resolution may resolve H3K9me3-

associated compartmentalization in these small regions. This possibility highlights the 

potential biases introduced by the resolution of the data used in the analyses when 

interpreting Hi-C information and the need for improved conformation data.

We then considered whether either of these cell lines perhaps exemplify an outlier 

unrepresentative of normal human tissues, and thus we investigated H3K9me3 distribution 

in numerous immortalized and primary human cells. We found that neither the H3K9me3 

pattern observed in GM12878 and HCT-116 cells is unrepresented in other cell types or in 

primary tissues but rather exemplifies two ends of a continuum of H3K9me3 present across 

human cells (Figures S1D and S1E). These findings reveal that H3K9me3 domains are 

highly dynamic and give rise to significant changes in compartmentalization patterns across 

tissues.

Compartmental domains correlate directly with chromatin features

With the understanding that binary models are insufficient to represent human 

compartmentalization and that the forces responsible for the formation of compartmental 

domains appear to correlate closely with chromatin features, particularly transcriptional 

activity, H3K27me3, and H3K9me3, we sought to more precisely visualize and quantify the 

forces driving compartmentalization. To this end, we used chromosome 14 from HCT-116 

cells as an example and sorted the Pearson correlation map by various features (Figure 2A). 

A similar analysis for chromosome 14 from GM12878 is shown in Figure S2A. These 

assemblies are produced by reordering the rows and columns of the correlation matrix so 

that instead of being placed in their natural order, bins are arranged by increasing signal of 

the chosen feature. This allows us to compare the ability of a particular sequence to form a 

specific type of compartmental domain with its epigenetic features. This approach also 

provides a means of visualizing the frequency of interactions within and among 

compartmental domains or “compartmentalization strength.” Sorting by PC1 values, we 

observe a clear segregation of chromosome 14 into three types of compartmental domains A, 

B, and C in HTC-116 cells (Figure 2B) and, to a lesser extent, in GM12878 cells (Figure 

S2B). One type of compartmental domain, called compartment C above, corresponds to 

negative values of PC1 and contains sequences enriched in H3K9me3 but lacking 

H3K27me3 and H3K27ac in HTC-116, but not in GM12878 cells due to the different 

distribution of H3K9me3 in these cells with respect to HTC-116. A second type of 

compartmental domain, compartment B, corresponds to intermediate positive PC1 values 

and contains sequences enriched in H3K27me3 but lacking H3K9me3 and H3K27ac. 

Finally, a third A compartment contains sequences with high positive PC1 values, and it is 

enriched in sequences with high levels of H3K27ac but lacking the other two silencing 

histone modifications. We note that A and C compartmental domains are highly self-

correlated but strongly anticorrelated with each other in interaction frequency, while B 

compartmental domains self-correlate and have intermediate levels of correlation with both 
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A and C domains (Figure 2B). B compartmental domains have a higher correlation with A 

than with C domains, indicating that they interact more similarly to A and would be grouped 

with A by a binary classification system (Figure 2B). The existence of these three 

compartments is supported by results from k-means clustering (see green/blue/red bar in 

Figures 2B, S2B, and other panels). Surprisingly, this indicates that PC1, while typically 

used to delineate binary compartments, could be used to call more compartmental domain 

types using different thresholds. Chromosome 14, like chromosome 19, largely lacks regions 

that would fall into the D compartment. Sorting the chromosome by H3K9me3 instead of 

PC1 values reproduces the compartmentalization of the H3K9me3-rich C compartment as 

well as PC1 itself; however, it was unable to distinguish between the A and B compartments 

(Figure 2C). This is not observed in GM12878 cells due to the different distribution of 

H3K9me3 in these cells (Figure S2C). Sorting by H3K27ac as a marker of transcriptional 

activity also results in compartmental segregation, although this is less precise (Figures 2D 

and S2D). This is likely a function of H3K27ac signal’s lacking the consistency and 

continuity of H3K9me3 domains within transcriptionally active regions. Sorting by 

H3K27me3 organized only the regions most enriched for H3K27me3 and was unable to 

organize the rest of the chromosome (Figures 2E and S2E). These results show that covalent 

histone modifications strongly correlate with and are predictive of compartmental 

organization.

