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Abstract

Purpose

To test the genetic association between Japanese patients with primary open-angle glau-

coma (POAG) and the previously reported POAG susceptibility loci and to perform geno-

type–phenotype analysis.

Methods

Genetic associations for 27 SNPs from 16 loci previously linked to POAG were assessed

using genome-wide SNP data of the primary cohort (565 Japanese POAG patients and

1,104 controls). Reproducibility of the assessment was tested in 607 POAG cases and

455 controls (second cohort) with a targeted genotyping approach. For POAG-associated

variants, a genotype–phenotype correlation study (additive, dominant, recessive model)

was performed using the objective clinical data derived from 598 eyes of 598 POAG

patients.
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Results

Among 27 SNPs from 16 loci previously linked to POAG, genotypes for total of 20 SNPs in

13 loci were available for targeted association study. Among 8 SNPs in 3 loci that showed at

least nominal association (P < 5.00E-02) in the primary cohort, a representative SNP for

each loci (rs2157719 for CDKN2B-AS1, rs33912345 for SIX6, and rs9913911 for GAS7)

were selected. For these SNPs the association was found significant in both the second

cohort analysis and meta-analysis. The genotype–phenotype analysis revealed significant

correlations between CDKN2B-AS1 (rs2157719) and decreased intraocular pressure

(β = -6.89 mmHg, P = 1.70E-04; dominant model) after multiple corrections. In addition,

nominal correlation was observed between CDKN2B-AS1 (rs2157719) and optic nerve

head blood flow (β = -0.54 and -0.67 arbitrary units (AU), P = 2.00E-02 and 1.39E-02),

between SIX6 (rs33912345) and decreased total peripapillary retinal nerve fiber layer thick-

ness (β = -2.16 and -2.82 μm, P = 4.68E-02 and 2.40E-02, additive and recessive model,

respectively) and increased optic nerve head blood flow (β = 0.44 AU, P = 2.20E-02; addi-

tive model) and between GAS7 (rs9913911) and increased cup volume (β = 0.03 mm3,

P = 4.60E-02) and mean cup depth (β = 0.03 mm3, P = 4.11E-02; additive model) and

decreased pattern standard deviation (β = -0.87 dB, P = 2.44E-02; dominant model).

Conclusion

The association between SNPs near GAS7 and POAG was found in Japanese patients for

the first time. Clinical characterization of the risk variants is an important step toward under-

standing the pathology of the disease and optimizing treatment of patients with POAG.

Introduction

Glaucoma, one of the leading causes of blindness worldwide, is a neurodegenerative optic neu-

ropathy that leads to irreversible visual field damage.[1] It is characterized by morphological

changes in the optic nerve head caused by progressive loss of retinal ganglion cells (RGCs) and

their axonal projections, which results in thinning of the retinal nerve fiber layer (RNFL) and

enlargement of the optic nerve cup, the concave depression at the optic nerve head. As a conse-

quence, patients have a progressive decrease in visual field sensitivity. Primary open angle

glaucoma (POAG), the most common form of the disease, is considered to have multifactorial

etiologies, which include elevated intraocular pressure (IOP), systemic or ocular blood flow

abnormalities, older age, myopia and oxidative stress.[2–5]

Family history is also a well-known risk factor for POAG. First-degree relatives of patients

have a three- to nine-fold higher risk of disease development compared with the general popu-

lation.[6,7] This indicates that genetic components play important roles in the pathogenesis of

POAG. Recent progress in genome-wide association studies (GWASs) has uncovered at least

16 susceptibility loci for POAG, although most investigations were performed in cohorts of

Caucasian ancestry.[8–12] Several GWASs targeting POAG in Asians have been reported.[13–

19] These studies have uncovered a few disease-associated loci, including those near ABCA1,

PMM2 and CDC7/TGFBR3.[18,19] In Japan, a few GWASs have shown variable results.[13–

17] Only the susceptibility loci at 9p21 (near CDKN2B-AS1) and 14q23 (near SIX6) appear to

be reproducible so far. Moreover, risk variants in 3 disease loci near FOXC1, ATXN2 and
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TXNRD2 recently identified [12] have never been assessed by a targeted association study and

the landscape of genetic factors influencing POAG in the Japanese population remain elusive.

