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A B S T R A C T   

Introduction: Parkinson’s disease is a neurodegenerative disorder with a complex etiology coming from in
teractions between genetic and environmental factors. Research on Parkinson’s disease genetics has been an 
effortful struggle, while new technologies and novel study designs served as indispensable boosters. Until now, 
90 loci and 20 disease-causing gene mutations have been identified. In this study we describe a novel non- 
parametric approach to GWAS meta-analysis and its application in PD genetics. 
Methods: A literature search was conducted to identify Genome-Wide Association Studies (GWAS) regarding 
Parkinson’s disease. We applied predefined inclusion criteria and extracted the reported SNPs and their 
respective position and statistical significance. We divided all chromosomes in approximately equal genetic 
distance segments called bins and recorded the most significant SNP from each bin and each study and ranked 
them in terms of their p-value. Ranks from each bin were summed, averaged and added in a heterogeneity-based 
analysis using the METRADISC-XL software. Weighted and unweighted analysis was performed. 
Results: Five-hundred and forty-three SNPs and their respective p-values from 15 studies were matched in their 
corresponding bins. The METRADISC-XL analysis resulted in 7 bins with a significant p-value. A bin on chro
mosome 4 where the SNCA gene is located found with genome-wide significant association with Parkinson’s 
Disease. 
Conclusion: This is the first time a non-parametric method is applied in GWAS meta-analysis. The results add 
some insight on the overall understanding of Parkinson’s disease genetics and serve as a first step of further 
convergent analysis with Genome-wide linkage studies.   

1. Introduction 

Parkinson’s disease (PD) is the second most common neurodegen
erative disease affecting 1% of the individuals over the age of 60 and 4% 
of the population older than 85 [1]. The disease has three core clinical 
characteristics, tremor, rigidity and bradykinesia, and numerous 
non-motor features that are now recognized to be present years before 
the manifestation of the typical parkinsonian syndrome, in a so-called 
prodromal phase. The disease’s neuropathological hallmark is neuro
degeneration in specific brain areas, mainly the substantia nigra, due to 
the accumulation of a-synuclein and other proteins [2]. 

The pathogenesis of the disease is still not fully understood, and it is 
considered a multifactorial disease, with both a genetic and an envi
ronmental component hence most PD cases are sporadic and only 5–10 
% of PD patients suffer from a monogenic form. To date, at least 90 loci 
and 20 disease-causing genes for parkinsonism have been identified [3]. 

Genetic epidemiology is a relatively new scientific approach to 
investigating the role of genetic factors in determining disease in fam
ilies and populations. Genetic linkage and association studies were fol
lowed by Genome Wide Linkage (GWLS) and Association Studies 
(GWAS) as new genotyping methods emerged, resulting in a large 
amount of data. Meta-analysis of available data has a major contribution 
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in revealing the true genetic component of sporadic disease under the 
common variant – common disease context. Meta-analyzing GWASs 
demands great computational effort and purpose-build software. 
Furthermore, since every GWAS may use different marker sets and 
genotyping platforms a classical meta-analysis approach should use 
genotype imputation with unclear effects on its performance [4]. In 
many cases the needed datasets to perform a GWAS meta-analysis are 
either incomplete or require the collaboration of many research teams 
globally to have access to the full spectrum of information. 

In this study, we sought to perform a GWAS meta-analysis by 
implementing a comprehensive software (the METa-analysis of Ranked 
DISCovery datasets- METRADISC-XL), which can overcome the afore
mentioned limitations and to produce data that can be combined with 
relevant information from other study designs (GWLS and GWAS) as 
part of our team’s effort to pursue a genomic convergence approach 
regarding Parkinson’s disease. Previous similar approaches were made 
using the HEGESMA (Heterogeneity and Genome Search Meta Analysis) 
software and applied on Genome-wide scan meta-analyses [5–9]. In the 
case of GWAS meta-analysis though a larger number of markers (SNPs) 
and more missing values were anticipated, and the METRADISC-XL 
software was chosen to overcome these barriers. The METRADISC-XL 
(available online at http://biomath.med.uth.gr/metradisc/) is a soft
ware for non-parametric meta-analysis of ranked discovery datasets [10, 
11] which is here used for the first time for this purpose. 