An unusual feature of chromosome 14 is the existence of a trimodal distribution of 

H3K9me3 in HCT-116. While most chromosomes in GM12878 do not show 100-kb regions 

strongly enriched for H3K9me3 (Figures S3A and S3C), most chromosomes in HCT-116 

cells possess a bimodal distribution of H3K9me3 signal leading to H3K9me3-rich and -poor 

regions (Figure S3B), while chromosome 19 shows this bimodal distribution in both cell 

types (Figures S3E and S3F). In HCT-116, chromosomes 13 and 14 have distinct strong and 

weak H3K9me3 domains (Figures 2A and S3D). Comparing their correlations in the sorting 

of chromosome 14 by H3K9me3 shows that weak-H3K9me3 and strong-H3K9me3 regions 

correlate better with regions of similar strength (arrowheads in Figure 2C). This 

phenomenon, along with the varying correlation strength seen in the heatmaps obtained by 

sorting various features, suggests that compartmentalization is more accurately thought of as 

a quantitative rather than a categorical feature of the genome and that the classification of 

chromatin into categories is a simplification that neglects to consider the effects of varying 

epigenetic signal strengths in the formation of compartmental domains. Sorting by a single 

signal does not result in perfect compartmentalization because multiple, independent forces 

drive the process of compartmental domain formation and long-range interactions among 

domains of the same type. The most significant of these forces may be those involved in 

interactions between sequences containing H3K9me3 and proteins and histone modifications 

associated with active transcription. These observations suggest a model of 

compartmentalization in which the genome is organized by multiple independent forces 

directly correlated with chromatin features that attract and repel one another.
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Independent contributions of chromatin features can reproduce compartmental 
organization

We next sought to test the hypothesis that formation of compartmental domains and 

establishment of long-range interactions among domains of the same type is driven by the 

independent contributions of chromatin features. To approach this question, we created a 

regression-based machine learning model to reproduce Hi-C interaction maps using 

epigenetic features. This new simulation represents both a methodological and theoretical 

advance over our previous work (Rowley et al., 2017), which was optimized by manual 

adjustment, whereas the parameters of the current simulation are learned algorithmically. 

The results described above suggest that the presence of H3K27ac as an indicator of 

transcriptionally active regions, H3K27me3 and H3K9me3 as indicators of different types of 

silenced sequences, or the absence of these three modifications can account for all of the 

compartmental domains we observe in chromosomes of human cells. Other histone 

modifications or chromatin signals correlated with these compartmental domains can be 

used in place of these three particular chromatin features; however, these features correlated 

best with their respective compartments in our analysis (Figures S1A–S1C). To enable 

comparison across cell types and experiments, we binned these three epigenetic signals into 

quantiles at 100-kb resolution. For each normalized signal, an algorithm then learned an 

attraction-repulsion relationship for each pair of quantiles using a maximum likelihood 

estimation approach. This attraction-repulsion mapping effectively represents the average 

enrichment or depletion between all bins with the corresponding level of each chromatin 

feature. The estimated contact frequency in the simulated map is then derived by the simple 

addition of the estimated effect of each signal and multiplied by a distance-dependent 

constant representing the average interaction frequency at each genomic distance (Figure 

3A). This relatively straightforward model, which is only capable of representing the 

independent attractive and repulsive forces of each chromatin feature, tests to what extent 

this framework is capable of recapitulating the 3D organization of the genome represented 

by the compartmental domains and their interactions.

The averaged attraction-repulsion relationships learned from every chromosome of HCT-116 

cells are shown in Figure 3B. The learned relationship between the levels of a specific 

histone modification and the interaction frequency of the corresponding sequence is similar 

to that observed experimentally described above (Figures 2C–2E). Genomic regions 

containing high levels of a given histone modification show increased interactions with other 

regions high in the same modification. The model learns and predicts that pairs of regions in 

which one is high in such a signal and the other is low will not be attracted and have reduced 

interaction frequency. The minimal model using three histone modifications, H3K27ac, 

H3K27me3, and H3K9me3, is able to recapitulate most aspects of 3D genome organization 

while remaining easy to interpret. All three signals show a degree of attraction between the 

highest quantile bins, as seen by the enrichment in the bottom right of the attraction-

repulsion maps, as well as repulsion between the highest and lowest quantiles as seen by the 

depletion in the upper right and bottom left corners (Figure 3B). Importantly, the strength 

and nature of these maps differ significantly, indicating that the forces driving 

compartmentalization vary for each feature. H3K9me3 maps show a strong attraction among 

the most enriched quarter of the genome, which strongly repels the rest of the genome 

Nichols and Corces Page 10

Cell Rep. Author manuscript; available in PMC 2021 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



equally. This shows the existence of a single critical threshold of H3K9me3 density and 

quantity and reflects the generally bimodal distribution of this modification in HCT-116 

cells. H3K27ac, however, shows the greatest attraction among the highest quantiles with a 

more gradual reduction in attraction with reduced signal. H3K27me3 primarily shows only 

attraction between the highest quantiles of signal and otherwise contributes little to the 

organization of the genome. When interpreting this information, it is important to consider 

that the distributions of these three histone modifications are interrelated, and that regions of 

the genome lacking one of the modifications may contain one of the other two.

