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The aim of this paper is to develop amethod for ranking trapezoidal intuitionistic fuzzy numbers (TrIFNs) in the process of decision
making in the intuitionistic fuzzy environment. Firstly, the concept of TrIFNs is introduced. Arithmetic operations and cut sets over
TrIFNs are investigated. Then, the values and ambiguities of the membership degree and the nonmembership degree for TrIFNs
are defined as well as the value-index and ambiguity-index. Finally, a value and ambiguity-based ranking method is developed
and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes are expressed using
TrIFNs. A numerical example is examined to demonstrate the implementation process and applicability of the method proposed
in this paper. Furthermore, comparison analysis of the proposed method is conducted to show its advantages over other similar
methods.

1. Introduction

Multiattribute decision making (MADM) is an important
research field of decision science, operational research, and
management science. MADM is the process of identifying
the problem, constructing the preferences, evaluating the
alternatives, and determining the best alternatives. The clas-
sical decision making methods assume that accurate data
is available to determine the best alternatives among the
available options. However, in practice, due to the inher-
ent uncertainty and impression of the available data, it is
often impossible to obtain accurate information. Therefore,
decision making under fuzzy environment problem is an
interesting research topic having received more and more
attention from researchers during the last several years.

The fuzzy set [1] was extended to develop the intuitionistic
fuzzy (IF) set [2, 3] by adding an additional nonmembership
degree, which may express more abundant and flexible
information as compared with the fuzzy set [4–6]. Fuzzy
numbers are a special case of fuzzy sets and are of importance

for fuzzy multiattribute decision making problems [7–12]. As
a generalization of fuzzy numbers, an IFN seems to suitably
describe an ill-known quantity [13].

For decision making using the IF sets, it is required to
rank the IFNs. So far, several methods have been developed
for ranking the IFNs. Mitchell [14] interpreted IFNs as an
ensemble of ordinary fuzzy numbers and defined a char-
acteristic vagueness factor and a ranking method for IFNs.
Nan et al. [15] defined the concept of average indexes for
ranking triangular IFNs. Nehi [16] generalized the concept of
characteristic value introduced for the membership and the
nonmembership functions and proposed a ranking method
based on this concept. Mitchell [14] interpreted an IFN as
an ensemble of fuzzy numbers and introduced a ranking
method. Nayagam et al. [17]. described IFNs of a special type
and introduced a method of IFNs scoring that generalized
Chen and Hwang’s scoring for ranking IFNs. Grzegrorzewski
[18] defined IFNs of a particular type and proposed a ranking
method by using the expected interval of an IFN. By adding a
degree of nonmembership, Shu et al. [19] defined a triangular
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IFN (TIFN) in a similar way to the fuzzy number introduced
by Li [13] and developed an algorithm for IF fault tree
analysis. Wang and Zhang [20] defined the TIFNs and gave
a ranking method which transformed the ranking of TIFNs
into the ranking of interval numbers.

In this paper, TrIFNs are introduced as a special type
of IFNs, which have appealing interpretations and can be
easily specified and implemented by the decision maker.
The concept of the TrIFNs and ranking method as well as
applications are discussed in depth.

This paper is organized as follows. In Section 2, the
concepts of TrIFNs and cut sets as well as arithmetical
operations are introduced. Section 3 defines the concepts of
the value and ambiguity of the membership and nonmem-
bership functions as well as the value index and ambiguity
index. Hereby a ranking method is developed for ranking
TrIFNs. Section 4 formulates MADM problems with TrIFNs,
which are solved by the extended simple weighted average
method using the ranking method proposed in this paper. A
numerical example and a comparison analysis are given in
Section 5. This paper concludes in Section 6.

2. Basic Definitions

2.1. The Definition and Operations of TrIFNs
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membership and nonmembership functions of TrINF 𝑎 are
illustrated in Figure 1.

If 𝑎
2
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3
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2
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3
, an TrIFN 𝑎 degenerates to

TIFN. Hence, the TIFNs are considered as special cases of the
TrINFs.