2. Material and methods 

2.1. Search strategy 

A thorough literature search was conducted in online databases 
PubMed and EMBASE for GWAS concerning PD from its inception to the 
30th of June 2020. Combinations of key words such as “Parkinson’s 
disease”; “Genome-wide association study”; “GWAS”; “genome-wide”; 
“linkage disequilibrium”; “whole genome association” were used. To 
strengthen the depth and validity of our search, findings were compared 
and cross-validated with the HuGE navigator/GWAS integrator [12] and 
GWAS catalog [13] entries, where “Parkinson’s disease” was selected as 
the trait of interest. 

2.2. Inclusion criteria 

Eligible for inclusion were English language studies which followed a 
classical GWAS approach with well-characterized sporadic Parkinson’s 
disease cases and available association/statistical significance, in a ge
notype or most-significant level. Studies which examined other forms of 
PD (juvenile or early onset PD) or described associations with clinical 
characteristics (e.g. age at onset, motor and cognitive outcomes) or in
teractions (e.g. gene-environment interaction, coffee consumption) were 
considered ineligible. In case of overlapping samples, the study with the 
larger sample was included. 

2.3. Data extraction 

From each eligible study the following data were extracted: publi
cation details (first author, year of study, title); number of cases and 
controls genotyped; all available SNPs either in the article, the supple
mental files or the publicly available databases with their respective p- 
value and position. Only originally genotyped SNPs where included. Any 
replication results were discarded as with any overlapping samples. 

2.4. Bins 

All chromosomes were divided in approximately equal genetic dis
tance segments called bins. Bin length was set to approximately 30 cM as 
usually used in the Genome Scan Meta-Analysis (GSMA) approach [8, 
14]. The bins were coded by the number of the respective chromosome 

and the order of the bin in the form “chromosome.bin order”. For 
example, bin 1.1 is the first bin of the first chromosome (Supplementary 
Table S1). The physical location of every bin (starting and ending base 
pair) was pinpointed by intergrading a Marshfield map and its respective 
DS markers, and the UCSC Genome Browser on Human (GRch38/hg38 
Assembly). 

2.5. SNPs matching 

From each GWAS study, the most significant, in terms of reported p- 
value, SNP obtained within each bin was recorded. To facilitate this 
procedure due to the large number of entries, we matched the SNPs of 
each study to the corresponding chromosome and respective bin and 
finally recorded only the most significant, in a step-by-step algorithmic 
approach using original code in Python language through a Jupiter 
notebook. Original code is publicly available at https://dataverse.harvar 
d.edu/ and https://github.com/ [15]. 

2.6. Heterogeneity based meta-analysis 

For each study, the bins were ranked (1–120) according to their p- 
value significance. The smallest p-values were accredited the higher 
rank (120). Bins with no corresponding p-value were considered as 
missing values and attributed the code number “-99” to be recognized as 
such by the software [10,11]. When equal p-values were noted, we 
considered them as tied ranks and performed the mid-rank method i.e. 
they ranked by their median rank. The resulted ranks of each bin were 
summed and averaged across studies. The average rank of each bin (R) 
would serve as an indication of association or not of this bin with the 
trait, in this case Parkinson’s Disease. To further strengthen this indi
cation, we investigated the consistency of the results for the same bin 
across studies, namely the between studies heterogeneity. This was 
assessed using the Q statistic which is defined as the sum of the squared 
deviations from the mean of the ranks of each study [8,16]. 

To implement the above-mentioned methodology, we used the 
METa-analysis of Ranked DISCovery datasets (METRADISC-XL) soft
ware. The METRADISC-XL software is a generalization of the METRA
DISC software based on the same methodology as described previously 
and implemented in microarray meta-analysis [10,11]. In this case the 
biological variable of interest are the chromosomal bins. As described 
previously each bin from each study is ranked based on the most sig
nificant p-value. Since, due to missing values, different number of bins 
may be ranked at each study (which may be common amongst all studies 
or in some of them) these raw ranks are adjusted by the maximum 
number of tested bins (nmax) in any of the combined studies. Therefore, 
the ranks of each study are multiplied by the nmax divided by the 
number of ranked bins in this study. 