Simulations were generated at 100-kb resolution using the average of the attraction-

repulsion maps learned from every chromosome except the one being simulated. A 

comparison of observed and simulated maps reveals close agreement on the majority of 

large compartmental features (Figures 3C, 3D, S4A, and S4B). We quantified the accuracy 

of the model using the Pearson correlations between the observed and simulated maps after 

dividing by the average distance. Due to the power-law decay of interaction frequency with 

respect to distance in Hi-C maps, any simulation that accurately reproduces this decay will 

have a high correlation. As this would not represent the ability of the model to reproduce 

compartmental organization, we normalized for distance to eliminate the natural correlation 

driven by the accurate representation of the distance decay. Simulations of chromosomes 

using the average maps derived from all other chromosomes varied in correlation by 

chromosome, but generally performed well with correlations in the range of 0.5–0.7 (Figure 

S4C). Using this same methodology to compare biological replicates of a Hi-C experiment 

resulted in similar ranges of correlation scores across the chromosomes (Figure S4D). The 

fact that Hi-C maps can be predicted by only modeling the attraction and repulsion of 

chromatin features against themselves suggests a direct role of these features, or a chromatin 

component correlated with these features, in compartmentalizing the nucleus.

Conserved forces give rise to diverse genomic organizations

Given the accuracy of our model in reproducing the 3D organization of HCT-116 cells, we 

then applied the same model to GM12878 cells. These cells have different distribution of 

H3K9me3, and their 3D genome organization as seen in PCA enrichment analysis is also 

different (Figure 1C). We found that with the exception of H3K9me3, the average of the 

attraction-repulsion maps learned across all of the chromosomes in GM12878 were 

strikingly similar to those learned in HCT-116 (Figure 4A). The incongruence of H3K9me3 

attraction-repulsion maps between these cell types was expected as the distribution of 

H3K9me3 is very different between most of their chromosomes. We simulated the Hi-C 

interaction maps of GM12878 chromosomes using the average of the attraction-repulsion 

maps learned from all of the other chromosomes (Figures 4B, S5A, and S5B). However, 

simulating chromosome 19 in GM12878, which is unique compared to other chromosomes 

in these cells due to its large H3K9me3 domains, was less successful when using the 

attraction-repulsion maps learned from the rest of the chromosomes, with the simulation 

failing to capture the role of H3K9me3 in compartmentalization (Figure 4C). Pearson 

correlations between the real and simulated maps were significantly lower in GM12878 cells 

than in HCT-116, indicating that the simulation was less successful at reproducing the Hi-C 

maps in GM12878, most likely due to the absence of the strong organizing feature of 
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H3K9me3 (Figure S5C). Nevertheless, the similarity between the attraction-repulsion maps 

of these two cell types suggests that the fundamental forces underlying 

compartmentalization are largely conserved between these cells. If this is true, then the 

attraction-repulsion maps learned in one cell type should be able to accurately model the 

organization of another cell type, showing that dynamic compartmentalization is largely a 

consequence of diverging distributions of chromatin features.

To test this idea, we used the attraction-repulsion maps learned from HCT-116 chromosomes 

to simulate the 3D organization of GM12878 chromatin and found a high correspondence 

between the observed and simulated maps (Figures 4D and S5D–S5F). This is remarkable, 

given that the Hi-C interaction maps of most chromosomes between these cell types are very 

different. This ability of compartmental forces learned from one cell type to successfully 

predict compartmentalization in another indicates that the same underlying forces directly 

correlated with chromatin features are largely conserved between these two cell types. This 

is further support that the radical differences between the respective Hi-C maps of these cell 

lines are a consequence of different chromatin features, primarily the presence and absence 

of large H3K9me3-rich domains.

As the simulation of chromosome 19 of GM12878 cells using attraction-repulsion maps 

learned with the rest of the chromosomes is poor, we asked whether chromosome 19 would 

be better simulated by the attraction-repulsion relationships learned from HCT-116 than 

from GM12878. The histone modification profiles of chromosome 19 in GM12878 cells, 

particularly the presence of large H3K9me3 domains, more closely resemble the patterns 

seen in most chromosomes of HCT-116 cells (Figure 1G). The simulation of chromosome 

19 is significantly more accurate using HCT-116 attraction-repulsion maps (Figure 4E; 

compare with Figure 4C). In agreement, the Pearson correlations between the observed and 

simulated maps of chromosome 19 are higher when simulated with HCT-116 (Figure S5F). 

These results again support the idea that the 3D organization of chromosomes is a 

consequence of the distribution patterns of 1D epigenetic information.

Transcriptional activity and H3K9me3 also compartmentalize the Drosophila genome

Given the ability of our model to reproduce the 3D organization of multiple human cell 

types from a single universal set of attraction-repulsion maps, we sought to determine the 

applicability of this model outside of humans. Our previous foundational work showed that 

transcriptional activity was predictive of compartmental organization in multiple 

representative eukaryotic genomes (Rowley et al., 2017). We hypothesized that, as in 

humans, the same forces responsible for compartmental domain formation and the 

establishment of distinct nuclear compartments via interactions among compartmental 

domains with the same epigenetic features may be at work in other organisms. Thus, we 

applied our model to explore whether the distribution of H3K27ac, H3K27me3, and 

H3K9me3 could reproduce the 3D organization of the Drosophila genome.

