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Abstract

Aggregation of alpha-synuclein (α-SN) is a key pathogenic event in Parkinson’s disease

(PD) leading to dopaminergic degeneration. The identification of natural compounds inhibit-

ing α-SN aggregation may have a major role in treating PD. Different Scutellaria species are

known as valuable medicinal plants, primarily due to their high flavonoid levels. Scutellaria

pinnatifida (S. pinnatifida) is endemic to Iran; however, the knowledge of its pharmaceutical

properties is limited. Here we report that S. pinnatifida extracts have an anti-fibrillation effect

on α-SN aggregation and neuroprotective properties on PC12 and primary dopaminergic

neurons. Treatment during α-SN fibril formation with S. pinnatifida extracts showed that the

extractions performed with dichloromethane (DCMEx) and n-butanol (BuOHEx) strongly

inhibited α-SN fibrillation. TLC-based analysis revealed that S. pinnatifida contains a great

amount of flavonoids with high antioxidant properties as shown using a radical scavenging

assay. Further analysis using HPLC and Mass spectroscopy on the DCMEx revealed the

presence of baicalein in this extract. We then selected the more efficient extracts based on

cell viability and ROS scavenging on PC12 cells and tested their neuroprotective properties

on primary dopaminergic neurons. Our results showed the extracts strongly protected

against α-SN oligomers. Surprisingly, they also neutralized the severe toxicity of paraquat.

Therefore, S. pinnatifida may be a potential valuable medicinal herb for further studies

related to the treatment of PD.

Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder with severe medical and

social impacts affecting more than 1% of people over the age of 65. If there is no access to

accurate treatment, it is anticipated that the prevalence of this acute disease will be quickly

expanded in the progressive ageing societies [1]. PD is mostly characterized by degeneration of

PLOS ONE | https://doi.org/10.1371/journal.pone.0184483 September 28, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Sashourpour M, Zahri S, Radjabian T, Ruf

V, Pan-Montojo F, Morshedi D (2017) A study on

the modulation of alpha-synuclein fibrillation by

Scutellaria pinnatifida extracts and its

neuroprotective properties. PLoS ONE 12(9):

e0184483. https://doi.org/10.1371/journal.

pone.0184483

Editor: Reza Khodarahmi, Kermanshah University

of Medical Sciences, ISLAMIC REPUBLIC OF IRAN

Received: December 21, 2016

Accepted: August 24, 2017

Published: September 28, 2017

Copyright: © 2017 Sashourpour et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project was funded by the Iranian

Ministry of Science and Technology (Grant given to

SZ) and the Deutsche Forschungsgesellschaft

(DFG) through the Munich Excellence Cluster for

Systems Neurology (Grant given to F.P-M). MS

received a travel grant from the Ministry of

https://doi.org/10.1371/journal.pone.0184483
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184483&domain=pdf&date_stamp=2017-09-28
https://doi.org/10.1371/journal.pone.0184483
https://doi.org/10.1371/journal.pone.0184483
http://creativecommons.org/licenses/by/4.0/


dopaminergic neurons in the substantia nigra [2] leading to severe symptoms such as resting

tremor, bradykinesia, muscular rigidity [3]. Strong evidence supports that aggregation of

alpha-synuclein (α-SN) has a critical role in the pathogenesis of PD and other diseases,

together known as synucleinopathies [4]. α-SN is a highly conserved protein, which is very

abundant in the central nervous system (CNS) [5]. α-SN is a natively unfolded protein [6],

changing its conformation into semi- helical structures by interaction with bio-membranes,

especially negatively charged membranes. Under unknown conditions, α-SN tends to form

amyloid fibrils with high ß-sheet contents [7]. Some aggregated species of α-SN formed along

the fibrillation are very toxic and are able to intrude the functions of different organelles such

as mitochondria, endoplasmic reticulum and plasma membrane [8–10]. Furthermore, it may

increase the oxidative stress causing severe damages in dopaminergic cells [11,12]. It has

been shown that some natural compounds like herbal flavonoids, including variable groups of

polyphenols, are able to prevent aggregation and/or neurotoxicity of α-SN, and could thus

potentially be useful to treat PD. Some well-known flavonoids such as baicalein, (-)-epigalloca-

techin-3-gallate (EGCG), scullcap flavones and wogonin were shown to influence diverse

aspects of the neurodegenerative process, especially regarding α-SN aggregation. Most of these

substances are strong inhibitors of α-SN oligomerization in both cell-free and cellular systems

[13,14]. Some of them can even disaggregate and remodel preformed fibrils into monomers or

nonpathogenic oligomers [15–18]. In this regard, it was recently shown that baicalein moder-

ates some of the clinical symptoms induced by oral-rotenone in a PD mouse model and that

this reduction is associated with a considerable reduction in the formation of α-SN oligomers

[19]. The neuro-protective properties of EGCG have been confirmed in an MPTP induced

mouse model of PD [20]. Furthermore, flavonoids are known to be radical-scavenging com-

pounds that help to decrease oxidative stress [21]. The antioxidant activities of baicalein, scull-

cap flavones and wogonin have a close correlation with their neuroprotective effects [22,23].

Flavonoids also protect neuronal cells against the deleterious effects caused by inflammatory

reactions [24,25]. It has been reported that these anti-inflammatory effects are due to their

impact on the NF-κB pathway [26–28].

During the past decades, the use of herbal medicines as major natural factories of complex

compounds has increased dramatically. In this regard, various species of the Scutellaria genus

should be taken into consideration for pharmaceutical studies due to their remedial secondary

metabolites, particularly flavonoids [22]. The genus of Scutellaria includes approximately

300 species. One of them, Scutellaria baicalensis is well known in Chinese traditional medicine

and has been clinically used to treat allergies, hyper lipidemia, arteriosclerosis, and inflam-

matory diseases [29]. There is little information on the pharmaceutical properties of the Ira-

nian species, Scutellaria pinnatifida (S. pinnatifida) [30–32]. It was determined that among 60

different Iranian herbs only 6 S. pinnatifida varieties have high anti-oxidant activity against lin-

oleic acid peroxidation [31]. In another study, using the aerial parts of S. pinnatifida, it was

shown that the methanolic extract (MeOHEx) had more antibacterial activity than the DCM

extract (DCMEx), but DCMEx exhibited more antioxidant activity [32]. It was also indicated

that its root CH2Cl2 extraction induced specifically apoptosis in some cancer cell lines [30].