The significance of the metrics (R and Q) is assessed using a Monte 
Carlo method. The ranks of each study are randomly permuted for 
several times (in this case 100.000 times) and the software calculates the 
simulated metrics to create null distributions for them. Since there are 
missing values (not all bins have available ranking in all the studies) 
each bin is tested against the null distribution corresponding to the 
group of bins having available information (rank) from the same studies. 
These groups are called information classes and they are defined by the 
missing data. The significance of the metrics is defined as the percentage 
of simulated metrics that exceed or are equal to the observed metric. 

The METRADISC-XL software allows for both unweighted and 
weighted analysis. We performed both and in the case of weighted 
analysis we used the weight function (n1i*n2i)/(n1i + n2i) where n1i is 
the number of cases and n2i the number of controls in study i. 

3. Results 

The database search resulted in 1.412 entries, 55 studies of which 
were initially selected as relevant. GWAS catalog under the trait 
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“Parkinson’s disease” resulted in 22 studies which were cross-referenced 
with the GWAS integrator entries. After duplication removal and 
application of the selection criteria as described in the methods section, 
19 GWASs with a total of 191.397 available-for-extraction SNPs, were 
selected for further analysis (Table 1) [17–35]. Taking into consider
ation the significant amount of missing values (less than 5 available 
SNPs) from the studies of Beecham [18], Davis [20], Satake [31] and 
Vacic [35] they were also removed from the final analysis resulting in a 
total of 15 included GWASs. 

Application of the original code matched 543 SNPs and their 
respective p-values in their corresponding bins (the most significant SNP 
in terms of p-value in each bin and in each study) (Table 1) while 1.257 
bins had missing values. Based on data availability from various studies 
these bins belonged to 92 information classes. 

Application of the METRADISC-XL software for 15 studies, 120 bins, 
100.000 permutations and 92 information classes revealed 7 statistically 
significant for association with-PD trait bins Fig. 1. Their corresponding 
right sided p-value for the adjusted R for both weighted and unweighted 
analysis and corresponding p-value of the Q statistic are shown on 
Table 2. 

The bins with the most significant p-values in both weighted and 
unweighted analysis were bin 1.1 (chr1: 1-11404933), 3.2 (chr3: 
30697536-88674208), 4.4 (chr4: 70530434-98736813), 12.2 
(chr12:12486720-43878111), 17.2 (chr17: 12661253-42207671) and 
17.3 (chr17:42207672-71465399). Bins 12.4 (chr12: 73700113- 
103294741) and 19.4 (chr19: 50558304-58617616) where significant 

in unweighted analysis only (Table 2). Heterogeneity metric was 
marginally low for bins 4.4 and 3.2 (right-sided p-value = 0,11) and 
rather large for the rest bins. 

4. Discussion 

Exploration of the heritability in Parkinson’s disease has been a long 
and fascinating journey with numerous successes and drawbacks. 
Technological advantages were a booster in this effort, while the 
complexity of the matter was, and still is, a holdback. Until now, 20 
disease-causing genes and 90 SNPs have been identified to be associated 
with the risk of developing Parkinson’s disease [36–40]. In this effort, 
GWASs and their meta-analyses have so far added insight of great value, 
consuming however great effort. 

These approaches revealed a small, yet significant portion of the 
heritability of the disease. in GWASs or by implementing GWASs with 
other clinical phenotypes [36]. 

In this novel approach, we sought to investigate whether a quanti
tative synthesis is capable of effectively pooling available data from 
GWASs. Our goal was to identify genomic regions in a genome-wide- 
hypothesis free fashion, with significant pooled value serving to indi
cate candidate regions for further investigation. 

This method is easy to be understood by clinicians and is not 
restricted by a distribution assumption nor by the different effect size 
measures or different techniques used in the initial GWASs. Nonpara
metric approaches have successfully been used in Genome Wide Linkage 
Scans and microarray meta-analysis [8,41]. Furthermore, in our effort to 
apply convergent genomics in PD, this is the first step to be followed by a 
similar meta-analysis of Genome-Wide linkage scans (Genome Scan 
Meta-Analysis, GSMA), and combine our findings based on the notion 
that “true” hits on both study designs have a better positive predictive 
value and serve as better candidate regions. 