Hi-C maps from Drosophila Kc cells using datasets with ~1 billion reads were simulated 

using the attraction-repulsion model. Due to the higher read count and smaller genome size, 

we were able to simulate the genome at 10-kb resolution. A small modification was made to 

the model to limit the simulation to <2 Mb, as Drosophila compartmental domains are 
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smaller than those of mammals and long-range interactions among domains decay rapidly 

beyond this distance. While distinct, the learned attraction-repulsion maps resemble those 

learned in human cells (Figure 5A). The model learns attraction between features with 

similar histone modifications and repulsion between genomic regions with dissimilar ones.

As Drosophila only has two autosomes of significant size, we simulated each chromosome 

with the attraction-repulsion maps of the other. The resulting simulations largely reproduce 

the compartmental patterning of these chromosomes (Figures 5B, 5C, and S6A). Moreover, 

high-resolution maps indicate that the simulation reproduces short-range interactions within 

compartmental domains. This indicates that, as in humans, these chromatin features or 

others strongly correlated with them drive the formation of compartmental domains and their 

interactions. These observations suggest a universal model of compartmentalization in which 

the fundamental underlying forces driving this process are conserved between organisms.

DISCUSSION

Interphase chromosomes of vertebrates are generally thought to be organized into large 

domains whose sequences can be in one of two states, active or inactive (Lieberman-Aiden 

et al., 2009). Within these large domains are smaller TADs (Dixon et al., 2012), some of 

which are flanked by CTCF sites in convergent orientation, and therefore correspond to 

CTCF loops formed by cohesin extrusion, whereas others lack CTCF at their boundaries and 

are thus formed by different, unknown mechanisms (Rao et al., 2014). Smaller domains 

called sub-TADs can also be observed within TADs (Phillips-Cremins et al., 2013). Results 

reported here address the question of what the unit of eukaryotic chromosome organization 

is and how we can explain its formation using known biochemical and biophysical forces 

operating in the nucleus. Answers to this question provided by chromosome conformation 

studies should account for results obtained using microscopy or biochemical approaches. 

However, results from Hi-C studies seem to contradict well-established concepts in nuclear 

biology. Non-transcribed regions of the genome do not simply interact with one another, as 

one would conclude from the checkerboard pattern observed in Hi-C heatmaps representing 

long-range interactions among sequences located in the B compartment. Rather, non-

transcribed regions in the genome contain either H3K27me3/PCR1/PCR2 or H3K9me3/

HP1, or lack either of these histone modifications. Immunofluorescence localization 

experiments show that Pc-containing regions interact with one another to form Pc bodies, 

both in Drosophila and mammals (Bantignies et al., 2011; Lanzuolo et al., 2007; Li et al., 

2011; Tolhuis et al., 2011). The same is true for regions containing H3K9me3 and HP1 that 

form chromocenters (Huang et al., 2010; Spierer et al., 2005) and actively transcribed 

regions to form transcription factories (Jackson et al., 1993; Mitchell and Fraser, 2008). 

Furthermore, recent results indicate that multivalent proteins present in these three types of 

genomic regions are able to form biomolecular condensates by liquid-liquid phase 

separation (Boehning et al., 2018; Larson et al., 2017; Strom et al., 2017; Tatavosian et al., 

2019). Therefore, compartmental domains and their interactions detected by Hi-C must be 

more complex than is generally assumed and this complexity must reflect existing 

observations from microscopy and biochemistry.
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The results presented here reveal an underappreciated diversity of compartmental domains, 

the conserved forces underlying their establishment, and the long-range interactions 

responsible for the formation of nuclear compartments. Multiple independent forces 

organize the genome into compartments. Transcriptional activity and H3K9me3 correlate 

with the strongest of these forces. H3K27me3, while weaker, also correlates directly with 

compartmental patterns. Finally, sequences lacking any of these histone modifications and 

enriched in H3K9me2 represent a fourth class of sequences that form their own independent 

compartment. The powerful nature of these chromatin features across cell types allows for 

dynamic compartmentalization during cell differentiation. While both transcriptional activity 

and H3K9me3 have been previously reported as highly correlated with the formation of 

nuclear compartments, here we show that each of the biochemical forces correlated with the 

presence of these histone modifications drives compartmentalization independently and can 

do so in the absence of the other (Falk et al., 2019; Lieberman-Aiden et al., 2009). Previous 

in-depth Hi-C analyses of GM12878 cells suggested a unique H3K9me3-correlated 

compartmentalization of chromosome 19 and categorized it as a subcompartment of inactive 

B chromatin (Rao et al., 2014). Here we show that this compartment, while unique in 

GM12878, is widespread in other cell lines and is the strongest compartmentalizing force 

wherever large domains of H3K9me3 are found. On chromosomes where large H3K9me3-

rich domains exist, the segregation between these domains and the rest of the H3K9me3-

poor chromosome represent the strongest feature of the Hi-C maps. As such, using PCA to 

delineate binary compartments on the Pearson correlation maps divides the genome into 

H3K9me3 rich and poor, rather than along the expected lines of transcriptional activity. The 

inclusion of H3K9me3-poor transcriptionally inactive regions into the A compartment 

defined by a binary segregation of PC1 in these cells leads to incompatible and confusing 

definitions of genomic compartments between cell lines and tissues.