Despite the rapid developments in the discovery of risk loci and alleles in patients with

POAG, clinical characterization of the identified loci is at a preliminary stage. This is partly

because the relatively low contribution of each locus to the disease (odds ratios typically range

from 1.1 to 2.0) is expected to result in subtle clinical changes unique to the disease-associated

single nucleotide polymorphisms (SNPs). For this reason, genotype–phenotype correlation

often requires clinical data from a large number of patients. Furthermore, due to the variability

in the clinical characterization of a given patient between ophthalmologists and particularly

between clinics, genotype–phenotype correlation using clinical data from different clinics is

complicated. Nevertheless, multicenter studies have revealed associations between risk alleles

near CDKN2B-AS1 loci and vertical cup-to-disk ratio and decrease in IOP in Caucasian

patients[20,21] and between a risk variant near SIX6 and peripapillary RNFL thickness in

European and Chinese Singaporean patients.[22–24]

The aim of this study was test for association between POAG and the disease-associated

loci in the Japanese population and to assess the genotype–phenotype correlations between

risk variants and clinical features of the disease.

Materials and methods

Study subjects

The study protocol followed the tenets of the Declaration of Helsinki and was approved by the

Institutional Review Board of the Tohoku Graduate School of Medicine. All participants

signed a written consent form following an explanation of the nature and possible conse-

quences of the study. All participants in this study were at the age of 35 years or older and of

Japanese residents. The experimental design, which comprises three-step analyses, is outlined

in Fig 1.

All of the subjects with POAG were diagnosed by glaucoma specialists and fulfilled the fol-

lowing diagnostic criteria: presence of glaucomatous optic disk changes, including neuroret-

inal rim thinning, notching, or cupping; presence of visual field defect that could be attributed

to the optic disk changes; and no history of secondary, angle closure, or congenital glaucoma.

For the first step, all the POAG patients were recruited at the Institutes related to Tohoku Uni-

versity. The control subjects recruited at the Tohoku Medical Megabank Organization as a

part of prospective cohort study were considered to have no POAG based on self-report. [27]

In the replication study, the POAG patients were recruited by the members of Tohoku Univer-

sity and the Japan Glaucoma Society Omics Group (JGS-OG), whereas the control subjects

were recruited at the Institutes related to Tohoku University. The outline of the case and the

control subjects are summarized in S1 Table.

Genotyping

Japonica array (Toshiba, Tokyo, Japan) is a custom-designed array optimized for the Japanese

population based on the information from the reference panel from 1,070 Japanese.[25,26]

Genome-wide genotype data set was obtained using this SNP array for 602 patients with

POAG according to the manufacturer’s instructions. Thirty-seven case samples that did not

satisfy the quality control criteria (DishQC > 0.82 and call rates > 0.970) were excluded, thus

resulting in a dataset comprising 565 cases. As a control, genotype data from 1,104 healthy sub-

jects collected previously through a prospective cohort study [27] were used. Both cases and

controls were genotyped using the same array at the same time.
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SNP quality control was applied for the imputation procedure. We used info score using

IMPUTE2, and considered a SNP with info score great than 0.9 as an acceptable well-imputed

variant in this study. Autosomal SNPs that were assigned to ‘Recommended’ by the Ps_Classi-

fication program in the SNPolisher package (Affymetrix) were selected. We applied the follow-

ing thresholds for quality control in further data cleaning: Hardy–Weinberg equilibrium with

a P value<1.00E-04 for control samples, call rate for each SNP> 0.990, and minor allele fre-

quencies <5.00E-02. As a result, a total of 557,352 SNPs on autosomal chromosomes passed

the quality control filters and were used for whole genome imputation. Prephasing was first

conducted with these SNPs by SHAPEIT (v2.r644) with options—burn 10,—prune 10, and—

Fig 1. Design of the study. The study comprised 3 steps. In the first step, an association study of known POAG-related loci

was carried out using the genome-wide SNP data from SNP array (cases) and a previous genetic study (control).[25–27] In the

second step, 3 candidate risk SNPs were genotyped in the cases and controls to test for the reproducibility. Then a clinical

correlation study was performed in the third step. SNP, single nucleotide polymorphism; POAG, primary open-angle glaucoma,

HFA, Humphrey Field Analyzer, RNFL, retinal nerve fiber layer thickness, OCT, optical coherence tomography, SFC,

stereoscopic fundus camera, LSFG, laser speckle flowgraphy.

https://doi.org/10.1371/journal.pone.0186678.g001
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main 25. Genotype imputation was performed on the phased genotypes with IMPUTE2 (ver.

