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Abstract: Nanomaterial-mediated cancer therapeutics is a fast developing field and has been utilized
in potential clinical applications. However, most effective therapies, such as photodynamic therapy
(PDT) and radio therapy (RT), are strongly oxygen-dependent, which hinders their practical appli-
cations. Later on, several strategies were developed to overcome tumor hypoxia, such as oxygen
carrier nanomaterials and oxygen generated nanomaterials. Among these, oxygen species genera-
tion on nanozymes, especially catalase (CAT) mimetic nanozymes, convert endogenous hydrogen
peroxide (H2O2) to oxygen (O2) and peroxidase (POD) mimetic nanozymes converts endogenous
H2O2 to water (H2O) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a
fascinating approach. The present review provides a detailed examination of past, present and future
perspectives of POD mimetic nanozymes for effective oxygen-dependent cancer phototherapeutics.

Keywords: nanomaterials; enzyme mimetic; nanozymes; peroxidase mimetic; phototherapy; cancer
therapy; theranostics; dual enzyme; single atom

1. Introduction

Cancer is one of the leading causes of human mortality [1]. Major problems associated
with cancer treatment include the reoccurrence of tumors, tumor metastasis and resistance
to chemo drugs [2,3]. Chemotherapy, radiotherapy (RT), and surgery are currently the
most efficient treatment modalities, but have significant drawbacks including damage to
normal cells, tumor reoccurrence, poor visualization and tumor hypoxia [4–6]. Therapeutic
and diagnostic strategies for treating the cancer efficiently are needed. Recently, significant
attention has been focused on nanomaterial-mediated phototherapies such as photothermal
therapy (NmPTT) and photodynamic therapy (NmPDT) for the treatment of many diseases
including cancers, bacterial infections, etc. [7–12]. NmPTT relies on photothermal heat
and NmPDT mainly relies on reactive oxygen species (ROS). Compared to traditional
therapeutic modalities, NmPDT is highly selectivity, can be remote controlled, has low
systemic toxicity and is noninvasive [13,14]. In terms of its mechanism, PDT is strongly
dependent on oxygen, and insufficient oxygen in the tumor microenvironment (tumor
hypoxia) makes PDT less effective in in vivo systems [6]. Several factors contribute to tu-
mor hypoxia, such as excess extracellular matrix, low pH values, and immunosuppressive
factors resulting from altered metabolic pathways and abnormal tumor vasculature [15].
Several studies have found that tumor hypoxia promotes tumor growth [16,17]. Promising
results have been achieved in addressing tumor hypoxia by supplying tumors with oxygen
using oxygen carriers such as Hb oxygen carriers, non- Hb oxygen carriers and hybrid
proteins, etc. [18,19]. However, limited loading efficiency and release of O2 on oxygen
nanocarriers is still a limiting factor [20]. To this end, increased attention has been focused
on generating O2 on nanomaterials, specifically on enzyme mimetic nanomaterials, known
as “nanozymes”, to overcome tumor hypoxia and mediate cancer therapeutics [21]. Two
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different therapeutic approaches, direct killing (increasing ROS) and indirect killing (deple-
tion of ROS) have been used to investigate cancer therapeutics using various nanozymes,
mainly peroxidase (POD), oxidase (OXD), superoxide dismutase (SOD) and catalase (CAT)
mimetic nanomaterials [22]. The approach of increasing ROS promotes therapeutic ef-
ficiency particularly with the use of POD mimetics by overcoming tumor hypoxia in
oxygen-dependent PDT. POD mimetic nanozymes catalyze the endogenous H2O2 and
produce H2O and ROS in the tumor microenvironment. However, a detailed review of
POD mimetic nanozymes reports for cancer therapeutics is still lacking.

This review presents current advancements and future perspectives of the use of POD
mimetic nanozymes in oxygen-dependent cancer PDT. A graphical summary of the present
review is shown in Scheme 1.
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2. Nanozymes

Enzymes can serve as biological catalysts (e.g., POD, OXD SOD and CAT, etc.) for
various in vivo biological reactions [23]. Like all catalysts, enzymes have two fundamental
properties: firstly, they increase the catalytic reaction without being consumed themselves,
and secondly, they increase the reaction rates without altering the chemical equilibrium. In
general, natural enzymes consist mainly of two parts: a protein and a metallic cofactor. The
protein part contains various functional groups and facilitates absorption of the substrate
and provides an active site for substrate binding, whereas the metallic part (generally
metal ion or metallic complex) facilitates electron transmission. The simultaneous action
of the two parts enhances the enzyme’s catalytic activity [24]. Due to superior catalytic
activity and excellent substrate specificity, several enzymes have been used in various
applications such as agrochemical production, pharmaceutical processes, food industry
applications and biomedical applications [25–27]. However, the practical applications of
enzymes are restricted due to some serious limitations. As shown in Figure 1, enzymes
have disadvantages such as low operational stability, low sensitivity and high cost, etc.
Thus, an alternative strategy to mimic natural enzymes and enhance catalytic reactions is
urgently required.