In a similar way to arithmetic operations of IFNs, the
arithmetic operations of TrINFs can be defined as follows.
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Figure 1: TrIFN.
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positive real number. The arithmetic operations over TrIFNs
are defined as follows:
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From Definition 2, the following properties are proven:
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2.2. Cut Sets of TrIFNs. According to the cut sets of the IF
set defined in [3], the cut sets of an TrIFN can be defined as
follows.

Definition 3. An (𝛼, 𝛽)-cut set of 𝑎 is a crisp subset 𝑅, which
is defined as follows:
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Using (4) and Definition 5, it follows that 𝑎
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3. Characteristic of TrIFNs and the Value and
Ambiguity-Based Ranking Method

3.1. Value and Ambiguity of TrIFNs. In this section, the value
and ambiguity of TrIFNs are defined as follows.
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In a similar way, according to (9), the value of the nonmem-
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Likewise, according to (15), the ambiguity of the non-
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3.2. The Value and Ambiguity-Based Ranking Method. Based
on the above value and ambiguity of a TrIFN, a new ranking
method of TrIFNs is proposed in this subsection. A value-
index and an ambiguity-index for 𝑎 are firstly defined as
follows.

Definition 8. Let 𝑎 = (𝑎
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decision maker’s preference information.

𝜆 ∈ (0.5, 1] shows that the decision maker prefers
uncertainty or negative feeling; 𝜆 ∈ [0, 0.5) shows that the
decision maker prefers certainty or positive feeling; 𝜆 =

0.5 shows that the decision maker is indifferent between
positive feeling and negative feeling. Therefore, the value
index and the ambiguity index may reflect the decision
maker’s subjectivity attitude to the TrIFNs.
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2
) = 𝑉

𝜆
(𝑎

1
) + 𝑉

𝜆
(𝑎

2
) ,

𝑉

𝜆
(𝛾𝑎

1
) = 𝛾𝑉

𝜆
(𝑎

1
) .

(22)

Proof. According to Definition 2, we have

𝑎

1
+ 𝑎

2
= (𝑎

11
+ 𝑎

21
, 𝑎

12
+ 𝑎

22
, 𝑎

13
+ 𝑎

23
, 𝑎

14
+ 𝑎

24
;

𝑏

11
+ 𝑏

21
, 𝑏

12
+ 𝑏

22
, 𝑏

13
+ 𝑏

23
, 𝑏

14
+ 𝑏

24
) .

(23)

Using (11), (13), and (20), we obtain

𝑉

𝜆
(𝑎

1
+ 𝑎

2
) = 𝜆𝑉

𝜇
(𝑎

1
+ 𝑎

2
) + (1 − 𝜆)𝑉] (𝑎1 + 𝑎2)

= 𝜆

1

6

[ (𝑎

11
+ 𝑎

21
) + 2 (𝑎

12
+ 𝑎

22
)

+2 (𝑎

13
+ 𝑎

23
) + (𝑎

14
+ 𝑎

24
) ]

+ (1 − 𝜆)

1

6

[(𝑏

11
+ 𝑏

21
) + 2 (𝑏

12
+ 𝑏

22
)

+2 (𝑏

13
+ 𝑏

23
) + (𝑏

14
+ 𝑏

24
)]

= 𝜆

1

6

(𝑎

11
+ 2𝑎

12
+ 2𝑎

13
+ 𝑎

14
)

+ (1 − 𝜆)

1

6

(𝑏

11
+ 2𝑏

12
+ 2𝑏

13
+ 𝑏

14
)

× 𝜆

1

6

(𝑎

21
+ 2𝑎

22
+ 2𝑎

23
+ 𝑎

24
)

+ (1 − 𝜆)

1

6

(𝑏

21
+ 2𝑏

22
+ 2𝑏

23
+ 𝑏

24
)

= 𝑉

𝜆
(𝑎

1
) + 𝑉

𝜆
(𝑎

2
) ;

(24)

that is, 𝑉
𝜆
(𝑎

1
+ 𝑎

2
) = 𝑉

𝜆
(𝑎

1
) + 𝑉

𝜆
(𝑎

2
).