While PCA is a powerful tool to investigate compartments, the PC1-based canonical binary 

classification of compartments is inadequate to represent the true compartmentalization of 

the genome. We suggest shifting away from naive unsupervised classification techniques in 

single cell lines to a categorization informed by the breadth of organizational diversity seen 

across human samples, which will improve the accuracy and generalizability of future 

studies. Our findings fit a model of compartmentalization where the attraction of similar 

chromatin states drives interactions among them to the exclusion of other chromatin types. 

The dependence of H3K9me3 compartmentalization in GM12878 cells on the levels of this 

modification, in which small, discrete peaks fail to strongly compartmentalize through most 

of the genome while large domains seen on chromosome 19 do, suggests the existence of a 

compartmentalization threshold. The forces driving compartmentalization must overcome 

the entropy of mixing in the nucleus and, therefore, some minimum quantity of 

compartmentalizing signal must exist below which the attractive forces at work are 

insufficient to overcome entropy. We propose that the distinctive patterns of H3K9me3 in 

GM12878 cells reflect this threshold where the discrete chromatin immunoprecipitation 

sequencing (ChIP-seq) peaks seen in most of the genome fail to strongly compartmentalize, 

while in the same nuclear environment, the larger domains present in chromosome 19 do. As 

further evidence of the quantity-dependent nature of compartmentalization, several 

chromosomes in HCT-116 cells possess both weak and strong H3K9me3 domains, which 
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correspondingly compartmentalize weakly and strongly. These findings suggest that 

compartmentalization is more accurately represented as a continuum, in which each 

sequence is driven to interact according to the strength, corresponding to the quantity, of 

chromatin forces driving it, rather than discrete chromatin types (Imakaev et al., 2012).

Our model provides insight into the fundamental mechanisms of genome 3D organization. 

That the compartmentalization of the genome can be predicted using only the distribution of 

a few histone modifications strongly implies that these chromatin features are either directly 

or indirectly responsible for the spatial separation of chromatin types in the genome. In our 

previous prediction algorithm, we used GRO-seq signal alone to perform simulations and 

predict 3D chromatin organization from 1D epigenetic information in Drosophila and human 

GM12878 cells. However, the existence of transcriptionally inactive regions with extremely 

divergent compartmental interaction patterns in HCT-116 cells could not be captured by 

GRO-seq alone, while H3K9me3 and H3K27me3, respectively, could explain this 

phenomenon. A GRO-seq-based approach performs reasonably well in reproducing the Hi-C 

maps of GM12878, but mischaracterizes inactive regions in HCT-116. Our finding that the 

patterns of attraction and repulsion are largely consistent between cell types with divergent 

compartments shows that these underlying forces behave consistently and that the 

fundamental forces shaping chromatin organization are steady between cells. These 

attraction-repulsion mappings do not provide direct insight into the physical nature of these 

forces as either attractive or repulsive because in our model any attraction between genomic 

regions is also a repulsion against all other regions and vice versa. The ability of the same 

model to reproduce the organization of Drosophila chromosomes suggests that the attraction 

and repulsion of chromatin by the independent contributions of compartmentalizing forces 

may be a universal driver of compartmentalization across Animalia. The widespread use of 

canonical A/B compartmentalization is largely a product of the pioneering work done in 

GM12878, but it does not reflect the epigenetic diversity of human cell types. Informing 

future analyses of compartments with this understanding and approaching compartmental 

organization from the perspective of chromatin state-driven attraction and repulsion will 

allow for reproducible and comparable definitions of compartments across human tissues 

and beyond to other organisms.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Dr. Victor G Corces 

(vgcorces@gmail.com).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The code generated during this study is hosted on GitHub: 

https://github.com/5centmike/CIFSIM/.

This study did not generate new unique datasets.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

No model organisms or subjects were used for the study. All data was obtained from other 

sources as described in the Key resources table.

METHOD DETAILS

ChIP-seq quantile normalization—Two replicates of each ChIP-seq data described in 

the Key resources table were combined in bigwig format and the fold-change over control 

was determined. 100 kb bins with no reads mapped in any ChIP-seq were excluded from 

analysis. The remaining bins were normalized into twenty discrete quantiles according to 

their signal compared genome-wide.

Hi-C quality control—Hi-C maps were generated from data obtained from Rao et al. 

(2014, 2017) using reads with quality score > Q30. Genomic bins were removed from the 

maps and all subsequent analyses according to several criteria calculated for each 

chromosome as follows. Bins removed from ChIP-seq quantiles were also removed from the 

Hi-C. Bins with a total read sum greater than 3 standard deviations above or less than 3 

standard deviations below the average bin read sum were dropped. Bins with non-zero 

interactions with bins with non-zero interactions greater than 3 standard deviations above or 

less than 3 standard deviations below the average bin were dropped.