Thus, considerable effort has been devoted to developing nanozymes which are simi-
lar to natural enzymes and can effectively catalyze the conversion of enzyme substrates
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under mild conditions, and exhibit similar catalytic efficiency and enzymatic reaction
kinetics [28]. As shown in Figure 1, nanozymes exhibit several advantages over natural
enzymes, including multifunctionality, tunability of catalytic activities, low cost, produc-
tion scalability, recyclability and high stability. Moreover, these nanozymes can function in
ambient conditions. Nanozyme activity can be tuned by simply varying their shape, struc-
ture, and composition, and considerable effort has focused on investigating the theoretical
mechanisms and kinetics of nanozymes [29].
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The advantages of nanozymes have led to their use in energy, environmental and
biomedical applications. For instance, nanozymes can be used to qualitatively and quanti-
tatively detect environmental toxins such as ions, molecules and organic compounds [30].
Nanozymes have also been used to treat bacterial infections, offering exciting broad-
spectrum antimicrobial properties with negligible cytotoxicities [31]. They have also been
used in biosensors for the rapid, reliable, and highly sensitive detection of various dis-
eases [32,33]. Recently, nanomaterial-based nanozymes have been extensively investigated
for use in the treatment of cancer through overcoming tumor hypoxia, since oxygen plays
a pivotal role in cancer development and treatment [34]. Various enzyme mimetic nanoma-
terials, such POD OXD, SOD and CAT mimetic nanozymes, have been extensively studied
for use in cancer therapeutics [34]. The present review mainly focuses on POD mimetic
nanomaterials in cancer theranostic applications, and offers a detailed discussion of current
advances and future perspectives.

2.1. Peroxidase Mimetic Nanozymes: Mechanisms and Role

Peroxidase is a natural enzyme found in wide variety of organisms, from plants to
humans to bacteria [35]. The main function of the peroxidase enzyme is the decomposition
of H2O2 to nontoxic components. H2O2 is a toxic byproduct formed by respiration of
O2 [36]. Peroxide enzymes act as detoxifying agents for free radicals (e.g., glutathione
peroxidase) and also aid defense against invading pathogens (e.g., myeloperoxidase).
Peroxidases are also widely used in bioanalytical and clinical chemistry applications for
the detection of analytes via colorimetric assays. As mentioned earlier, to overcome
the drawbacks of natural enzymes, significant effort has gone into developing effective
alternative POD mimetic enzymatic strategies.

The first evidence of Fe3O4 nanoparticles as peroxidase mimetic was reported in
2007 [37]. Several Fe-based nanocomposites have been found to exhibit activity very similar
to that of natural horseradish peroxidase (HRP) for converting H2O2 to O2 and hydroxyl
radicals [38]. To date, ≥40 NMs have been found that exhibit POD-like activity [39]. As
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shown in Figure 2, 3,3′,5,5′-Tetramethylbenzidine (TMB assay) is a promising protocol
for examining materials whether they exhibit POD-like activity or not [39,40]. In the
mechanism, NMs can decompose the H2O2 results oxidation of colorless TMB to colored
product (ox-TMB). The overall H2O2-TMB system process on NMs follows Michaelis–
Menten behavior, which strongly confirms the real enzymatic behavior of NMs. Nanozymes
have distinct advantages over enzymes, such as high stability, low cost, cyclical use and easy
multifunctionalization, making them potential candidates for various environmental and
biological applications [41,42]. This review mainly focuses on the biomedical applications
of POD mimetic NMs in cancer therapeutics.
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2.2. Peroxidase Mimetic Nanozymes in Oxygen-dependent Cancer Photodynamic Therapy