2.3.1) by using a phased reference panel of 1,070 healthy Japanese individuals (1KJPN panel).

For IMPUTE2, the following options were used: -Ne 20000, -k_hap 1000, and -k 120.

Targeted genotyping of 3 SNPs in the second cohort was carried out by the TaqMan assay

(Applied Biosystems, Carlsbad, CA, USA) and 7500 Fast Real-Time PCR systems (Applied

Biosystems, Foster City, CA, USA). The call rate was over 0.990 in all of the three SNPs and

was therefore considered informative.

Clinical assessment

To determine the clinical features associated with the risk variants for the disease, standardized

clinical data obtained from 598 eyes of 598 patients with POAG (patients with sufficient

clinical data in the primary and second cohorts were combined) seen at Tohoku University

Hospital were analyzed. The details of the clinical data extracted for the genotype–phenotype

correlation study are as follows. The highest recorded IOP measured with Goldman applana-

tion, together with central corneal thickness with the use of anterior segment optical coherence

tomography (OCT) (CASIA, Tomey Cooperation, Nagoya, Japan). The mean deviation and

pattern standard deviation were assessed with the 24–2 test program of a Humphrey Field

Analyzer (Carl Zeiss Meditec, Dublin, CA), and the worse eye from each of the subject was

used for the analysis. Peripapillary RNFL thickness was measured by OCT (3D OCT 2000,

Topcon, Tokyo, Japan) together with axial length (IOLMaster, Carl Zeiss, Oberkochen, Ger-

many). Images with image quality >60 were used for the analysis in accordance with our

previous investigation. [28] To assess the morphology of the optic nerve head, data from ste-

reoscopic fundus camera photographs (nonmyd WX, Kowa Company, Nagoya, Japan) were

analyzed with built-in software. The principles of stereoscopic photography have been

described in detail previously. [29] The parameters reflecting optic nerve head morphology

assessed in this study included vertical cup-disk ratio, cup volume, mean cup depth, and maxi-

mum cup depth. Optic nerve head blood flow was measured with laser speckle flowgraphy

(LSFG, LSFG-NAVI, Softcare Co., Fukutsu, Japan). The principles of LSFG have been

described in detail previously.[30,31] We used built-in software that accompanies the

LSFG-NAVI device to calculate mean blur rate (MBR), a relative index of blood flow that is

expressed in arbitrary units (AU). This study focused on MBR in the tissue area, since a previ-

ous investigation had shown that this measurement can be used reliably for intergroup com-

parisons. [32]

Statistical analysis

For the primary screening step, logistic regression analysis was applied to imputed SNPs with

age and sex as covariates. For the analysis of selected POAG-associated SNPs, Fisher’s exact

test was used to compare the frequency of each SNP between cases and controls in the replica-

tion study. The inverse variance weighted method was used for meta-analysis. We performed

power calculations for POAG associations using the CaTS Genetic Power Calculator (http://

www.sph.umich.edu/csg/abecasis/CaTS/index.html). In Step 2, the study had greater than 80%

power to detect an association at an alpha level of 1.66E-02 (0.05 / 3) between POAG and

SNPs in CDKN2B-AS1, SIX6 and GAS7 assuming an OR of 1.61, 1.42, 1.21 respectively,

(extrapolated from Step 1) and additive genetic model.