Hi-C normalization and Pearson correlation—Hi-C maps were balanced using 

Knight-Ruiz normalization. For some analyses such as Pearson correlation, the Hi-C maps 

were distance-normalized by dividing each interaction by the average of all interactions at 

that distance. This produces an observed/expected value for all interaction bins. Pearson 

correlations of Hi-C maps were then generated from these distance normalized matrices.

Principal component analysis and compartment calls of Hi-C data—Principal 

Component Analysis was performed on the chromosome Pearson correlation maps. The first 

principal component (PC1) is defined as the eigenvector with the largest eigenvalue. All bins 

with positive values in PC1 were assigned to one compartment while all negative values 

were assigned to the other. The compartment with the largest enrichment for Gro-seq signal 

was defined as the A compartment and the other one as B.

k-means clustering of Hi-C data—To dissect the complex compartmentalization of the 

genome based on Hi-C information, we employed the unsupervised k-means clustering 

algorithm to identify clusters in GM12878 and HCT-116 cells. We used MiniBatchKMeans 

from scikit-learn’s machine learning library with varying numbers for k depending on the 

features of the given chromosome. Clustering was performed on the Pearson correlation 

maps of each chromosome separately and clusters were identified as A, B, C, or D by their 

enrichments for H3K27ac, H3K27me3, H3K9me3, and H3K9me2, respectively.

Compartmentalization by independent forces to simulate interaction maps—
To enable comparison across cell types and experiments, we first binned all epigenetic 

signals into quantiles at 100 kb resolution. For each normalized signal, the model learned, 

using a Maximum Likelihood Estimation approach, an attraction-repulsion relationship for 
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each pair of quantiles. This attraction-repulsion mapping effectively represents the average 

enrichment or depletion between all bins with the corresponding level of signal. The model 

then predicts the number of reads at each bin by summing the attraction-repulsion scores for 

each signal and multiplying by a constant distance factor to account for the power law decay 

of genomic interactions.

We model the compartmentalization of the genome as the independent contributions of 

individual 1D epigenetic signals and use a machine learning method, Maximum Likelihood 

Estimation, to learn the relationship between the signals and interaction frequencies in the 

Hi-C map. In this way we hope to quantify the nuclear forces driving compartmentalization. 

Our model treats each epigenetic signal as an independent but additive effect on Hi-C 

interaction frequency according to the equation:

Eij = 1 + H3K27acij + H3K27me3ij + H3K9me3ij

where the expected interaction frequency E between any two genomic loci i and j is the sum 

of the weight effect of each signal. Using Maximum Likelihood Estimation we find the 

optimal values of the weights of each signal such that the expected result E is as close to the 

observed value as possible. This produces a trained model that can reproduce the 3D 

organization of the genome from 1D epigenetic signals by quantifying the expected 

contributions of each correlated compartmentalizing force.

We use the Maximum Likelihood Estimation approach to optimize the values of a vector β 
where each entry in β corresponds to an entry in the attraction-repulsion maps such that for 

all possible pairs of quantiles for each of the three chromatin signals H3K27ac, H3K27me3, 

and H3K9me3, there is a corresponding weight in β. We then construct a sparse matrix X 

where each row corresponds to an interaction bin in the flattened Hi-C matrix and each 

column a weight in β. Each row in X is zeros except in the 3 columns corresponding to the 

entries in β that describe the pair of signal quantiles of genomic bins. If we take an observed 

Hi-C map which has been normalized for distance by dividing by the expected value at each 

distance, which we term y, the approximation of the model of the normalized observed map 

is then:

y = 1 + X β

Treating the normalized interaction frequency as a normal distribution we derive a likelihood 

function the log of which we will maximize to optimize the weights of β in a Maximum 

Likelihood Estimation approach:

β = argmax − ∑
i = 1

N
yi − 1 + Xiβ

2

where N is the total number of unique interacting bins in the linearized Hi-C matrix 

excluding interactions of each genomic bin with itself. To optimize the parameters of β we 

iteratively solve starting with initial values of 0 for all weights in β. We use the Newton-
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Raphson method to update the weights by gradient descent. With each iteration we account 

for one final feature of the Hi-C matrix. Due to the colocalization of compartmentalizing 

features along the chromosome, the frequency of intra-compartmental interactions is 

enriched at short ranges. Two genomic bins within one Mb are more likely to be enriched for 

compartmental interactions than two bins many Mb apart. This bias leads to aberrant 

distance normalization and, thus the distance normalization is updated after each iteration to 

account for the average compartmental enrichment the model predicts at each distance. The 

distance normalization is divided by the average enrichment so that it more accurately 

reflects the true effect of distance on interaction frequency.