However, its activity against α-SN fibrillation and its neurotoxicity or its protective effect

against environmental toxins has never been investigated before. Therefore as a part of our

ongoing research on the inhibition of α-SN amyloid fibrillation/ neurotoxicity, we screened

the effect of different extracts from S. pinnatifida in these processes. In the current study, we

find that S. pinnatifida inhibits amyloid fibrillation and protects against α-SN neurotoxicity.

Furthermore, we also analyzed the antioxidant activity of the extracts and the neuroprotective

effect against two well-known PD-related toxins, paraquat and rotenone, on primary dopami-

nergic neurons.

S. pinnatifida against α-synuclein fibrillation and neurotoxicity
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Materials and methods

Chemicals

Thioflavin-T (ThT), Congo red (CR), AlCl3�6H2O, acetic acid, 1, 1dipheny l-2-picrylhydrazyl

radical (DPPH), paraquat, rotenone, baicalein were purchased from Sigma (USA). HPLC

grade methanol, ethanol, n-hexane, dichloromethane, ethyl acetate, n-butanol, di-phenyl boric

acid ethanol amine and polyethylene glycol were obtained from Merck (Germany). Other

compounds were also purchased from Merck (Germany).

Expression and purification of α-SN

Recombinant human α-SN-containing pNIC28-Bsa4 plasmid was transformed into Escheri-
chia coli BL21 (DE3) pLysS cells (Novagen, Madison, WI, USA). Expression was induced with

IPTG and α-SN was extracted and purified according to Huang et al [33]. Briefly, the purifica-

tion of α-SN was carried out in three steps, including osmotic shock, anion-exchange and size

exclusion chromatography. Finally, the sample was purified using an Amicon Ultra Centrifu-

gal Filter (10kDa). The concentration of the purified protein was determined using the Pierce

BCA Protein Assay Kit and samples were freeze-dried and stored at -20˚C in aliquots. The

final purified α-SN was tested with native-PAGE and SDS-PAGE, and also with Western blot-

ting using specific monoclonal antibody against α-SN (data not shown). Far-CD spectroscopy

also indicated the random coil structure for the purified protein in its monomeric form (Fig

1N).

Plant materials and extraction

The root of S. pinnatifida was collected in Jun 2014 from the Damash area. Damash is a village

in Jirandeh Rural District, Amarlu District, Rudbar County, Gilan Province, Iran with geo-

graphic coordinates of 36.7566˚ N, 49.8100˚ E and is out of the protected areas at the north

part of Iran. The plant was identified by Dr. Attar at the Herbarium of Tehran University

(Tehran, Iran) where a voucher specimen (herbarium no: 45950-TUH) has been deposited.

No permissions for collecting the plant were obtained because the plant was not in the list of

endangered plants of Iran. The name of this plant is not mentioned in the IUCN protection

list (http://www.iucnredlist.org/). Also in the book entitled “a preliminary survey of endemic,

rare and endangered plant species of Iran", that introduced endangered plants of Iran, there

are no mention of this plant. It is in LC category and is not endangered according to the her-

barium book code IRAN. Furthermore, the plant grows in the wide extends of the North,

North East and West of Iran. In order to prepare various extracts from S. pinnatifida, the root

was carefully washed with water and dried under shade at room temperature. The dried plant

root was powdered using an electric blender (Bosch MKM6003, Germany). About 10 g of the

powdered material was extracted with a mixture of methanol and water with a 9:1 ratio (v/v)

using a bath sonicator (Badelin SONOREX Digital 10P). Samples were sonicated 3 x 15 min.

After filtrating with a Boehner funnel, the filtrated solution was centrifuged (3000 rpm, 5

min) to remove small suspended particles. The lyophilized (labogeen ScanCool, Denmark)

methanolic extract (MeOHEx) was sub-extracted with n-hexane (HexEx), dichloromethane

(DCMEx), ethyl acetate (EtOAcEx) and n-butanol (BuOHEx) serially, based on a two-phase

solvent system. In this process, 0.3 g of lyophilized MeOHEx was distributed in 10 mL water.

The water-distributed sample was sub-extracted with an equal volume of the immiscible sol-

vents. Each extract was lyophilized again and re-suspended in a solvent of DMSO and buffer

or DMSO and culture media with a ratio of 1 to 10 (v/v). In the next step 10μL of each re-

suspended extract solution was added to 90 μL of the subjected samples in which the finally
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concentration of the extract was 100 μg/mL. The concentration of DMSO in the subjected

samples was 1% (v/v). Effects of DMSO on the fibrillation/cytotoxicity of α-SN were also

assessed.

Induction of α-SN fibrillation and treatment with the extracts

140 μM of recombinant α-SN protein was dissolved in 1 mL of TNE buffer (30 mM Tris-HCl,

1 mM EDTA and 0.1 mM NaNO3, pH 7.5) and then incubated at 37˚C for 24 h with a fixed

shaking speed (85 rpm) in a shaking water bath (Thermo Scientific HAAKE Shaking Water

Bath (SWB25)) to allow fibril formation. To assess whether the different extracts of S. pinnati-
fida could inhibit α-SN aggregation, the same reaction was performed in the presence of the

extracts in DMSO as the final solvent. In each treated sample 1 to 10 v/v of the re-suspended

extract was added in which the final concentration ratio of the protein to extract was 20:1 w/w.

As control some samples were treated with the same volume of DMSO.