Tests for heterogeneity to assess consistency across the primary and replication analyses

were performed with Cochran’s Q test. An allele–dosage regression model was applied for

genotype–phenotype correlation. Since genotypes for the selected three variants were all

obtained with direct genotyping, we assumed additive/dominant/recessive genetic models
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where the dosage of the SNP was a variable ranging between 0, 1, 2/ 0, 1, 1 / 0, 0, 1 represent-

ing the number of copies of the risk allele carried (the T allele of rs2157719, C allele of

rs33912345, and A allele of rs9913911). The analysis for highest recorded IOP was adjusted

for age, sex, and central corneal thickness. IOP was adjusted for central corneal thickness

because it can influence the readout. [33] The parameters for the Humphrey Field Analyzer,

related to optic disk morphology, including vertical cup-disk ratio, cup volume, mean cup

depth, and maximum cup depth, and optic nerve head blood flow were adjusted for age, sex,

highest recorded IOP as previously reported.[34] Peripapillary RNFL thickness was adjusted

for age, sex, and axial length.[23] The nominal significance level was set at P value < 5.00E-

02 for each step. Bonferroni corrected P value was adopted taking multiple testing into con-

sideration (Pcorrected). The difference was considered significant at Pcorrected < 2.50E-03

(0.05/20 SNPs) for the first step of the case-control genetic analysis and the meta-analysis,

Pcorrected < 1.67E-02 (0.05/3 SNPs) for the second step of the case-control genetic analysis,

and Pcorrected < 4.27E-04 (0.05/[3SNPs × 13 covariates × 3 genetic models]) for the geno-

type-phenotype analysis. The data were analyzed with R version 3.2.3.

Results

This study included a total of 1,172 patients with POAG and 1,559 healthy controls. DNA sam-

ples from the participants were collected by the members of Tohoku University Hospital, the

Tohoku Medical Megabank Organization, and the JGS-OG. All participants in this study were

of Japanese residents. The demographic characteristics of the study populations for the pri-

mary and the replication analysis are shown in Table 1.

Targeted analysis of previously reported POAG-associated SNPs

Initially, we focus on the targeted association study of 27 SNPs in 16 loci previously linked to

POAG. All disease-associated loci were discovered originally in non-Japanese POAG cohorts,

and only two of them have been convincingly reproduced in Japanese patients.[15–17] More-

over, risk variants in 3 disease loci recently identified [12] have never been assessed by a tar-

geted association study. Among the 27 reported SNPs, the array contained 20 SNPs in 13 loci

for which genotype data was available (S2 Table). Among them, data for 13 SNPs were

obtained with direct genotyping and 7 SNPs were imputed at info score >0.9. Through the

comparison between cases and controls, 2 SNPs in CDKN2B-AS1 and SIX6 loci showed

Table 1. Demographic characteristics of the study population for the primary and replication cohorts.

Cases Controls

Primary cohorts Genotyping Array and imputation Array and imputation

N 565 1,104

Age (yr) 64.5 ± 11.7 59.7 ± 14.1

Age range 35–94 35–88

% female 44.4 51.1

Replication cohorts Genotyping TaqMan assay TaqMan assay

N 607 455

Age (yr) 66.3 ± 13.6 74.8 ± 7.8

Age range 35–89 60–94

% female 50.4 59.3

Combined N 1,172 1,559

Data are expressed as mean ± standard deviation. N: number of subjects.

https://doi.org/10.1371/journal.pone.0186678.t001
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significant correlation with POAG after multiple testing corrections (Pcorrected < 2.50E-03). In

addition, 6 SNPs in 3 loci (CDKN2BAS-1, SIX6, and GAS7) showed nominal association

(P< 5.00E-02). The single SNP with the lowest P value in each locus, except for the SIX6 locus,

was then selected for the downstream analysis. For the SIX6 locus, two SNPs (rs33912345 and

rs10483727) had a P value < 5.00E-02. We selected rs33912345 (P = 1.67E-04) for the replica-

tion study, because rs339122345 was found to alter the protein function of SIX6. [35] On the

other hand, rs10483727, with a lower P value (P = 1.35E-04), was located in an intergenic

region between SIX1 and SIX6, with an unknown effect on these genes. As a result, three SNPs

in three genes (rs2157719 near CDKN2BAS-1, rs33912345 near SIX6, and rs9913911 near

GAS7) were assessed further. These three SNPs were genotyped in independent replication

cohorts comprising 607 cases and 455 controls, all from Japan. The case–control comparison

found significant associations between POAG and SNPs near CDKN2B-AS1 (P = 7.38E-05),

SIX6 (P = 7.20E-03), and GAS7 (P = 1.47E-02; Table 2), taking multiple testings into consider-

ation (Pcorrected < 1.67E-02). When the data from the primary and the replication cohorts were

combined and reanalyzed (Cochran’s Q test for heterogeneity, P = 0.701–0.871), increased sig-

nificance levels were observed for SNPs near CDKN2B-AS1 (P = 5.78E-09), SIX6 (P = 4.33E-

06) and GAS7 (P = 3.32E-04), which surpassed the significance level after correcting for multi-

ple testings (Pcorrected < 2.50E-03).