Simulation of Drosophila Hi-C data—Drosophila Hi-C data was obtained from 

Cubeñas-Potts et al. (2017). The simulation of Drosophila Hi-C data works identically to the 

simulation described above for human data except for a limit on the maximum size of bins 

that are considered for the analysis. We excluded all interaction bins further than 2 Mb apart 

as the compartmental signal beyond this distance is substantially weaker.

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulations were generated at 100 kb resolution using the average of the attraction-repulsion 

maps learned from every chromosome except the one being simulated. We quantified the 

accuracy of the model using the Pearson correlations between the observed and simulated 

maps. Due to the power law decay of interaction frequency with respect to distance in Hi-C 

maps, any simulation that accurately reproduces this decay will have an extremely high 

correlation. As this would not represent the accuracy with which the model reproduces the 

compartmental organization, we normalized for distance by performing a Z-norm of each 

diagonal in the matrix to eliminate the natural correlation driven by the accurate 

representation of the distance decay. We report both the Pearson correlation coefficient and 

the Z-normed Pearson correlation coefficient between the simulations and the observed 

maps in the supplemental figures associated with each simulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human cells have at least three distinct compartments: one active and two 

inactive

• Compartments correlate with the presence of H3K27ac, H3K27me3, or 

H3K9me3

• Compartmentalization principles differ between chromosomes of the same 

cell

• Compartments are predictable from one-dimensional epigenetic information
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Figure 1. GM12878 and HCT-116 cells show different compartmental patterns
Pearson correlations of distance-normalized Hi-C interaction frequency maps corresponding 

to various chromosome regions in GM12878 and HCT-116 cells. On top of each Hi-C map 

from top to bottom: fold change over control shown for H3K27ac (red), H3K27me3 (blue), 

and H3K9me3 (green); PC1 component from PCA (black), and k-means cluster 

classifications corresponding to compartments A (red), B (blue), C (green), and D (black).

(A) Chromosome 4 from GM12878 cells.

(B) Chromosome 4 from HCT-116 cells.

(C) Fold enrichment of each histone modification within each compartment defined by PCA 

in chromosome 4 from GM12878 and HCT-116 cells.

(D) Fold-enrichment of each histone modification within each compartment defined by k-

means clustering on chromosome 4 from GM12878 and HCT-116 cells.

(E) Region spanning 65–95 Mb of chromosome 4 from GM12878 cells.
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(F) Region spanning 65–95 Mb of chromosome 4 from HCT-116 cells.

(G) Fold enrichment of each histone modification within each compartment defined by PCA 

on the region spanning 65–95 Mb of chromosome 4 from GM12878 and HCT-116 cells.

(H) Fold enrichment of each histone modification within each compartment defined by k-

means clustering on the region spanning 65–95 Mb of chromosome 4 from GM12878 and 

HCT-116 cells.

(I) Chromosome 19 from GM12878 cells.

(J) Chromosome 19 from HCT-116 cells.

(K) Fold enrichment of each histone modification within each compartment defined by PCA 

on chromosome 19 from GM12878 and HCT-116 cells.

(L) Fold enrichment of each histone modification within each compartment defined by k-

means clustering on chromosome 19 from GM12878 and HCT-116 cells.
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Figure 2. Results from sorting sequences from chromosome 14 of HCT-116 cells based on the 
magnitude of PC1 and the levels of various histone modifications
Pearson correlations of distance-normalized Hi-C interaction frequency map of chromosome 

14 from HCT-116 cells. Shown above each Hi-C map from top to bottom are the following: 

fold change over control for H3K27ac (red), H3K27me3 (blue), and H3K9me3 (green); PC1 

(black), and k-means cluster classifications A (red), B (blue), and C (green).

(A) Interactions among sequences from chromosome 14 arranged in natural order.

(B) Interactions among sequences from chromosome 14 sorted according to PC1 values 

from lowest to highest.

(C) Interactions among sequences from chromosome 14 sorted according to H3K9me3 

levels from lowest to highest.

(D) Interactions among sequences from chromosome 14 sorted according to H3K27ac levels 

from lowest to highest.

(E) Interactions among sequences from chromosome 14 sorted according to H3K27me3 

levels from lowest to highest.
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Figure 3. Histone modifications can predict compartmentalization using learned attraction-
repulsion relationships
(A) Log(observed/expected) of Hi-C interaction maps showing the 65- to 95-Mb region of 

chromosome 4 from HCT-116 cells. Bottom left triangles are observed Hi-C interaction 

maps, while upper right triangles are simulations using only the components shown above as 

tracks. From left to right H3K27ac (red), H3K27me3 (blue), H3K9me3 (green), and all 3 

combined.

(B) Average of attraction-repulsion relationship maps learned by maximum likelihood 

estimation from every chromosome of HCT-116 cells.