Fig 1. Effects of different extracts of S. pinnatifida on α-SN fibrillation. (A) ThT fluorescence intensity;

and (B) CR absorbance measurements of α-SN alone and in the presence of MeOHEx, HexEx, DCMEx,

EtOAcEx, and BuOHEx. The spectrum of CR alone is also shown. (C) Kinetic analysis of DCMEx effect on the

fibrillation of α-SN at different concentrations (1, 10 and 100 μg/mL) monitored by ThT fluorescence emission

at 488nm. (D-I) Fluorescence microscopy images; Images include of protein aggregates untreated and treated

with the extracts. By using Image J, analysis of the fluorescence particles’ density present in each image has

been carried out and shown in the right bottom of the image. (J-M) AFM images of α-SN aggregates in the

absence and the presence of the selected extracts after incubation for 24 h. (N) CD spectra of monomeric and

fibril forms of α-SN in the absence and presence of the selected extracts of S. pinnatifida. Error bars = SD,

n = 3, * represents P < 0.05, and *** represents P < 0.005.

https://doi.org/10.1371/journal.pone.0184483.g001
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Generation of α-SN oligomers. Generation of α-SN oligomers for the experiments with

dopaminergic neurons was done as follows. α-SN was fluorescently labeled with an amino

reactive red fluorescent dye (Alexa Fluor-647) as described previously [34]. Fluorescently

labeled α-SN and unlabeled α-SN were mixed at a ratio of 1:5. Hereupon, oligomer formation

was induced at a concentration of 50 μM α-SN in the presence of 100 μM Al3+ under constant

shaking (1400 rpm) at 37˚C for 30 minutes and confirmed by single molecule fluorescence

spectroscopy (S1 Fig). Oligomers were stored at -80˚C. Oligomer formation was verified by

single molecule fluorescence spectroscopy.

Assessment of the fibril formation

ThT assay. α-SN aggregation was monitored using ThT fluorescence by using a 500 μL

tris (pH 7.4, 50 mM) solution containing 1.5 μM α-SN, and 20 μM ThT. The fluorescence

intensity was measured at room temperature using a Varian Cary Eclipse fluorescence spectro-

photometer (Mulgrave, Australia) and setting the excitation and emission wavelengths at 440

nm and 450–550 nm, respectively.

Congo red (CR) absorbance assay. Formation of fibrillar aggregates was also assayed

using a fresh CR solution. CR was dissolved at a final concentration of 1 mg/mL in a buffer con-

taining 150 mM of NaCl and 5 mM of Na2PO4 (pH 7.4). A 10 μL of the incubated sample was

added to 490 μL of the CR solution and incubated for 5 min. Absorbance spectra were measured

from 400 to 600 nm by the PGT80+UV–Visible spectrometer (Leicestershire, England) [35]. In

some cases, interaction of CR with some forms of the aggregates (especially fibrillar forms)

resulted in red shifting of the position of the absorbance maxima. The way to quantify red shift-

ing is through the spectral center of mass (υg) [36]. υg is defined based on Eq (1):

ng ¼

P
FiniP
Fi

Eq ð1Þ

Where Fi is the emission at a wavenumber, υi, and the sum is carried over all wavenumbers

where Fi > 0.

Fluorescence microscopy analysis. 15 μL of the incubated protein were added to a 15 μL

of ThT solution (with 15 μM of ThT). The mixture was incubated at room temperature for 5

min and after spreading onto a microscopic slide, it was studied by a fluorescence microscopy

(Ceti Inverso TC100 microscope, Medline scientific, Oxon, UK). Image analysis was per-

formed via Image-J 1.44 P. The area occupied by the fluorescent particles was compared

between different samples by adjusting color threshold parameters in fixed numbers (Hue: 45–

117, Saturation: 100–255, Brightness: 100–255).

Circular Dichroism (CD) spectropolarimetry. Far-UV CD spectropolarimeter was used

to analyze the secondary structure of α-SN. Using an AVIV 215 CD-spectropolarimeter, we ana-

lyzed structural changes induced in α-SN in the presence of the plant extracts. To conduct these

experiments, 10 times diluted α-SN samples, treated with MeOHEx, DCMEx and BuOHEx were

prepared and spectral properties of the incubated protein were monitored using a 0.1 cm diameter

cell. CD spectra of TNE buffer with or without 1% resuspended extracts (in DMSO (was recorded

and subtracted from the protein spectra and the CD signal given as ellipticity.

Atomic Force Microscopy (AFM) imaging. The incubated α-SN in a fibril formation

condition was diluted 20 times with deionized water, then a small aliquot (10 μL) was depos-

ited on a freshly cleaved mica sheet. The treated mica sheet was allowed to be air- dried. AFM

was performed at room temperature by a NanoScope IIId controller from Veeco Instruments

Co. (Plainview, NY, USA) with a silicon probe (CP-CONT-PM, sphere without coating).

Imaging was performed under the tapping modality.
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Assessment of the antioxidant activity of the extracts

The antioxidant activity of the extracts was evaluated using 2, 2-Diphenyl-1- picrylhydrazhyl

(DPPH) as previously described by Kim et al [37].

Briefly, a methanolic solution of DPPH (0.002% w/v) was prepared. 1 mL of DPPH was

mixed with 1 mL of the crud extract or sub-extracts of S. pinnatifida. The absorbance was

monitored at 517 nm after 30 min of incubation at room temperature and in the dark using a

PGT80+UV–Visible spectrometer (Leicestershire, England). The antioxidant activity (AA)

was calculated using Eq (2):

AA %ð Þ ¼
ðA0 � AsÞ

A0 � 100
Eq ð2Þ

where AO is the absorbance of the blank (1 mL of 0.002% (w/v) DPPH + equal volume of

methanol) and AS is the absorbance of the samples.

Determination of total flavonoids content

The total flavonoids content of S. pinnatifida extracts were determined using the AlCl3 method

[38]. This method is based on the formation of a flavonoid-aluminum complex. 100 μL of the

extract was added to an equal volume of a 2% AlCl3�6H2O solution (2 g AlCl3�6H2O per 100

mL methanol). After shaking vigorously, the sample was incubated at room temperature for 10

min. Then the absorbance was measured at 430 nm with a UV-Vis spectrophotometer using a

PGT80+UV–Visible spectrometer (Leicestershire, England). Quantitative determination of

total flavonoids was done based on the standard curve of baicalein. The contents of the flavo-

noid compounds were expressed as milligram baicalein equivalents to gram of dry weight.

TLC was also performed in order to detect total flavonoid compounds in the plant extracts

[39]. 30 μL of the extracts were spotted on the silica gel G60 F254-pre-coated TLC plates (10×
20 cm). The plates were then placed in a chromatography chamber and saturated with a

mobile phase solvent (n-butanol–acetic acid- water, 10:1:5, v/ v/ v) at room temperature.