In this study we combined the initial, originally genotyped SNPs 
from each study. The combination of 534 SNPs and their ranking be
tween 15 studies and 120 bins in 92 information classes using this 
methodology managed to result in one significant in the genome level 
bin (p-value<0,000042, threshold adjusted for 120 bins) and six bins 
with less significant association (p-value<0,05) with the trait in ques
tion. Forty-three of the top significant as initially genotyped and re
ported by the studies SNPs (n = 138) are located on a significant bin 
(Table 3). 

The most significant recognized bin is 4.4 (chr4: 70530434- 
98736813). At least 22 SNPs were reported as top-ranking SNPs in 
their initial genotyping, from 10 different studies within this region 
(Table 3). In seven studies, this bin had SNPs with the most significant p- 
value thus assigned the maximum ranking (120) in our analysis. This 
resulted in a right-sided p-value for Q of 0,11. Furthermore, 37 out of the 
67 SNPs reported as having an association with the PD trait in GWAS 
catalog (data downloaded on July 27, 2020) are located into bin 4.4. In 
this region rests the SNCA gene (Chr4: 89700345-89838315) which is a 
well-recognized risk gene for PD with very high confidence to represent 
an actual PD gene [36,42]. Bin 3.2 also showed some consistency among 
studies with ranking at the top quartile in 6 out of seven studies where 
data existed, but with an average rank p-value of 0,03. 

Bins 17.2 and 17.3 where significant at the 0,01 level but with 
substantial heterogeneity. Bin 17.3 contains the MAPT gene, which also 
had been nominated association with increased PD risk [43,44]. This bin 
along with bin 4.4 may represent polymorphic risk loci were multiple 
common and rare risk alleles co-exist as described earlier [45]. 

This is the first time, to the best of our knowledge, of such an 
approach to GWAS meta-analysis being tested. Despite our enthusiasm, 
we should mention that this effort has some limitations. This method 
relies on the most significant statistical value in each bin from each 
study, and the consequent summation and averaging of their ranks. A 
great number of bins, though, remained without a designation due to 
missing values. GWAS datasets are reported to be publicly available but 

Table 1 
Demographic characteristics of included studies.  

No. Author Year Initial 
sample 
size 
(cases/ 
controls) 

Ethnicity Extracted 
SNPs (n) 

Matched 
bins (n) 

1 Bandre- 
Ciga 

2016 240/192 Caucasian 28 21 

2 Beecham* 2013 484/ 
1.145 

Caucasian 1 1 

3 Davis* 2013 31/767 Amish 3 3 
4 Do 2011 3.426/ 

29.624 
Caucasian 390 65 

5 Edwards 2010 604/619 Caucasian 72 33 
6 Foo 2016 779/ 

13.227 
East Asian 
(Han 
Chinese) 

96 32 

7 Fung 2006 267/270 Caucasian 26 17 
8 Hamza 2010 2.000/ 

1.986 
Caucasian 89 16 

9 Hu Y 2015 250/250 Chinese 22 21 
10 Liu 2011 268/178 Ashkenazi 55 32 
11 Pickrell 2016 9.619/ 

324.522 
Caucasian 25 20 

12 Saad 2010 1.039/ 
1.984 

Caucasian 50 21 

13 Satake* 2009 988/ 
2.521 

Japanese 20 4 

14 Simon- 
Sanchez 

2009 1.713/ 
3.978 

Caucasian 345 87 

15 Simon- 
Sanchez 

2011 772/ 
2.024 

Caucasian 30 8 

16 Spencer 2010 1.705/ 
5.175 

Caucasian 55 24 

17 Vacic* 2014 1.130/ 
2.611 

Ashkenazi 4 4 

18 Maraganore 2005 381/363 Caucasian 190059 120 
19 Chang 2017 6.476/ 

302.042 
Caucasian 27 26  

Total  32208/ 
693847  

191397  
** 
(191369) 

555 ** 
(543)  

* Studies removed due to large number of missing values. 
** The included data set. 
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accessible only through consortia, specific organizations, and autho
rized users. In our study, the METRADISC-XL software can deal with 
missing values by creating null distributions from the same information 
class, yet such large amount of missing information drives to incomplete 
results. This discrepancy may have also contributed to the substantial 

observed heterogeneity. However, this approach is unlikely to generate 
false positive results. 