Clinical characterization of risk variants near CDKN2B-AS1, SIX6 and

GAS7

Next, a genotype–phenotype correlation study was performed to determine the clinical fea-

tures associated with the risk variants near CDKN2B-AS1, SIX6 and GAS7 that were found to

Table 2. Summary of SNPs found to be associated with POAG by a targeted genotyping approach.

SNP ID rs2157719 rs33912345 rs9913911

Risk allele (T) (C) (A)

Nearest gene CDKN2B-AS1 SIX6 GAS7

Function intronic missense Intronic

Chr 9 14 17

Position (hg19, bp) 22,033,366 60,976,537 10,031,183

Primary cohorts

Frequency 0.893/0.838 0.832/0.772 0.443/0.396

P 1.42E-05 1.67E-04 9.33E-03

OR (95% CI) 1.61 (1.29–2.00) 1.42 (1.18–1.71) 1.21 (1.05–1.40)

Replication cohorts

Frequency 0.888/0.828 0.820/0.772 0.449/0.395

P 7.38E-05 7.20E-03 1.47E-02

OR (95% CI) 1.65 (1.28–2.14) 1.34 (1.08–1.67) 1.24 (1.04–1.48)

Meta-analysis

P 5.78E-09 4.33E-06 3.32E-04

OR (95% CI) 1.63 (1.38–1.92) 1.38 (1.20–1.59) 1.22 (1.09–1.37)

Phet 0.871 0.701 0.828

Significance level was set at Pcorrected < 2.50E-03 (0.05/20 SNPs) for the first step and the meta-analysis and at Pcorrected < 1.67E-02 (0.05/3 SNPs) for the

second step after Bonferroni correction. Bold texts indicate values with a statistically significant difference after the correction. Chr, chromosome; bp, base

pair; Frequency, frequency of risk alleles for each case and control; OR, odds ratio; CI, confidence interval; Phet, P value of heterogeneity by Cochran’s Q

test.

https://doi.org/10.1371/journal.pone.0186678.t002
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be correlated with POAG in Japanese patients. Clinical data from 598 eyes of 598 patients with

POAG seen at Tohoku University Hospital (from both the primary and the replication

cohorts), which were obtained in identical clinical settings, were analyzed. The clinical back-

ground of the patients and the profile of the parameters assessed are summarized in Table 3.

Nine quantitative traits were selected for the genotype–phenotype correlation analysis and the

multivariate regression model was applied. These included the highest recorded IOP, parame-

ters reflecting visual field sensitivity measured with the Humphrey Field Analyzer (mean devi-

ation and pattern standard deviation), RNFL thickness obtained by OCT, parameters of optic

disk morphology measured by stereoscopic fundus camera and optic nerve head blood flow

measured by LSFG. The results of the correlation analysis are presented in Table 4.

The presence of each POAG risk allele near CDKN2BAS-1 (rs2157719) was associated with

a decrease in IOP of 6.89 mmHg (P = 1.70E-04; dominant model). No association was found

between the other two variants and IOP. The presence of the risk allele in rs33912345 near

SIX6 was nominally associated with a decrease in total peripapillary RNFL thickness of

2.16 μm (P = 4.68E-02; additive) and 2.82 μm (P = 2.40E-02; recessive). When the peripapillary

RNFL was further divided into superior, inferior, nasal and temporal quadrants and assessed

separately, the risk allele was nominally associated with a decrease in thickness of 4.11 μm

(P = 1.33E-02; additive) and 4.69 μm (P = 1.40E-02; recessive) superiorly and 3.88 μm inferi-

orly (P = 3.91E-02; recessive), but not in other quadrants. A nominal association between

parameters reflecting optic nerve head morphology and the risk allele near GAS7 (rs9913911)

was observed. Each risk allele near GAS7 was possibly linked to an increase in cup volume of