The developed plate was air-dried and then sprayed with a 1% solution of the flavonoid-

specific reagent, diphenylboric acid ethanolamine in methanol. After drying with 5% polyeth-

ylene glycol, the presence of flavonoids was visualized under UV light at 366 nm in a camera

equipped chamber [40].

HPLC and Mass spectroscopy (MS) analysis. To assess of the presentation of baicalein in

DCMEx, HPLC and Mass spectroscopy (MS) analysis were carried out using pure baicalein

(Sigma-Aldrich, 11712) as a standard. The HPLC apparatus was a Smartline model (Kenuer,

Germany) with a quaternary pump and a reversed phase column C18 Eurospher-100 (5 μm

particle, 125 mm × 4 mm) coupled with a UV-VIS detector (D-14163 model). Data were pro-

cessed by Software ChromGate (version 3.1). Mobile phases consisted of water with 0.2% gla-

cial acetic acid (solvent A) and acetonitrile (solvent B) in gradient mode. Initial condition was

A–B (90:10, v/v), linearly changed to A–B (35:65, v/v) after 20 min. and holded at the same

ratio for 10 min. Then the percentage of mobile-phase A increased to 90% after 35 min and

reached 0% after 45 min. The flow rate was kept at 1 mL/min. The injection volume was 20 μL,

and peaks were monitored at 277 nm. Samples were filtered through a hydrophilic PTFE

membrane filter with a 0.45 μm pore size before injection. Peak of baicalein was identified by

congruent retention time.

MS analysis of baicalein was conducted on an Agilent 6410 Triple Quadruple mass spec-

trometer, coupled to an Agilent 1200 series liquid chromatography equipped with an auto sam-

pler (1200 series) and a diode array detector (1200 series). Experiments were carried out with an

ESI source in a positive ion mode. The fragmentor was set at 80 and the collision energy on 35v.
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The solvent program was set as a flow rate of 0.5 mL/min with 90% Methanol and 10% water

contain 0.1% formic acid. The source was operated using 300˚C drying gas (N2) at 6 L/min,

nebulizing gas adjusted at 10 psi and capillary voltage adjusted at 4000V. Multiple reaction

monitoring (MRM) detection was employed using nitrogen as the collision gas, with a dwell

time of 150 ms for each transition; the transition monitored for baicalein was m/z 271!123.

Culture of PC12 cells and primary mesencephalic dopaminergic neurons

PC12 cells were cultured in Dulbecco’s Modified Eagle’s Medium (high glucose) supplemented

with 10% fetal bovine serum, 100 units/mL penicillin (Pen), and 100 μg/mL streptomycin

(Strep). The cells were incubated in a humidified incubator at 37˚C under an atmosphere con-

taining 5% CO2.

All animal procedures were performed according to the German Law for Animal Experi-

ments (Tierversuchsgesetzt) and were approved by the Regierung von Oberbayern (The

government from Bayern, Germany). Primary mesencephalic neuronal cell cultures were pre-

pared as previously described [41]. Briefly, E14.5 embryos were obtained from C57JBL6 preg-

nant mice after cervical dislocation. Brain mesencephali were dissected under the microscope

and digested with Trypsin-EDTA 0.12% (Life Technologies, USA) for 7 min. The trypsin reac-

tion was then stopped by adding basic medium (BM), containing Neurobasal A medium

(Gibco), 1 mg/mL Pen/Strep, 10% FCS and 200 mM L-Glutamine, and cells were mechanically

dissociated using a fire-polished Pasteur pipette. Medium was fully replaced after 5 min, cen-

trifugation at 1200 rpm, aspiring the supernatant and adding 8 mL of fresh BM to the pellet.

Concentration of cells in the medium was estimated using a Neubauer chamber and a 100 μL

of medium containing 106 cells /mL plated per well in a 96-well plate (Greiner Sensoplate, Ger-

many). Then a 20 μL of medium was removed from the well and 24 h later 1/3 of the media

was replaced with fresh BM. On DIV3 half of the medium was replaced with B27 one, contain-

ing Neurobasal A medium, 1mg/mL Pen/Strep, 200 mM L-Glutamine and B-27 supplement;

and on DIV5 all medium was replaced by B27 medium. Treatment was administered on DIV7

and DIV 9 cell and cells were fixed on DIV10.

To determine the optimal concentration of the plant extracts to be used on the dopaminer-

gic neurons, we tested different extract concentrations, including 1, 10 and 100μg/mL, on the

cultured neurons.

Cell toxicity assessment on PC12 cells and dopaminergic neurons. The effect of the

plant extracts on the α-SN-induced cell death on PC12 cells was estimated by measuring MTT

reduction. This assay is based on the conversion of the yellow tetrazolium salt (MTT) to the

purple formazan by mitochondrial dehydrogenase of live cells [42]. Briefly, PC12 cells (3×104

cells/200μL/well) were added to the wells of 96-well plates. To study the cytotoxic effects of α-

SN in the presence and absence of the extracts, a 10% (v/v) dilution of fibrillated α-SN, incu-

bated for 24 hours in the presence or absence of MeOHEx, DCMEx and BuOHEx extracts, or

just the extracts as controls were added to PC12 cell cultures for 24 h. After treatment, culture

medium was replaced with new medium and MTT solution was added to the cells (with a final

concentration of 0.5 mg/mL). Plates were incubated at 37˚C for 4 h. The solution was then

removed, and the precipitated formazan crystals were solubilized in a 100 μL DMSO. Absor-

bance was measured at 570 nm using a plate reader (Expert 96, AsysHitch, Ec Austria).

To further characterize cytotoxicity of α-SN and the protective effect of the extracts, the

proportion of apoptotic and necrotic PC12 cells, Annexin V and Propidium iodide (PI) posi-

tive respectively, was determined by flow cytometry. For this, PC12 cells were seeded on a

6-well microtiter plate (5x105cells/well) and treatment as described above was performed on

DIV1. At the end of the incubation period, PC12 cells were harvested, washed with cold PBS
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and resuspended in 500 μL of the binding buffer. The cells were double stained with the fluo-

rescein isothiocyanate (FITC)-conjugated Annexin and PI, according to the instructions of the

kit (The FITC Annexin V/PI Dead Cell Apoptosis Kit, Invitrogen), kept at a dark place for 15

min just before analysis. Samples were then loaded on the BD FACSCalibur flow cytometer

(Becton Dickinson, Franklin, Lakes, NJ, USA) to analyze the proportion of different kinds of

dead cells. Flowing software v.2.5 was then used to discriminate early or late apoptosis.