Another issue is the well-known problem of matching a genetic map 
with a sequence-based physical map. Problems with assembly and 
incorrect identification of marker positions may lead to errors in the 

Fig. 1. Weighted (square) and unweighted (circle) significance level of the average ranks of 120 bins in size-adjusted chromosomes. Bins with significant p-val
ue<0,05 are shown above the 0.05 (solid) reference line. 

Table 2 
Bins with high unweighted and/or weighted adjusted average ranks (Rmean, Rw/mean) and the corresponding significance and heterogeneity metrics.   

Bin 4.4 12.4 19.4 17.3 17.2 3.2 1.1 

adjusted rank 

study 1 657,1 − 99,0 − 99,0 680,0 662,9 − 99,0 − 99,0 
study 4 219,7 − 99,0 − 99,0 216,0 217,8 186,5 − 99,0 
study 5 436,4 − 99,0 − 99,0 367,3 − 99,0 378,2 − 99,0 
study 6 450,0 − 99,0 − 99,0 − 99,0 − 99,0 435,0 − 99,0 
study 7 − 99,0 − 99,0 − 99,0 − 99,0 840,0 − 99,0 − 99,0 
study 8 892,5 − 99,0 − 99,0 847,5 870,0 − 99,0 − 99,0 
study 9 628,6 − 99,0 − 99,0 − 99,0 − 99,0 − 99,0 628,6 
study 10 − 99,0 − 99,0 − 99,0 345,0 356,3 431,3 − 99,0 
study 11 720,0 − 99,0 − 99,0 708,0 − 99,0 − 99,0 − 99,0 
study 12 685,7 680,0 − 99,0 − 99,0 662,9 − 99,0 − 99,0 
study 14 158,2 − 99,0 139,8 143,7 156,9 127,9 − 99,0 
study 15 1800,0 − 99,0 − 99,0 − 99,0 1755,0 − 99,0 − 99,0 
study 16 590,0 − 99,0 − 99,0 575,0 585,0 580,0 − 99,0 
study 18 10,0 108,0 115,0 66,0 73,0 11,0 116,0 
study 19 553,8 − 99,0 − 99,0 549,2 − 99,0 − 99,0 − 99,0  
Rmean 45141167 19968572 1496758 23183384 50969116 11496949 18539999  
right sided p-value for Rmean 0,00 0,02 0,02 0,03 0,03 0,04 0,04  
right sided p - value Rw/mean 0,00 0,05 0,10 0,01 0,01 0,04 0,04  
right sided p value for Q-mean 0,12 0,14 0,50 0,26 0,50 0,12 0,97  
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order of markers on physical maps [46]. Finally, since this is a 
meta-analysis based on GWAS, it carries all the inherent disadvantages 
of its type. 

Table 3 
Top significant, initially genotyped, SNPs as reported from each study and their 
corresponding BINs. Study number corresponds to the number on Table 1. BINs 
in bold are the significant ones.  