3.00E-02 mm3 (P = 4.60E-02; additive) and mean cup depth of 3.00E-02 mm3 (P = 4.11E-02;

additive). The presence of the risk allele in rs2157719 near CDKN2B-AS1 was nominally asso-

ciated with a decrease in optic nerve head blood flow of 0.54 AU (P = 2.00E-02; additive) and

0.67 AU (P = 1.39E-02; recessive). The risk allele in rs33912345 near SIX6 was nominally

Table 3. Clinical demographics of patients in the genotype–phenotype correlation study.

Age (yr) 64.1 ± 11.7

Sex (male:female) 264:334

Axial length (mm) 25.2 ± 1.7

Central corneal thickness (μm) 512 ± 36

Highest recorded IOP (mm Hg) 18.3 ± 5.9

Humphrey Field Analyzer parameters

: mean deviation (dB) −13.4 ± 8.63

: pattern standard deviation (dB) 9.62 ± 3.78

Peripapillary RNFL thickness

: total (μm) 79.3 ± 14.0

: superior (μm) 90.2 ± 21.6

: temporal (μm) 70.4 ± 17.0

: inferior (μm) 81.2 ± 20.9

: nasal (μm) 75.1 ± 15.7

Vertical cup-to-disk ratio 0.842 ± 0.075

Cup volume (mm3) 0.340 ± 0.261

Mean cup depth (mm) 0.231 ± 0.238

Maximum cup depth (mm) 0.592 ± 0.535

Optic nerve head blood flow (AU) 9.00 ± 2.37

AU, arbitrary units; IOP, intraocular pressure; RNFL, retinal nerve fiber layer.

https://doi.org/10.1371/journal.pone.0186678.t003
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Table 4. Association between genetic variants and clinical parameters.

rs2157719 near CDKN2B-AS1 (N = 598)

Additive model Dominant model Recessive model

Variable P value P value P value

Highest recorded IOP (N = 597) 5.77E-03 (-1.59 ± 0.57)* 1.70E-04 (-6.89±1.82)* 0.06

HFA parameters

: mean deviation (N = 597) 0.95 0.75 0.96

: pattern standard deviation (N = 597) 0.42 0.95 0.35

Peripapillary RNFL thickness

: total (N = 574) 0.17 0.29 0.23

: superior (N = 574) 0.13 0.85 0.09

: temporal (N = 574) 0.08 0.23 0.12

: inferior (N = 574) 0.47 0.32 0.62

: nasal (N = 574) 0.95 0.37 0.71

Vertical cup-to-disk ratio (N = 451) 0.66 0.54 0.76

Cup volume (N = 451) 0.95 0.84 0.89

Mean cup depth (N = 451) 0.36 0.69 0.37

Maximum cup depth (N = 451) 0.30 0.44 0.36

ONH blood flow (N = 503) 2.00E-02 (-0.54±0.23)* 0.60 1.39E-02 (-0.67±0.27)*

rs33912345 near SIX6 (N = 596)

Additive model Dominant model Recessive model

Variable P value P value P value

Highest recorded IOP (N = 595) 0.94 0.82 0.99

HFA parameters

: mean deviation (N = 595) 0.30 0.82 0.27

: pattern standard deviation (N = 595) 0.17 0.47 0.19

Peripapillary RNFL thickness

: total (N = 572) 4.68E-02 (-2.16± 1.08)* 0.93 2.40E-02 (-2.82±1.24)*

: superior (N = 572) 1.33E-02 (-4.11± 1.65)* 0.28 1.40E-02 (-4.69±1.90)*

: temporal (N = 572) 0.87 0.05 0.37

: inferior (N = 572) 0.06 0.85 3.91E-02 (-3.88±1.87)*

: nasal (N = 572) 0.28 0.47 0.33

Vertical cup-to-disk ratio (N = 449) 0.70 0.83 0.72

Cup volume (N = 449) 0.42 0.81 0.41

Mean cup depth (N = 449) 0.16 0.24 0.24

Maximum cup depth (N = 449) 0.24 0.37 0.30

ONH blood flow (N = 501) 2.20E-02 (0.44 ± 0.19)* 0.05 0.05

rs9913911 near GAS7 (N = 596)