The protective effect of the DCMEx and BuOHEx/EtOAcEx (in a ratio of 1:1 (w /w))

against α-SN oligomers-, paraquat- and rotenone-induced cell death on dopaminergic neu-

rons was assessed through manual counting of immunostained TH+ neurons after treatment.

Briefly, neurons were prepared and plated on 96 well plates as described above. On DIV7, the

neurons were treated with 10 μM α-SN, 10 nM rotenone and 12.5 μM paraquat alone or

together with 1μg/mL of DCMEx or 100μg/mL BuOHEx/EtOAcEx for three days. After this

time, cells were life stained using DCFH-DA to perform the intracellular Reactive Oxygen Spe-

cies (ROS) assay (see section 2.12) or were fixed using 4% paraformaldehyde for immunocytol-

ogy (see section 2.11).

Dopaminergic TH+ neurons were observed using an inverted fluorescence microscope (Olym-

pus) under a 20x objective. The diameter of every well was scanned in two perpendicular direc-

tions (i.e. top to bottom and left to right) and total TH+ neurons were counted for every well.

Immunocytology of mesencephalic cell cultures. 4% PFA fixed neuronal cell cultures

were washed 3x10 min in phosphate buffered saline (PBS), blocked using a blocking solution

(BS) (0,2% Triton X-100 in PBS and 5% donkey serum (DS)) for 1 h at room temperature, and

incubated with a mouse anti-TH (Clone LNC1,1:500, Millipore, MAB318) primary antibody

in BS overnight at 4˚C. On the next-day cells were washed 4x10 min with PBS, incubated with

a donkey Alexa1 555 anti-mouse secondary antibodies for 1 h at room temperature and

washed 4x10 min with PBS.

Intracellular ROS assay. The level of intracellular ROS in PC12 and primary mesence-

phalic neuronal cultures was measured using a fluorogenic and plasma membrane permeant

dye, DCFH-DA (2, 7-dichlorofluorescein diacetate). After diffusing into the cell, DCFH-DA is

deacetylated enzymatically and later oxidized by ROS into a fluorophore compound, 2’, 7’–

dichlorofluorescein. Briefly, PC12 cells were seeded into 96-well plates (3.0x104 cells /well/

200μL) and cultured for 24 h. On the next day, cells were treated with 20μL of 7 h-aged fibril-

lated α-SN alone or in combination with the extracts. Mesencephalic neurons on the other

side were treated as previously described. In both cases, after treatment, cells were washed one

(mesencephalic neurons) or two (PC12 cells) times with FBS free DMEM and incubated with

20 μM DCFH-DA at 37˚C for 30 min. Extra DCFH-DA was removed by washing the wells

with phosphate-buffered saline (PBS, 0.01 M, pH 7.4). Fluorescence intensity was measured

using 480 nm excitation and 520 nm emission with a Varian Cary Eclipse fluorescent spectro-

photometer (Mulgrave, Australia) for PC12 cells and a Fluostar OPTIMA (BMG Labtech, Ger-

many) for mesencephalic neurons.

Results

Extracts obtained from ground root of S. pinnatifida have strong

inhibitory effects against α-SN fibrillation

To analyze the effects of S. pinnatifida root extracts on α-SN fibrillation, its fine- ground root

was dissolved in a 90% methanol solvent and sonicated. Subsequently, the lyophilized metha-

nolic extract (MeOHEx) was sub-extracted with n-hexane (HexEx), dichloromethane

(DCMEx), ethyl acetate (EtOAcEx) and n-butanol (BuOHEx) serially, based on a two-phase

solvent system. The purified recombinant α-SN protein was incubated under fibrillating
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conditions in the absence or presence of the different extracts of S. pinnatifida root. To exam-

ine the effects of the S. pinnatifida extracts, we used ThT to assess fibril formation. In the pres-

ence of some extracts, especially DCMEx and BuOHEx the fibril formation of α-SN after 24h

significantly decreased (see Fig 1A).

The result of CR absorbance assay is shown in Fig 1B. When amyloid fibrils interact with

CR, they induce a characteristic increase in absorption and a red shift in the absorption maxi-

mum. The analysis data of the spectral center of mass (Eq (1)) has been presented in S1 Table.

In the presence of incubated α-SN, the CR’s center of mass shifts from 497.7 to 514.2 nm.

Treatment of α-SN with HexEx had almost no effect on the shifting. However, in the present

of the other extracts the CR’s center of mass showed a 50% reduction in the red-shift. Never-

theless, we observed some changes in the pattern of CR absorbance when CR was added to the

pre-treated α-SN. In these cases other aggregated forms of the protein may interact with CR

and change the absorbance spectrum of CR. It is established that CR can interact with other

structures apart from amyloids [43].

To analyze in more detail the inhibitory activity of DCMEx on α-SN fibrillation, the kinetic

of α-SN fibrillation was investigated in the presence of 1, 10 and 100 μg/mL of DCMEx. As

shown in Fig 1C, the activity of DCMEx against fibrillation is dose dependent and at the low

concentration, 1μg/mL, DCMEx did not show any considerable inhibitory activity. In spite of

this result, we will show that the presence of 0.1 μg /mL DCMEx in the media has a protective

activity on the treated cell against the toxic oligomeric forms of α-SN.

As the fluorescence emission of ThT is significantly increased when ThT interacts with the

fibrillar forms of α-SN, it was used in fluorescence imaging study [44]. As shown in Fig 1D–1I,

we observed differences in the density of fluorescent particles in the different treatments. The

density of the fluorescent particles in each sample was calculated and the data was shown in

each image in a box.

We then investigated whether the treatment with the root extracts modulated the morphol-

ogy of α-SN aggregates using AFM. As shown in Fig 1J–1M, typical fibrils were abundantly

found in the untreated sample (J) but in the samples treated with the MeOHEx (K), DCMEx

(L), or BuOHEx (M) just non-fibrillar particles were formed.