PDT is a modern and non-invasive cancer treatment modality [14,43]. As shown
Figure 3, in PDT, the first photosensitizer absorbs the incident light of the appropriate
wavelength and initiates the activation process [44]. The excited electrons react with the
tissue oxygen and generate cytotoxic ROS responsible for cell death. This process shows
that, for any efficient PDT effects, three main factors should be considered: (i) the pho-
tosensitizer, (ii) appropriate light wavelengths and (iii) dissolved oxygen in cells/tissue.
From the type I or type II PDT mechanisms, it is clear that PDT is oxygen-dependent.
Unfortunately, oxygen levels in solid tumors are very low, within micromolars (partial
pressure of O2 < 5 mmHg corresponding to 7 µM) [45]. This is mainly due to the aggres-
sive proliferation of cancer cells and limited blood supply available to solid tumors. Low
oxygen in tumors significantly impacts the efficacy of PDT despite its in vitro potential.
Efforts to overcome tumor hypoxia have focused on the production of O2 via catalytic
reactions [20,46,47], O2 carriers and delivery [48–50], and O2 independent photosensitiz-
ers [51–53]. However, improved efficacy requires the development of photosensitizers
to effectively mediate PDT by addressing tumor hypoxia. To this end, in recent years
more efforts have been devoted to developing enzyme mimetic materials, especially POD
mimetics, to efficiently overcome tumor hypoxia and mediate the PDT effects converting
intracellur/intratumoral H2O2 to H2O and ROS.
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With the discovery of the enzymatic properties of iron oxide nanoparticles (Fe3O4
NPs) and iron-based NPs (Au@Fe3O4 [54], Fe3O4 coated Ag [55], Pt48Pd52-Fe3O4 [56],
Fe3O4@Pt [57], metal organic framework-based MnFe2O4/C nanozymes, [58], etc.), new
attention has focused on bioapplications of peroxidaselike Fe3O4 nanostructures [38,59].
For instance, cobalt-doped Magnetoferritin (M-HFn) NPs (M-HFn-Cox Fe3-xO4) with dif-
ferent amounts of cobalt were successfully synthesized. By varying the amounts of cobalt
loading into M-HFn cores significantly enhances the peroxidaselike activity and efficacy
of visualizing the tumor-specific tissue [60]. Wang et al. reported cobalt-doped Fe3O4
(Co@Fe3O4) nanozymes that exhibited stronger peroxidase activity than Fe3O4 nanozymes
alone (100-fold higher affinity) [61]. As a result, Co@Fe3O4 nanozymes can efficiently
catalyze intracellular H2O2 under low doses, and show promising in vitro and in vivo anti-
tumor efficiency. In another report, An et al. developed a folate conjugated Fe3O4@C NPs
which exhibiting peroxidaselike activity. These POD-like activity of NPs significantly pro-
motes ascorbic acid-induced oxidative stress in cancer cells and maximizes the antitumor
efficiency [62]. Subsequently, Fe-based nanocomposites were applied to cancer combined
phototherapies by overcoming tumor hypoxia via POD-like activities. Zhang et al. fabri-
cated multifunctional chitosan-encapsulated Fe3O4 nanoparticles modified with CuS and
porphyrin (FCCP NPs) for multimodal image guided phototheranostics [63]. As shown in
Figure 4, FCCP NPs possess enhanced intrinsic peroxidase mimetic activity to generate
ROS from endogenous H2O2. The in situ generation of ˙OH as a therapeutic agent and
provide O2 for overcoming resistance to photodynamic therapy results in enhanced in vivo
therapeutic efficacy for the treatment of cancer tumors. Notably, Fe3O4 nanozyme also
believed to be CAT activity but authors did not distinguish the difference between the
POD-like activity and the CAT-like activity of Fe3O4 nanozyme. Liu et al. designed and
demonstrated a dual enzymelike activities of PtFe@Fe3O4 nanostructures [64]. Interestingly,
PtFe@Fe3O4 exhibited both the CAT and POD-like activities under acidic conditions which
could effectively overcome hypoxia. As a result, successful inhibition of pancreatic cell
growth was achieved via photo-enhanced enzyme catalytic therapy. Yang et al. designed
a hollow nitrogen-doped carbon nanospheres (HNCSs) and iron phthalocyanine (FePc)
for synergistic catalytic and dual phototherapy [65]. FePc/HNCSs simultaneously exhibit
POD- and CAT-like activities and facilitates to convert endogenous H2O2 into ROS and O2
for tumor catalytic therapy as well as enhance O2-dependent PDT.
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Aside from Fe-based POD-like nanozymes, other nanomaterials such as platinum (Pt),
palladium(Pd), Gold (Au) based nanocomposites, etc. have been examined for use in cancer
theranostics. For instance, Cai et al. designed a three-dimensional dendritic mesoporous
silica nanosphere (3D-dendritic MSN) material which contains a photosensitizer (Ce6)
and Pt NPs for hpoxia overcoming PDT [66]. The incorporated peroxidaselike Pt NPs
significantly alleviate the tumor hypoxia by decompostion of intracellular H2O2 to oxygen
species and provide sufficient O2 levels to the environment in the tumor for PDT. As a
result, this design shows an enhanced PDT effect of killing A549 cells, by overcoming
tumor hypoxia. Au NP-doped metal-organic frameworks (GIM) were shown to be pote-
nial candidates to treat hypoxic tumors, where GIM exhibited NIR light-induced glucose
oxidase (GOx) activity to generate endogenous H2O2, which was converted to O2 and
highly toxic ROS on GIM [67]. Zhang et al. repoted a NIR780 loated serum albumin folate
stabilized gold-doped mesoporous carbon (OMCAPs@ rBSA-FA@IR780) nanoprobes as a
multifunctional theranostic platform [68]. Besides the therapeutic platform, incorporating
Au NPs into mesoporous carbon can facilitate the action of POD mimitic activity and
generate ROS for intracellular oxidative damage of cancer cells. As shown in Figure 5,
Sheng et al. designed a hyaluronic acid shielded chlorin e6 (Ce6) loaded into a POD
mimic metal-organic framework (MOF) MIL-100 nanoparticles (CMH NPs) for synrgetic
chemo-PDT [69]. Besides, the generation of cytotoxic singlet oxygen (1O2) under NIR
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light irradiation also generates H2O2. Further, H2O2 converts to ·OH and O2 in a catalytic
cascade reactions and alleviates tumor hypoxia. Jana et al. reported a ultrasmall trimetallic
(Pd, Cu, and Fe) alloy nanozyme (PCF-a NEs) for ultrasound- and light-enhanced tumor
therapy [70]. PCF-a NEs exhibit a cascade POD and GSH peroidase mimitic activities
under circumneutral pH. Moreover, photothermal enhanced POD properties on PCF-a
NEs facilitate effective tumor cell apoptosis. Most recently, Zeng et al. designed biodegrad-
able POD mimetic boron oxynitride (BON) nanospheres (NSs) for efficient breast cancer
therapy [71]. Further, these POD mimetic BON NSs catalytically generate cytotoxic OH
radicals for successful inhibition of cancer cells both in in vitro and in vivo.
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In addition to the previously mentioned advantages of nanozymes in cancer thera-
peutics, several further POD mimetic nanozyme platforms such as Au@Co-Fe NPs [72],
CuO Nanorods [73], Fe3O4@MoS2-Ag nanozyme [74], Pd nanocrystals [75], and Pt hol-
low nanodendrites [76], N-doped spongelike carbon spheres (N-SCSs) [77], PEGylated
palladium nanozyme (Pd-PEG) [78], tungsten sulfide quantum dots (WS2 QDs) [79], nickel
disulfide (ND) nanozyme [80], iridium (Ir) nanoplates [81] and MoS2 [82] have been success-
fully utilized in antibacterial applications with significant outcomes. Table 1 summarizes
POD-based nanozyme applications in cancer phototherapeutics.
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Table 1. Recent reports on POD-based nanozyme-mediated cancer phototherapeutics.