Additive model Dominant model Recessive model

Variable P value P value P value

Highest recorded IOP (N = 595) 0.86 0.94 0.75

HFA parameters

: mean deviation (N = 595) 0.10 0.05 0.41

: pattern standard deviation (N = 595) 0.24 2.44E-02 (-0.87±0.38)* 0.88

Peripapillary RNFL thickness

: total (N = 572) 0.91 0.82 0.98

: superior (N = 572) 0.83 0.70 0.99

: temporal (N = 572) 0.56 0.57 0.69

: inferior (N = 572) 0.76 0.79 0.81

(Continued )
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associated with an increase in optic nerve head blood flow of 0.44 AU (P = 2.20E-02; additive).

The risk allele in rs9913911 near GAS7 was nominally associated with a decrease in patter stan-

dard deviation of visual field parameters of 0.87 decibels (dB) (P = 2.44E-02; dominant). No

associations were found between visual field parameters and the other two risk variants.

Discussion

By targeted analysis of a selection of reported risk SNPs in 1,172 Japanese patients with POAG

and 1,559 ethnically matched controls, variants near CDKN2B-AS1 (rs2157719), SIX6
(rs33912345) and GAS7 (rs9913911) were found to be associated with the disease in the popu-

lation. The association between SNPs near GAS7 and POAG was found in Japanese patients

for the first time. This is only the third locus that has been associated convincingly with the dis-

ease in Japanese. The other two loci that were previously shown to be associated with the dis-

ease are CDKN2B-AS1 and SIX6 loci and both associations were confirmed in the present

study. Genotype–phenotype correlation using a clinical data set derived from a single institu-

tion enabled a reliable comparison of the data from the patients and the risk variants. The

results showed a unique pattern of clinical correlations for each of the risk variants in these

three genes, which implies different roles of the risk genes in the development of POAG.

The results show that the disease risk variant rs2157719 near CDKN2B-AS1 was associated

with decreased IOP in Japanese patients with POAG. This counterintuitive finding that an

SNP linked to a lower IOP is also a risk factor for POAG, which is exacerbated by higher IOP

has been reported previously in Caucasian populations.[20,21] Nevertheless, this study con-

firms the seemingly confusing finding in a far eastern Asian population and also assures the

validity of our analysis pipeline. There are at least 3 possible explanations for the association

between rs2157719 near CDKN2B-AS1 and a decrease in IOP. First, the risk alleles may confer

the RGCs to become more sensitive to IOP-related glaucomatous damage. Second, the risk

alleles may contribute to POAG through IOP-independent mechanisms. Lastly, although

unlikely, lower IOP may be a disease risk for a subset of POAG patients with the risk alleles.

To our surprise, our study had another novel counterintuitive result. In the present analysis,

the POAG risk SNP near CDKN2B-AS1 was nominally associated with decreased optic nerve

head blood flow, whereas the risk SNP near SIX6 showed the inverse relationship, i.e. increased

optic nerve head blood flow. On the other hand, the risk SNP near GAS7 had no association

with blood flow. Reduced optic nerve head blood flow, as measured by LSFG, has been

observed in patients with glaucoma and in experimental monkey models of glaucoma by us

Table 4. (Continued)

: nasal (N = 572) 0.63 0.29 0.87

Vertical cup-to-disk ratio (N = 449) 0.90 0.94 0.80

Cup volume (N = 449) 4.60E-02 (0.03±0.01)* 0.08 0.12

Mean cup depth (N = 449) 4.11E-02 (0.03±0.01)* 0.07 0.10

Maximum cup depth (N = 449) 0.13 0.25 0.18

ONH blood flow (N = 501) 0.57 0.10 0.59

Significance level was set at Pcorrected < 4.27E-04 (0.05/[3 SNPs × 13 covariates × 3 genetic models]) for the genotype-phenotype analysis after Bonferroni

correction. Bold texts indicate values with a statistically significant difference after the correction.

* indicates P value (β±SE)

β, changes in clinical parameters per copy of the risk allele; SE, standard error,

N, The numbers of eyes used for each variable and the risk allele for each SNP were displayed. IOP, intraocular pressure. HFA, Humphrey Field Analyzer.