CD analyses were carried out to qualitatively assess the structural changes induced on α-SN

protein by the presence of the S. pinnatifida extracts. Fig 1N illustrates the far-UV CD spectra

α-SN after 24 h of incubation in the presence and absence of the selected extracts compared to

the monomeric form of the protein. After incubation, α-SN had a strong negative peak

approximately at 218 nm, indicating beta sheet structures. The CD spectrum analysis of the

monomeric form of α-SN showed a random coil structure with a sharp negative peak around

200 nm. The samples treated with the extracts did not exhibit visible peaks around 200 or 218

nm, suggesting that, although the native monomeric form was not stabilized, protein aggre-

gates’ species did not have high contents of beta sheet structures.

S. pinnatifida extracts have radical scavenging activity and high levels of

flavonoids

It is believed that oxidative stress plays a major role in pathogenesis of neurodegenerative dis-

eases, especially PD [45]. To monitor the antioxidant activity of the extracts, DPPH dye assay

was carried out. As indicated in Table 1, most extracts except HexEx exhibit a strong antioxi-

dant activity with able to neutralize DPPH radicals.

We assumed that this antioxidant activity was due to the flavonoid content of the extracts.

We therefore measured the total flavonoid content of the crude extract and the sub-extracts

using AlCl3 (Table 1).
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The results of the AlCl3 assay showed that different levels of flavonoids were present in the

analyzed extracts. MeOHEx, DCMEx, and BuOHEx presented high level of flavonoids. In con-

trast HexEx contained considerably lower level of flavonoids. By using a specific dye for flavo-

noids in the TLC (diphenylboric acid ethanolamine) we also found with a different method

that MeOHEx, DCMEx, and BuOHEx contain flavonoids. Interestingly, when compared to a

standard of Baicalein (a well-known flavonoid) that was also loaded on the TLC, the DCMEx

showed a strong wide band at the same height like the baicalein band. A similar result was

obtained through HPLC analysis of the DCMEx, showing a peak with a retention time of 13

min., similar to the one observed when analyzing the baicalein standard with the chromato-

gram (S2 Fig).

In order to determine more detail of the extract, we also performed a MS analysis [46],

which confirmed the presence of baicalein in the sample. The MS analysis was performed on

the positive ion mode. The electrospray ionization of baicalein produced protonated molecular

ions at m/z 271.4. Based on the major product ions in the product ion mass spectrum, MRM

transition was selected m/z 271.4!123.1 for baicalein (S3 Fig).

Protective effects of S. pinnatifida extracts on PC12 cells against the

cytotoxicity of α-SN

To evaluate the toxicity of α-SN on PC12 cells and the protective effect of S. pinnatifida
extracts, we used the MTT assay on PC12 cells after incubation in the presence of α-SN fibril-

lated alone or fibrillated in the presence of MeOHEx, DCMEx, or BuOHEx. First we tested the

toxicity of the extracts alone. At the concentrations in which DCMEx had the highest signifi-

cant effect on α-SN aggregation (100 μg/mL, final concentration in PC12 media of 10 μg/mL)

it also showed high neurotoxicity (S4A Fig). However, we observed no toxicity when 1 μg/mL

of the extract was present in the media, which corresponded to adding 10 μg/mL to α-SN dur-

ing fibrillation.

No remarkable cytotoxic activity was observed when the cells were treated with 100 μg/mL

of MeOHEx or BuOHEx (S4A Fig). Our results show that short-term incubated α-SN (7 h

incubated in fibrillating conditions) had a significant lethal effect on PC12 cells (48% of cell

death) in comparison with the untreated cultured cells. Adding the protein pre-incubated with

100 μg/mL BuOHEx (10 μg/mL final concentration in the media) and with 10 μg/mL DCMEx

(1 μg/mL final concentration in the media) increased the viability of PC12 cells when com-

pared to untreated α-SN (Fig 2A).

In contrast, the addition of α-SN pretreated with 100 μg/mL of DCMEx (10 μg/mL final

concentration in the media) lead to a significant increase in cytotoxicity when compared to

treatment with α-SN alone, probably due to the toxicity of the extract in this concentration.

Table 1. Evaluation of the free-radical scavenging activities and total flavonoids content of the differ-

ent extractions of S. pinnatifida using DPPH and AlCl3 methods.

Extract Antioxidant activitya (%) Flavonoid contentb

(mg/g of the dried extract)

MeOHEx 92.17 ±0.17 1.51±0.06

HexEx 49.28±0.10 0.01±0.00

DCMEx 90.86 ±1.88 2.24±0.03

EtOAcEx 90.08 ±0.70 1.01±0.01

BuOHEx 96.02 ±1.90 1.42±0.01

a by using DPPH method after 30 min incubation and comparing with the standard sample using Eq (2).
b by using Al3Cl method

Data represents Mean ± SEM of three independent experiments

https://doi.org/10.1371/journal.pone.0184483.t001

S. pinnatifida against α-synuclein fibrillation and neurotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0184483 September 28, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0184483.t001
https://doi.org/10.1371/journal.pone.0184483


Annexin V/PI staining showed an increase in the number of apoptotic cells in the presence

of 7h-aged amyloid fibrils (Fig 2C). Pretreatment and the presence of BuOHEx with α-SN also

reduced the apoptotic rate (Fig 2D).

We also analyzed the antioxidant properties of S. pinnatifida extracts at the cellular level.

Staining with DCFH-DA showed that treatment with 7h-aged α-SN increased the intracellular

Fig 2. Assessment the cytotoxicity of α-SN on PC12 cells in the presence of the extracts. (A) Cell viability measuring by MTT assay. PC12 cells were

treated with 7 h-aged incubated α-SN in the absence and presence of different extracts. (B-D) Analysis of the cell death type using Annexin V/PI method:

Living cell (Annexin V−/PI−) populations were located in the lower-left quadrant, the apoptotic cells were in the lower-right quadrant, late apoptotic (Annexin

V+/PI+) populations were located in the upper-right quadrant, and necrotic cell (Annexin V−/PI+) populations were presented in the upper-left quadrant.(E)

ROS production assay. Fluorescence intensity was measured at 480nm excitation and 520nm emission. The significance was set at P<0.05.* The data are

the means of three independent experiments ± SEM.

https://doi.org/10.1371/journal.pone.0184483.g002
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ROS production (63%). However, pretreatment of α-SN with EtOAcEx or BuOHEx during

the incubation period and their presence in the cell culture significantly reduced ROS produc-

tion (Fig 2E).