Furthermore, from

𝜆𝑎

1
= (𝜆𝑎

11
, 𝜆𝑎

12
, 𝜆𝑎

13
, 𝜆𝑎

14
; 𝜆𝑏

11
, 𝜆𝑏

12
, 𝜆𝑏

13
, 𝜆𝑏

14
) . (25)

Using (11), (13), and (20), we get

𝑉

𝜆
(𝛾𝑎

1
) = 𝜆𝑉

𝜇
(𝛾𝑎

1
) + (1 − 𝜆)𝑉] (𝛾𝑎1)

= 𝜆

1

6

(𝛾𝑎

11
+ 2𝛾𝑎

12
+ 2𝛾𝑎

13
+ 𝛾𝑎

14
)

+

1

6

(1 − 𝜆) (𝛾𝑏

11
+ 2𝛾𝑏

12
+ 2𝛾𝑏

13
+ 𝛾𝑏

14
)

= 𝛾 [𝜆

1

6

(𝑎

11
+ 2𝑎

12
+ 2𝑎

13
+ 𝑎

14
)

+

1

6

(1 − 𝜆) (𝑏

11
+ 2𝑏

12
+ 2𝑏

13
+ 𝑏

14
)]

= 𝛾𝑉

𝜆
(𝑎

1
) .

(26)

That is, 𝑉
𝜆
(𝛾𝑎

1
) = 𝛾𝑉

𝜆
(𝑎

1
).

Theorem 10. Let 𝑎
1
= (𝑎

11
, 𝑎

12
, 𝑎

13
, 𝑎

14
; 𝑏

11
, 𝑏

12
, 𝑏

13
, 𝑏

14
) and

𝑎

2
= (𝑎

21
, 𝑎

22
, 𝑎

23
, 𝑎

24
; 𝑏

21
, 𝑏
22
, 𝑏

23
, 𝑏

24
) be two TrIFNs.Then for

any 𝜆 ∈ (0, 1] and 𝛾 ∈ 𝑅+, the following equation is valid:

𝐴

𝜆
(𝑎

1
+ 𝑎

2
) = 𝐴

𝜆
(𝑎

1
) + 𝐴

𝜆
(𝑎

2
) , 𝐴

𝜆
(𝛾𝑎

1
) = 𝛾𝐴

𝜆
(𝑎

1
) .

(27)

Proof. According to Definition 2, we have

𝑎

1
+ 𝑎

2
= (𝑎

11
+ 𝑎

21
, 𝑎

12
+ 𝑎

22
, 𝑎

13
+ 𝑎

23
, 𝑎

14
+ 𝑎

24
;

𝑏

11
+ 𝑏

21
, 𝑏

12
+ 𝑏

22
, 𝑏

13
+ 𝑏

23
, 𝑏

14
+ 𝑏

24
) ,

𝜆𝑎

1
= (𝜆𝑎

11
, 𝜆𝑎

12
, 𝜆𝑎

13
, 𝜆𝑎

14
; 𝜆𝑏

11
, 𝜆𝑏

12
, 𝜆𝑏

13
, 𝜆𝑏

14
) .

(28)
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Using (14), (15), and (21), we obtain

𝐴

𝜆
(𝑎

1
+ 𝑎

2
) = 𝜆𝐴

𝜇
(𝑎

1
+ 𝑎

2
) + (1 − 𝜆)𝐴] (𝑎1 + 𝑎2)

= 𝜆

1

6

[ − (𝑎

11
+ 𝑎

21
) − 2 (𝑎

12
+ 𝑎

22
)

+2 (𝑎

13
+ 𝑎

23
) + (𝑎

14
+ 𝑎

24
) ]

+ (1 − 𝜆)

1

6

[− (𝑏

11
+ 𝑏

21
) − 2 (𝑏

12
+ 𝑏

22
)

+2 (𝑏

13
+ 𝑏

23
) + (𝑏

14
+ 𝑏

24
) ]