RNFL, retinal nerve fiber layer. ONH, Optic nerve head.

https://doi.org/10.1371/journal.pone.0186678.t004
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and others.[36–43] We previously reported that optic nerve head blood flow was already

reduced in preperimetric glaucoma, [44] the earliest stage of glaucoma. The blood flow further

declines with increased disease severity.[37,42,43] These investigations suggest that microvas-

cular alterations in the optic nerve head may play an important role in the pathogenesis of

POAG. Although the mechanisms by which different loci influence the development of glau-

coma are uncertain, there are at least two potential reasons to account for the conflicting

results for the association between optic nerve head blood flow and the risk alleles in

CDKN2BAS-1 and SIX6. First, the risk alleles may confer the RGCs to become more sensitive

to reduced ocular circulation. Second, the risk alleles may contribute to POAG through mech-

anisms independent of ocular circulation. Our results further highlight the complex nature of

POAG, which may underlie the differences in response to treatment among patients. Our

study also found that the risk allele near SIX6 (rs33912345) was nominally associated with

reduced total peripapillary RNFL thickness and also with the thickness of superior and the

inferior sectors in patients with POAG, a finding that was not observed for other risk variants.

The findings are also in agreement with a study conducted in Singapore that found an associa-

tion between the risk allele near SIX6 and reduced RNFL thickness in a cohort comprising

2,129 eyes from 1,222 subjects without glaucoma and 21 patients with glaucoma.[23] There-

fore, the results of the present study are in good agreement with previously reported findings.

Nevertheless, our study confirms the genotype–phenotype correlation in patients with glau-

coma who actually suffer from the consequences of reduction in RNFL thickness. This finding

greatly expands on the earlier study, in which the data were derived almost exclusively from

normal subjects. The risk allele near GAS7, where the locus has been associated with IOP in

previous studies [45,46], was found to be nominally associated with an increased cup volume

and mean cup depth, as quantified from the stereoscopic fundus camera photographs but not

with IOP.

The different findings for two different risk genes (SIX6 and GAS7), derived from two dif-

ferent imaging modalities (OCT and stereoscopic fundus camera), may imply that they have

different roles in their contribution to the disease. Peripapillary RNFL thickness measured by

OCT presumably reflects the number of axons projecting from the RGCs. Parameters related

to optic disk morphology measured by the stereoscopic fundus camera probably reflect both

the number of axons projecting from the RGCs and factors related to the extracellular matrix

constituting the optic disk and the lamina cribrosa. The finding of reduced peripapillary RFNL

thickness in patients with the SIX6 risk variant, but not in those with the GAS7 variant, implies

that the pathologic changes in glaucoma associated with the SIX6 variant may occur primarily

in the RGCs and their axons. The increased cupping with relatively preserved RNFL thickness

observed in patients with the GAS7 variant implies that the primary pathologic focus may

reside in the disk extracellular matrix and that axonal injury and RGC death are secondary

events. Koolwijk et al., using quantitative real-time polymerase chain reaction (PCR), reported

that the highest expression of GAS7 mRNA in human ocular tissues was in the lamina cribrosa,

[47] a result consistent with our speculation. This suggestion could be tested further by com-

paring the clinical parameters in a large number of patients in the early phase of the disease

before both the axons and the extracellular matrix of the optic disk degenerate in the later

phase of the disease, or, alternatively, in healthy subjects.

The present study was limited by its sample size and cross-sectional design. In addition,

IOP was measured in patients with POAG without discontinuing their antiglaucoma medica-

tions. The use of topical medication likely had an impact on IOP. A longitudinal study that

includes a larger number of patients with POAG with complete information on pretreatment

IOP is desired.
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In conclusion, comprehensive SNP analysis of the known POAG-related loci in Japanese

patients with POAG identified disease risk variants near CDKN2BAS-1 (rs2157719), SIX6
(rs33912345) and GAS7 (rs9913911). The genotype–phenotype correlation study suggested

that the risk variants in these three genes have different effects on the glaucoma phenotype.

Studying the associations between risk variants and clinical parameters is an important step

toward understanding the pathology of the disease and optimizing the treatment of patients

with POAG.
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