S. pinnatifida extracts protect dopaminergic neurons against α-SN

oligomers and paraquat toxicity

We wanted to analyze the neuroprotective effect of DCMEx on dopaminergic mesencephalic

murine neurons. Based on the DPPH results, we also treated the cells with a mixture of EtOAc

and BuOH to combine the antioxidant and neuro-protective activity of both compounds.

In order to mimic the pathophysiological process and investigate the intracellular neuro-

protective properties of the extracts, we did not induce α-SN oligomer formation in the pres-

ence of the extracts, but these were only added to the medium together with α-SN treatment.

First, we determined the optimal treatment concentration of both extracts. For this, we treated

dopaminergic neurons with different concentrations of the extracts (1, 10, 100, 1000 μg/mL)

and counted the amount of TH+ neurons after the treatment. Whereas for DCMEx concentra-

tions higher than 1 μM were toxic to TH+ neurons, in the case of BuOHEx/EtOAcEx concen-

trations up to 100 μM showed no toxic effects (Fig 3A). We then analyzed the neuroprotective

effect of both extracts by treating dopaminergic neurons with α-SN monomers, an α-SN oligo-

mers-monomer mixture, rotenone and paraquat alone or in combination with 100 μg/mL

BuOHEx/EtOAcEx (in a ratio of 1/1(w/w) or 1 μg/mL DCMEx. Treatment with 12, 5 μM

of paraquat, 10 nM of rotenone or 10 μM of the α-SN oligomer-monomer mixture induced

morphological alterations and the loss of TH+ neurons (Fig 4A–4P). Our results show that

BuOHEx/EtOAcEx and also DCMEx protected TH+ neurons against paraquat- and α-SN olig-

omers induced toxicity (Fig 3B). However, no significant protection against rotenone was

observed (Fig 3B).

Finally, we also analyzed the anti-oxidant effect of both extracts on mesencephalic neurons.

Our results show 100 μg/mL BuOHEx/EtOAcEx or 1 μg/mL DCMEx alone reduced ROS pro-

duction. This effect could also be observed in the presence of α-SN oligomers (Fig 3C).

Fig 3. S. pinnatifida extracts are neuroprotective against paraquat and oligomeric α-SN toxicity on

dopaminergic neurons in primary mesencephalic cell cultures. (A) Box-Plot Graphic showing the effect of 1, 10,

100 and 1000 μg/ml to determine the non-toxic concentration of DCMEx (DCM) and BuOHEx / EtOAcEx (BE) on

dopaminergic TH+ neurons. (B) Box Plot Graphic showing the toxic effect of paraquat, rotenone and an α-SN oligomer/

monomer mixture on TH+ neurons and the protective effect of 100 μg/mL BuOHEx / EtOAcEx (BE) or 1 μg/mL DCMEx

(DCM) against this aggression. (C) Box-Plot Graphic showing the effect of α-SN oligomers on ROS production in

mesencephalic cells and its reduction in the presence of DCMEx, and BuOHEx / EtOAcEx. Whiskers represent Max

and Min values. * represents P < 0.05, ** represents P < 0.01, n.s. non-significant.

https://doi.org/10.1371/journal.pone.0184483.g003
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Discussion

This study examined the neuroprotective effects of S. pinnatifida extracts through their effects

on α-SN fibril formation and cytotoxicity. Since the medicinal properties of various species of

the Scutellaria genus have been verified in many studies [22,47,48] and the presence of two fla-

vones, skullcap flavone II and wogonin, have been detected in the root of S. pinnatifida [49],

we hypothesized that fibrillation and also cytotoxicity of α-SN could be modulated by S. pinna-
tifida extracts.

In order to achieve efficient extraction compounds from the dried root of S. pinnatifida, in

the first step a methanolic extraction and in the second step two-phase solvent extraction sys-

tem were employed. To achieve extracts with high contents of α-SN fibrillation/cytotoxicity

inhibitors along with ROS scavenging activity.

Fig 4. Fluorescence microscopy images of mesencephalic neurons. (A-P). Microscope images from immunostained mesencephalic

neuronal cultures. Scale bar 20 μm. Cells were fixed and stained against tyrosine hydroxylase (TH, green). Nuclei were then stained with

DRAQ5 (blue). TH+ neurons treated with DMSO (B), DCMEx (C) and BuOHEx / EtOAcEx (D) showed no morphological alterations when

compared to control (A). Treatment with Paraquat (E), Rotenone (F) and an α-SN-oligomer-monomer mixture (G) induced morphological

alterations in the form of neurite loss (arrows in E-G) and the previously described neuronal loss. This effect was not so prominent when α-

SN-monomers were used for treatment. DCMEx and BuOHEx/EtOAcEx co-treatment was protective against paraquat (I and M) and α-

SN-oligomer (K and O) toxicity. However, it was not able to rescue rotenone toxicity or its morphological phenotype (J and N).

https://doi.org/10.1371/journal.pone.0184483.g004

S. pinnatifida against α-synuclein fibrillation and neurotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0184483 September 28, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0184483.g004
https://doi.org/10.1371/journal.pone.0184483


In this study, assessment of α-SN fibril formation using different methods showed that

among different extracts, DCMEx and BuOHEx possessed the highest inhibitory activity

against α-SN fibrillation. The CD and AFM data indicated that co-treatment of α-SN with the

extracts reduced the content of fibrillar beta sheet structures. Thus, suggesting that in the pres-

ence of the extracts, the pathway for formation of high ordered fibrils with β-sheet structure

was inhibited and small non-fibrillar particles were produced. Different studies on the mecha-

nism of α-SN aggregation have shown that a common conformation exists between the toxic

oligomers of α-synuclein and other aggregate-forming proteins and that this involves a high

amount of β-sheet secondary structure that increases the protein-cellular membrane interac-

tions leading to cytotoxicity [50,51]. In previous studies, it has been shown that flavonoids

such as baicalein usually produce some oligomeric species that are not toxic (13).