(C) Comparison of HCT-116 chromosome 8 logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts.
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(D) Comparison of HCT-116 chromosome 19 logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts.
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Figure 4. Attraction-repulsion relationships are consistent across cell types
(A) Average of attraction-repulsion relationship maps learned by maximum likelihood 

estimation from every chromosome of GM12878 cells.

(B) Comparison of GM12878 chromosome 8-logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts using attraction-repulsion maps learned from 

GM12878.

(C) Comparison of GM12878 chromosome 19-logged Hi-C interaction maps. The bottom 

left below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts using attraction-repulsion maps learned from 

GM12878.

(D) Comparison of GM12878 chromosome 8-logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 
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diagonal represents simulated contacts using attraction-repulsion maps learned from 

HCT-116.

(E) Comparison of GM12878 chromosome 19-logged Hi-C interaction maps. The bottom 

left below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts using attraction-repulsion maps learned from 

HCT-116.
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Figure 5. Attraction-repulsion relationships explain compartmentalization in Drosophila
(A) Average of attraction-repulsion relationship maps learned by maximum likelihood 

estimation from chromosomes 2 and 3 of Kc167 cells.

(B) Comparison of Kc167 chromosome 2-logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts using attraction-repulsion maps learned from 

chromosome 3 of Kc167 cells.

(C) Comparison of Kc167 chromosome 3-logged Hi-C interaction maps. The bottom left 

below the diagonal corresponds to observed interactions and the upper right above the 

diagonal represents simulated contacts using attraction-repulsion maps learned from 

chromosome 2 of Kc167 cells.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GM12878 Gro-seq Core et al., 2014 GSE60454

GM12878 H3K27ac ChIP-seq ENCODE Project Consortium, 2012 ENCFF180LKW

GM12878 H3K27me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF594HSG

GM12878 H3K36me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF662QFK

GM12878 H3K4me1 ChIP-seq ENCODE Project Consortium, 2012 ENCFF682WPF

GM12878 H3K4me2 ChIP-seq ENCODE Project Consortium, 2012 ENCFF828CQV

GM12878 H3K4me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF674QZB

GM12878 H3K4me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF818GNV

GM12878 H3K79me2 ChIP-seq ENCODE Project Consortium, 2012 ENCFF396JIR

GM12878 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF776OVW

GM12878 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF846MPX

GM12878 H4K20me1 ChIP-seq ENCODE Project Consortium, 2012 ENCFF831WYD

HCT-116 GRO-seq Andrysik et al., 2017 GSE86165

IMR90 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF272ZUB

Kc167 H3K27ac ChIP-seq Yang et al., 2013 GSE36374

Kc167 H3K27me3 ChIP-seq Rowley et al., 2017 GSE89244

HCT-116 H3K27ac ChIP-seq ENCODE Project Consortium, 2012 ENCFF225QAB

HCT-116 H3K27me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF030SYQ

HCT-116 H3K36me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF062CBC

HCT-116 H3K4me2 ChIP-seq ENCODE Project Consortium, 2012 ENCFF563OKQ

HCT-116 H3K4me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF057GFU

HCT-116 H3K4me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF859AQD

HCT-116 H3K79me2 ChIP-seq ENCODE Project Consortium, 2012 ENCFF127XQD

HCT-116 H3K9me2 ChIP-seq ENCODE Project Consortium, 2012 ENCFF854QMM

HCT-116 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF402WZH

HCT-116 H4K20me1 ChIP-seq ENCODE Project Consortium, 2012 ENCFF355TAA

HCT-116 H3K4me1 ChIP-seq ENCODE Project Consortium, 2012 ENCFF285DIL

IMR90 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF272ZUB

K562 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF834YLI

Kc167 H3K9me3 ChIP-seq Rowley et al., 2017 GSE89244

Primary B cell H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF740QXN

H9 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF108MOZ

HCT-116 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF402WZH

Hepatocyte H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF354EPR

HepG2 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF881LOL

IMR90 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF272ZUB

K562 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF834YLI

Keratinocyte H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF242SAO

Liver H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF552IQT
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REAGENT or RESOURCE SOURCE IDENTIFIER

Neutrophil H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF202TBY

Osteoblast H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF598YQV

PBMC1 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF319EBK

Stomach5 H3K9me3 ChIP-seq ENCODE Project Consortium, 2012 ENCFF995YEN

GM12878 Hi-C Rao et al., 2014 GSE63525

HCT-116 Hi-C Rao et al., 2017 GSE104333

Kc167 Hi-C Cubeñas-Potts et al., 2017 GSE80702

Software and algorithms

seaborn Seaborn, 2020 https://seaborn.pydata.org/

scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/

numpy Oliphant, 2006 https://numpy.org

scipy Virtanen et al., 2020 https://www.scipy.org/

pandas McKinney, 2010 https://pandas.pydata.org

matplotlib Hunter, 2007 https://matplotlib.org

Juicebox Durand et al., 2016 https://www.aidenlab.org/juicebox/

CIFSIM This paper https://github.com/5centmike/CIFSIM
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