= 𝜆

1

6

(−𝑎

11
− 2𝑎

12
+ 2𝑎

13
+ 𝑎

14
)

+ (1 − 𝜆)

1

6

(−𝑏

11
− 2𝑏

12
+ 2𝑏

13
+ 𝑏

14
)

× 𝜆

1

6

(−𝑎

21
− 2𝑎

22
+ 2𝑎

23
+ 𝑎

24
)

+ (1 − 𝜆)

1

6

(−𝑏

21
− 2𝑏

22
+ 2𝑏

23
+ 𝑏

24
)

= 𝐴

𝜆
(𝑎

1
) + 𝐴

𝜆
(𝑎

2
) ,

𝐴

𝜆
(𝛾𝑎

1
) = 𝜆𝐴

𝜇
(𝛾𝑎

1
) + (1 − 𝜆)𝐴] (𝛾𝑎1)

= 𝜆

1

6

(−𝛾𝑎

11
− 2𝛾𝑎

12
+ 2𝛾𝑎

13
+ 𝛾𝑎

14
)

+

1

6

(1 − 𝜆) (−𝛾𝑏

11
− 2𝛾𝑏

12
+ 2𝛾𝑏

13
+ 𝛾𝑏

14
)

= 𝛾 [𝜆

1

6

(−𝑎

11
− 2𝑎

12
+ 2𝑎

13
+ 𝑎

14
)

+

1

6

(1 − 𝜆) (−𝑏

11
− 2𝑏

12
+ 2𝑏

13
+ 𝑏

14
)]

= 𝛾𝐴

𝜆
(𝑎

1
) .

(29)

That is, 𝐴
𝜆
(𝑎

1
+ 𝑎

2
) = 𝐴

𝜆
(𝑎

1
) + 𝐴

𝜆
(𝑎

2
) and 𝐴

𝜆
(𝛾𝑎

1
) =

𝛾𝐴

𝜆
(𝑎

1
).

Let 𝑎
1
and 𝑎

2
be two TrIFNs. A lexicographic ranking

procedure based on the value-index and ambiguity-index can
be summarized as follows.

Rule 1. If 𝑉
𝜆
(𝑎

1
) < 𝑉

𝜆
(𝑎

2
), then 𝑎

1
is smaller than 𝑎

2
.

Rule 2. If 𝑉
𝜆
(𝑎

1
) > 𝑉

𝜆
(𝑎

2
), then 𝑎

1
is greater than 𝑎

2
.

Rule 3. If 𝑉
𝜆
(𝑎

1
) = 𝑉

𝜆
(𝑎

2
) and 𝐴

𝜆
(𝑎

1
) > 𝐴

𝜆
(𝑎

2
), then 𝑎

1
is

smaller than 𝑎
2
.

Rule 4. If 𝑉
𝜆
(𝑎

1
) = 𝑉

𝜆
(𝑎

2
) and 𝐴

𝜆
(𝑎

1
) < 𝐴

𝜆
(𝑎

2
), then 𝑎

1
is

greater than 𝑎
2
.

Rule 5. If 𝑉
𝜆
(𝑎

1
) = 𝑉

𝜆
(𝑎

2
) and 𝐴

𝜆
(𝑎

1
) = 𝐴

𝜆
(𝑎

2
), then 𝑎

1
is

equal to 𝑎
2
.

Wang and Kerre [21] proposed some axioms which are
used to evaluate the rationality of a ranking method of fuzzy
numbers. It is easy to verify that 𝑉

𝜆
(𝑎) satisfies the axioms

𝐴

1
–𝐴
6
. Proofs that𝑉

𝜆
(𝑎) satisfies the axioms𝐴

1
–𝐴
3
and𝐴

5

are easily completed. In the following, we focus on verifying
that 𝑉

𝜆
(𝑎) satisfies the axioms 𝐴

4
and 𝐴

6
.

Theorem 11. Let 𝑎
1
and 𝑎

2
be two TrIFNs. If 𝑎

11
> 𝑎

24
and

𝑏

11
> 𝑏

24
, then 𝑎

1
> 𝑎

2
.