Therefore, we measured the flavonoid content of the extracts. Our analysis showed that

among all extracts containing different degrees of flavonoids, DCMEx contained the higher

amount of flavonoids (2/244 mg baicalein/g of dry material). In comparison with Hex and

EtOAc based on solvent polarity, DCM, belongs to the partially polar solvent groups, with 9.1

dielectric constant and the potential to extract semi polar compounds such as flavonoids [52].

Furthermore, using TLC, HPLC and MS analysis we confirmed that there is a small amount of

baicalein in the extracts, especially in DCMEx; however more experiments need to be done in

order to confirm the data (e.g. NMR or IR analysis). Many flavonoids including baicalein and

epigallocatechin gallate are well-known multifunctional neuroprotective compounds against

misfolded-protein induced toxicity, especially α-SN [13,14]. It has also been proved that flavo-

noids are strong antioxidant components [23].

We observed a high correlation between the flavonoid content and the anti-fibrillation

properties of the extracts. By comparing the results collected from fibril formation assessment

with those obtained from the analysis of the flavonoids content, it seems that DCMEx, the

extract with the highest amount of flavonoid, is also the extract with the highest anti-fibrilla-

tion effects. In contrast HexEx has the lowest flavonoid content and the least inhibitory effect

on α-SN fibril formation. These findings suggest that the anti-fibrillation activity of DCMEx

may be attributed mainly to its flavonoids compounds, in accordance with previous studies

[16,53,54].

A critical event in PD is oxidative stress, which leads to the overproduction of ROS and is a

common pathogenic mechanism in neurodegeneration [55]. ROS has a deleterious impact on

vital cellular components, which cause cellular impairment and apoptosis [56]. Based on the

known antioxidant properties of flavonoids, we tested the antioxidant activity of S. pinnatifida
extracts using the DPPH assay. Our results show that MeOHEx and also its related sub-extracts

have a high free radical scavenging activity with a strong correlation between the flavonoid

content and the diminution of ROS production induced by α-SN. The results further showed

that EtOAcEx and DCMEx were the most active extracts in scavenging DPPH radicals. It is

reasonable to expect that higher level of flavonoids content leads to higher antioxidant activity

[57,58].

In a next step we tested the effect of inhibiting α-SN-aggregation with the extracts on their

cellular toxicity by comparing the effect of α-SN incubated alone or in the presence of the

extracts on PC12 cells. Our results show that incubating α-SN with BuOHEx had a significant

protective effect on cell toxicity when compared to the effect of 7h-aged α-SN alone, that lead

to cell death in concordance with previous studies [59]. It seems that BuOHEx has compounds

with the ability to prevent cytotoxicity of the aggregated α-SN in the primary stages of the

fibrillation process. On the other hand, co-treatment with α-SN and 100 μg/mL DCMEx and

its presence in the media lead to death of PC12 cells, suggesting that, at this concentration this

extract is toxic for PC12 cells. This toxicity seems to be concentration dependent, and 1 μg/mL
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of DCMEx was not toxic for PC12 cells. Interestingly, we did co-treatment dopaminergic neu-

rons with toxic oligomeric form of α-SN and 1 μg/mL DCMEx. At this concentration DCMEx

did not inhibit the fibrillation process of α-SN properly, suggesting that mechanism of its pro-

tective against toxicity of α-SN is different. In this regards, further studies need to be done sup-

plementary fractionation of the DCMEx to find a fraction with high anti-fibrillation effects but

without any considerable neurotoxicity.

Recent studies have shown that extracellular α-SN aggregates can be transported to neurons

and are mostly responsible for propagation of α-SN pathology[10]. We assumed that if the

neurons contaminate with extracellular α-SN similar to the pathophysiological situation of

PD, the extracts can help neurons against neurotoxicity of α-SN. We used a mixture of α-SN

containing α-SN aggregated in the absence of the extracts to treat primary mesencephalic neu-

ronal cultures containing dopaminergic neurons. In this experimental setup, we show that α-

SN oligomers increase ROS production and lead to death of dopaminergic neurons. Adding

BuOHEx/EtOAcEx (in a ratio of 1 to 1(v/v)) or DCMEx to the media reduced α-SN-oligomers

cytotoxicity and ROS production. Thus suggesting that the extracts were able to penetrate neu-

rons and exert their effect intracellularly. Moreover, in order to analyze the anti-oxidant prop-

erties of the extracts alone, we treated dopaminergic neurons with the pesticides paraquat and

rotenone. Paraquat induces NADPH depletion and ROS production in the cell and rotenone

is an inhibitor of the mitochondrial Complex I. Interestingly, our results show that both BuO-

HEx/EtOAcEx and DCMEx were able to reduce the toxicity of paraquat but not rotenone, sug-

gesting a protective effect against ROS production but not against mitochondrial function

impairment. Overall our results suggest that the neuroprotective effect of DCMEx and BuO-

HEx/EtOAcEx is due to a double effect inhibiting α-SN-aggregation and protecting against

ROS. Additionally, two important flavonoids, wogonin and skullcap flavone II, which have

been identified in the roots of S. pinnatifida [60,61] exhibit significant anti-inflammatory

effects [26,62]. The anti-inflammatory activity of wogonin is connected with its ability to

inhibit NF-κB pathway [26–28]. Evidence shows that scullcap flavones exert potent anti-

inflammatory effects by preventing the expression of monocyte chemotactic protein-1, a main

factor for the early inflammatory responses [63,64]. We speculate that this effect may play an

additional role in the neuroprotective effect of the extracts, but this hypothesis needs to be fur-

ther evaluated.

There is no prior study on the antioxidant properties of S. pinnatifida. High level of the fla-

vonoids in the extracts supports the importance of this plant as an excellent herbal source of

antioxidants and amyloid inhibitors. It seems obvious that the constituents present in the

extracts, such as flavonoids and especially baicalein, may have important roles for this activity.

However, further research needs to be done in order to explore the chemical constituents pres-

ent in the extracts, which are responsible for the anti-fibrillation activity.
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