SNP Position (bp) Study No BIN 

rs12063142 18813023 5 1.2 
rs1543467 86548977 5 1.5 
rs17344386 83254011 18  
rs35749011 155135036 19 1.6 
rs2986574 182173237 7 1.7 
rs823118 205723572 1 1.8 
rs823156 204031263 4  
rs823118 205754444 11  
rs823118 205723572 19  
rs10797576 232664611 1 1.9 
rs849898 228153917 9  
rs870575 45356764 8 2.3 
rs12613026 42867793 10  
rs10197606 41790447 18  
rs11887431 42179113 18  
rs11674789 41822751 18  
rs6430538 135539967 1 2.6 
rs1955337 169129145 1 2.7 
rs1474055 169110394 19  
rs11186 189897394 9 2.8 
rs1010491 231160521 6 2.9 
rs1561374 29458092 6 3.2 
rs1684524 21936271 10  
rs1352135 21935471 10  
rs6783485 59427797 9 3.3 
rs1879553 118615463 9 3.5 
rs1879512 113576590 10  
rs7641311 113574386 10  
rs10513789 184242767 4 3.7 
rs976683 173767581 5  
rs9290751 182732230 6  
rs12637471 182762437 19  
rs6599389 929113 4 4.1 
rs356220 90860363 12  
rs1564282 842313 15  
rs34311866 951947 19  
rs4266290 15735495 11 4.2 
rs4698412 15346446 12  
rs12502586 15335662 15  
rs2242330 68129844 7 4.3 
rs6826751 68116450 7  
rs3775866 68126775 7  
rs356181 90626139 1 4.4 
rs356220 90860363 4  
rs6812193 77418010 4  
rs356220 89720189 5  
rs356220 90641340 6  
rs8180209 90644454 6  
rs3775439 90709741 6  
rs6532194 90780902 6  
rs356220 89720189 8  
rs356220 90860363 8  
rs356168 90893454 8  
rs2736990 90897564 8  
rs1350855 91413829 8  
rs6812193 76277833 11  
rs2736990 90897564 12  
rs2736990 90897564 14  
rs3857059 90894261 14  
rs11931074 90858538 14  
rs2736990 90897564 15  
rs3857059 90894261 15  
rs11931074 90858538 15  
rs356182 90626111 19  
rs4862792 188438344 7 4.8 
rs13153459 44515935 9 5.2 
rs1916642 72488303 10 5.3 
rs6879012 72498637 10  
rs26990 112814742 12 5.4 
rs3129882 32517508 8 6.2 
rs3129882 32441753 8  
rs4713118 27709015 11   

Table 3 (continued ) 

SNP Position (bp) Study No BIN 

rs276555 137415146 6 6.5 
rs6912319 137452537 6  
rs10256359 23084258 11 7.2 
rs320682 137038092 6 7.5 
rs17068332 3820589 16 8.2 
rs16887478 38561200 18 8.3 
rs10815285 5804424 18 9.1 
rs10746953 76917840 9 9.3 
rs2724788 12490835 16 10.2 
rs1892302 12486578 16  
rs1480597 44481115 7 10.3 
rs7097094 44530696 7  
rs10999501 72171365 10 10.4 
rs188789342 119612816 11 10.5 
rs117896735 121536327 19 10.6 
rs12294719 36684837 12 11.2 
rs1533588 36687460 12  
rs12419750 36589978 12  
rs7128419 36613848 12  
rs687432 57926788 11 11.3 
rs10501570 84095494 7 11.4 
rs329648 133765367 1 11.6 
rs34637584 39020469 4 12.2 
rs148294058 42655580 11  
rs1472402 40549297 18  
rs7954761 82691472 12 12.4 
rs11060180 123303586 4 12.5 
rs11060180 122819039 11  
rs11060180 123303586 19  
rs9513249 97507450 5 13.3 
rs12870589 97572967 5  
rs9323124 47466177 9 14.2 
rs11158026 55348869 19  
rs1816879 58318356 5 15.2 
rs17463995 46791064 18  
rs1881335 5206420 10 16.1 
rs4888984 78066835 7 16.3 
rs11868035 17715101 1 17.2 
rs12185268 41279463 4  
rs11868035 17655826 4  
rs281357 19683106 7  
rs199533 42184098 8  
rs199528 42198305 8  
rs17690703 41281077 12  
rs199533 42184098 14  
rs169201 42145386 14  
rs393152 41074926 14  
rs1981997 41412603 14  
rs2532274 41602941 14  
rs2532269 41605885 14  
rs8070723 41436901 14  
rs17563986 41347100 15  
rs1981997 41412603 15  
rs8070723 41436901 15  
rs2532274 41602941 15  
rs393152 41074926 15  
rs17649553 43994648 1 17.3 
rs17649553 43994648 19  
rs1362858 32986600 9 18.2 
rs12456492 40673380 1 18.3 
rs4130047 38932233 4  
rs4130047 43098270 11  
rs1406968 19649880 5 20.1 
rs3746736 23372613 18 20.2 
rs1984279 23261192 18  
rs151358 57043454 10 20.4 
rs2823357 15836776 4 21.1  
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5. Conclusions 

Overall, this study is the first attempt to handle the GWAS meta- 
analysis with a non-parametric rank-based approach. Though several 
drawbacks may have limited the value of our results, this study adds 
some insight in the overall understanding of Parkinson’s disease ge
netics and serves as a first step of further convergent analysis [47], while 
possibly introducing a new, useful tool to the scientific community. 
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