Proof. It is derived from (11) that

𝑉

𝜇
(𝑎

1
) =

1

6

(𝑎

11
+ 2𝑎

12
+ 2𝑎

13
+ 𝑎

14
) > 𝑎

11
,

𝑉

𝜇
(𝑎

2
) =

1

6

(𝑎

21
+ 2𝑎

22
+ 2𝑎

23
+ 𝑎

24
) < 𝑎

24
.

(30)

Combining with 𝑎
11
> 𝑎

24
, it directly follows that 𝑉

𝜇
(𝑎

1
) >

𝑉

𝜇
(𝑎

2
).

Similarly, it follows that

𝑉] (𝑎1) =
1

6

(𝑏

11
+ 2𝑏

12
+ 2𝑏

13
+ 𝑏

14
) > 𝑏

11
, (31)

𝑉] (𝑎1) =
1

6

(𝑏

21
+ 2𝑏

22
+ 2𝑏

23
+ 𝑏

24
) < 𝑏

41
, (32)

respectively. Combining with 𝑏
11
> 𝑏

24
, that 𝑉](𝑎1) > 𝑉](𝑎2).

Therefore,

𝜆𝑉

𝜇
(𝑎

1
) + (1 − 𝜆)𝑉] (𝑎1) > 𝜆𝑉𝜇 (𝑎2) + (1 − 𝜆)𝑉] (𝑎2) ,

(33)

that is, 𝑉
𝜆
(𝑎

1
) > 𝑉

𝜆
(𝑎

2
); hence, 𝑎

1
> 𝑎

2
.

Theorem 12. Let 𝑎
1
and 𝑎

2
be two TrIFNs. If 𝑎

1
> 𝑎

2
, then

𝑎

1
+ 𝑎

3
> 𝑎

2
+ 𝑎

3
.

Proof. According toTheorem 10, we have

𝑉

𝜆
(𝑎

1
+ 𝑎

3
) = 𝑉

𝜆
(𝑎

1
) + 𝑉

𝜆
(𝑎

3
) . (34)

Similarly, it follows that

𝑉

𝜆
(𝑎

2
+ 𝑎

3
) = 𝑉

𝜆
(𝑎

2
) + 𝑉

𝜆
(𝑎

3
) (35)

combining with 𝑎
1
> 𝑎

2
; then 𝑉

𝜆
(𝑎

1
) > 𝑉

𝜆
(𝑎

2
). Then,

𝑉

𝜆
(𝑎

1
+ 𝑎

3
) > 𝑉

𝜆
(𝑎

2
+ 𝑎

3
) . (36)

Hence, 𝑎
1
+ 𝑎

3
> 𝑎

2
+ 𝑎

3
.

4. An Extended MADM Method Based on
the Value and Ambiguity-Based Ranking
Procedure

In this section, we will apply the above ranking method of
TrIFNs to solve MADM problems in which the ratings of
alternatives on attributes are expressed using TrIFNs. Some-
times such MADM problems are called as MADM problems
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Table 1: TrIFNs decision matrix.

𝑎

1
𝑎

2
𝑎

3

𝑥

1

(0.26, 0.36, 0.46, 0.56; (0.34, 0.44, 0.54, 0.64; (0.12, 0.22, 0.32, 0.42;
0.16, 0.36, 0.46, 0.66) 0.24, 0.44, 0.54, 0.74) 0.04, 0.22, 0.32, 0.50)

𝑥

2

(0.50, 0.60, 0.70, 0.80; (0.30, 0.55, 0.70, 0.80; (0.34, 0.44, 0.54, 0.54;
0.42, 0.60, 0.70, 0.88) 0.22, 0.55, 0.70, 0.88) 0.34, 0.44, 0.54, 0.74)

𝑥

3

(0.55, 0.55, 0.68, 0.68; (0.54, 0.64, 0.74, 0.84; (0.36, 0.46, 0.56, 0.56;
0.28, 0.55, 0.68, 0.78) 0.46, 0.54, 0.74, 0.92) 0.16, 0.46, 0.56, 0.66)

𝑥

4

(0.66, 0.76, 0.86, 0.96; (0.55, 0.63, 0.78, 0.86; (0.18, 0.28, 0.38, 0.48;
0.64, 0.76, 0.86, 0.98) 0.55, 0.63, 0.78, 0.92) 0.08, 0.28, 0.38, 0.58)

with TrIFNs for short. Suppose that there exists an alternative
set 𝐴 = {𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑚
}, which consists of 𝑚 noninferior

alternatives from which the most preferred alternative has
to be selected. Each alternative is assessed on 𝑛 attributes.
Denote the set of all attributes by 𝑋 = {𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑚
}.

Assume that ratings of alternatives on attributes are given
using TrIFNs. Namely, the rating of any alternative 𝐴

𝑖
∈

𝐴 (𝑖 = 1, 2, . . . , 𝑚) on each attribute 𝑋
𝑗
∈ 𝑋 (𝑗 = 1, 2, . . . , 𝑛)

is an TrIFN 𝑎
𝑖𝑗
= (𝑎

𝑖𝑗1
, 𝑎

𝑖𝑗2
, 𝑎

𝑖𝑗3
, 𝑎

𝑖𝑗4
; 𝑏

𝑖𝑗1
, 𝑏

𝑖𝑗2
, 𝑏

𝑖𝑗3
, 𝑏

𝑖𝑗4
).Thus, an

MADM problem with TrIFNs can be expressed concisely in
the matrix format as (𝑎

𝑖𝑗
)

𝑚×𝑛
.

Due to the fact that different attributes may have different
importance, assume that the relative weight of the attribute
𝑥

𝑗
is 𝑤
𝑗
(𝑗 = 1, 2, . . . , 𝑛), satisfying the normalization

conditions: 𝑤
𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1. Let 𝑤 =

(𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑛
)

𝑇 be the relativeweight vector of all attributes.
The extended additive weighted method for the MADM
problem with TrIFNs can be summarized as follows.

Step 1. Identify the evaluation attitudes and alternatives.

Step 2. Pool the decision maker’s opinion to get the ratings
of alternatives on alternatives on attributes, that is, the TrIFN
decision matrix 𝐴 = (𝑎

𝑖𝑗
)

𝑚×𝑛
.

Step 3. Normalize the TrIFNs decision matrix. In order to
eliminate the effect of different physical dimensions on the
final decisionmaking results, the normalizedTrIFNs decision
matrix can be calculated using the following formulae:

𝑟

𝑖𝑗
= (

𝑎

𝑖𝑗1

𝑎

+

𝑗4

,

𝑎

𝑖𝑗2

𝑎

+

𝑗4

,

𝑎

𝑖𝑗3

𝑎

+

𝑗4

,

𝑎

𝑖𝑗4

𝑎

+

𝑗4

;

𝑏

𝑖𝑗1

𝑎

+

𝑗4

,

𝑏

𝑖𝑗2

𝑎

+

𝑗4

,

𝑏

𝑖𝑗3

𝑎

+

𝑗4

,

𝑏

𝑖𝑗4

𝑎

+

𝑗4

)

(𝑖 = 1, 2, . . . , 𝑚; 𝑗 ∈ 𝐵) ,

(37)

𝑟

𝑖𝑗
= (

𝑏

−

𝑗1

𝑎

+

𝑖𝑗4

,

𝑏

−

𝑗1

𝑎

+

𝑖𝑗3

,

𝑏

−

𝑗1

𝑎

+

𝑖𝑗2

𝑏

−

𝑗1

𝑎

+

𝑖𝑗1

;

𝑏

−

𝑗1

𝑏

+

𝑖𝑗4

,

𝑏

−

𝑗1

𝑏

+

𝑖𝑗3

𝑏

−

𝑗1

𝑏

+

𝑖𝑗2

,

𝑏

−

𝑗1

𝑏

+

𝑖𝑗1

)

(𝑖 = 1, 2, . . . , 𝑚; 𝑗 ∈ 𝐶) ,

(38)

respectively, where 𝐵 and 𝐶 are the subscript sets of benefit
attributes and cost attributes, and 𝑎+

𝑗4
= max{𝑎

𝑖𝑗4
| 𝑖 =

1, 2, . . . , 𝑚} (𝑗 ∈ 𝐵) and 𝑏+
𝑗1
= max{𝑏

𝑖𝑗1
| 𝑖 = 1, 2, . . . , 𝑚} (𝑗 ∈

𝐶).

Step 4. Calculate the weighted comprehensive values of
alternatives. Using Definition 2, the weighted comprehensive

values of alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are calculated as

follows:

̃

𝑆

𝑖
=

𝑛

∑

𝑗=1

𝑤

𝑗
𝑟

𝑖𝑗
, (39)

respectively. Obviously, ̃𝑆
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are TrIFNs.

Step 5. Rank all alternatives. The ranking order of the alter-
natives 𝐴

𝑖
can be generated according to the nonincreasing

order of the TrIFNs ̃𝑆
𝑖
(𝑖 = 1, 2, . . . , 𝑚) by using the value and

ambiguity- based ranking method proposed in Section 3.

5. An Application to an Investment Selection
Problem and Comparison Analysis of the
Results Obtained

5.1. An Investment Selection Problem and the Analysis Process.
Let us suppose there is an investment company, which wants
to invest a sum of money in best option. There is a panel
with four possible to invert the money: 𝑥

1
is a car company;

𝑥

2
is a food company; 𝑥

3
is a computer company; and 𝑥

4

is a arms company. The investment company must take a
decision according to the following three attitudes: 𝑎

1
is

the risk analysis; 𝑎
2
is the growth analysis; and 𝑎

3
is the

environment impact analysis. The four possible alternatives
𝑥

𝑖
(𝑥 = 1, 2, 3, 4) are evaluated using the TrIFNs by decision

maker under the above attributes, and the three attributes are
benefit attributes; the weighted normalized TrIFNs decision
matrix is obtained as shown in Table 1.

Using (39), the weighted comprehensive values of the
candidates 𝑥

𝑖
(𝑖 = 1, 2, 3, 4) can be obtained as follows:

̃

𝑆

1
= (0.22, 0.32, 0.42, 0.52; 0.13, 0.32, 0.42, 0.62) ,

̃

𝑆

2
= (0.44, 0.54, 0.64, 0.74; 0.35, 0.54, 0.64, 0.82) ,

̃

𝑆

3
= (0.37, 0.47, 0.57, 0.67; 0.28, 0.47, 0.57, 0.78) ,

̃

𝑆

4
= (0.46, 0.56, 0.66, 0.76; 0.40, 0.56.0.66, 0.82) ,

(40)

respectively.
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Table 2: Ranking of TrIFNS using different methods.

Ranking methods ̃

𝑆

1
̃

𝑆

2
̃

𝑆

3
̃

𝑆

4
Ranking results

Nan et al. [15] 0.7425 1.1775 1.0425 1.22 𝐴

4
≻ 𝐴

2
≻ 𝐴

3
≻ 𝐴

1

Nehi [16] (𝑘 = 0.5) 0.39 0.598 0.54 0.622 𝐴

4
≻ 𝐴

2
≻ 𝐴

3
≻ 𝐴

1

Wang and Nie [22] 0.37125 0.58875 0.52125 0.61 𝐴

4
≻ 𝐴

2
≻ 𝐴

3
≻ 𝐴

1

According to (11) and (13), the values of membership
functions and nonmembership functions of ̃𝑆

1
, ̃𝑆
2
, ̃𝑆
3
, and ̃𝑆

4

can be calculated as follows:

𝑉

𝜇
(

̃

𝑆

1
) = 0.389, 𝑉] (

̃

𝑆

1
) = 0.359;

𝑉

𝜇
(

̃

𝑆

2
) = 0.588, 𝑉] (

̃

𝑆

2
) = 0.566;

𝑉] (
̃

𝑆

3
) = 0.601, 𝑉

𝜇
(

̃

𝑆

3
) = 0.599;

𝑉

𝜇
(

̃

𝑆

4
) = 0.600, 𝑉] (

̃

𝑆

4
) = 0.582,

(41)

respectively.
Using (20), the value-indices of ̃𝑆

1
, ̃𝑆
2
, ̃𝑆
3
, and ̃𝑆

4
can be

obtained as follows:

𝑉

𝜆
(

̃

𝑆

1
) = 0.359 + 0.031𝜆, 𝑉

𝜆
(

̃

𝑆

2
) = 0.566 + 0.023𝜆,

𝑉

𝜆
(

̃

𝑆

3
) = 0.559 + 0.042𝜆, 𝑉

𝜆
(

̃

𝑆

4
) = 0.582 + 0.017𝜆,

(42)

respectively.
It is easy to know that 𝑉

𝜆
(

̃

𝑆

4
) > 𝑉

𝜆
(

̃

𝑆

2
) > 𝑉

𝜆
(

̃

𝑆

3
) > 𝑉

𝜆
(

̃

𝑆

1
)

for any given weight 𝜆 ∈ [0, 0.354) holds. Hence, the ranking
order of the four companies is 𝑥

4
≻ 𝑥

2
≻ 𝑥

3
≻ 𝑥

1
if

𝜆 ∈ [0, 0.354). In this case, the best selection is the company
𝑥

4
. However, if 𝜆 ∈ [0.354, 0.947], then 𝑉

𝜆
(

̃

𝑆

4
) > 𝑉

𝜆
(

̃

𝑆

3
) >

𝑉

𝜆
(

̃

𝑆

2
) > 𝑉

𝜆
(

̃

𝑆

1
), and the ranking order of the four companies

is𝑥
4
≻ 𝑥

3
≻ 𝑥

2
≻ 𝑥

1
, and the best selection is the company𝑥

4
.

If 𝜆 ∈ [0.947, 1] then 𝑉
𝜆
(

̃

𝑆

3
) > 𝑉

𝜆
(

̃

𝑆

4
) > 𝑉

𝜆
(

̃

𝑆

2
) > 𝑉

𝜆
(

̃

𝑆

1
), and

the ranking order of the four companies is 𝑥
3
≻ 𝑥

4
≻ 𝑥

2
≻

𝑥

1
, so the best selection is the company 𝑥

3
. Obviously, the

ranking order of the four companies is related to the attitude
parameter 𝜆 ∈ [0, 1].

5.2. Comparison Analysis of the Results Obtained by the
RankingMethod and OtherMethods. To further illustrate the
superiority of the decisionmethod proposed in this paper, we
apply some of the othermethods to rank the TrIFNs ̃𝑆

1
, ̃𝑆
2
, ̃𝑆
3
,

and ̃𝑆
4
.The ranking orders of ̃𝑆

1
, ̃𝑆
2
, ̃𝑆
3
, and ̃𝑆

4
can be obtained

as in Table 2.
From Table 1, if 𝜆 ∈ [0, 0.354), then the ranking results

obtained by the proposed method are the same as Nan’s
method, Nehi’s method, and Wang’s method. This shows
that the proposed method is effective. However, the decision
makers with different preference attitudes have different
choices. Namely, a risk-taking decisionmaker may prefer𝐴

3
,

whereas a risk-averse decision maker may prefer 𝐴
4
. These

factors cannot be reflected in Nan’s method, Nehi’s method,
and Wang’s method. Thus, the proposed method is more
reasonable.

6. Conclusion

In this paper, we have studied two characteristics of a TrIFN,
that is, the value and ambiguity, which are used to define
the value index and ambiguity index of the TrIFN. Then,
a ranking method is developed for the ordering of TrIFNs
and applied to solve MADM problems with TrIFNs. Due
to the fact that a TrIFN is a generalization of a trapezoidal
fuzzy number, the other existing methods of ranking fuzzy
numbers may be extended to TrIFNs. More effective ranking
methods of TrIFNs will be investigated in the near future.
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