S. No. Nanozyme Enzyme Mimetic Properties Application Ref.

1 Au2Pt-PEG-Ce6 POD, CAT Chemodynamic therapy/phototherapy [83]

2 SFO nanozyme POD, CAT Synergistic phototherapy [84]

3 Cu2MoS4 (CMS)
loaded with GOx CAT and GPOD activities CDT/starvation/photo/immunotherapy [85]

4 ZIF-8 NPs coated with
Ce6 and Cyt c POD, CAT PDT and protein therapy [86]

5 Au-Ag@HA NP POD Radiation/nanozyme/Ag+ combined therapy [87]

6 Au@HCNs POD and OXD Enzyme catalytic-PTT [88]

7 ABTS@PAH-CNts POD PTT [89]

8 PB-Ft NPs POD Chemo-PTT via ROS production [90]

9 PCN-224-Pt POD, CAT PDT [91]

10 AgPd@BSA/DOX POD ROS/hyperthermia/chemotherapy [92]

11 FeIII-doped C3N4
nanosheets

POD MRI guided PDT [93]

12 MIONzyme-GOx POD and GOx ROS induced damage [94]

13 PDAC NPs POD PTT/CDT/CHT combination therapy [95]

14 GQD-SPNs POD PTT enhanced cancer catalytic therapy [96]

15 FeN200@GOx@M POD combinational therapeutic approach (UTMD
and enzyme) [97]

16 Co9S8 NDs POD PTT/PDT [98]

Abbreviations: chlorin e6 (Ce6); polyethylene glycol (PEG); SnFe2O4 (SFO); Au-Ag@HA NP; gold nanoparticle core with a porous
hollow carbon shell nanospheres (Au@HCNs); PEGylated CMS@GOx; zeolitic imidazolate framework-8 (ZIF-8); dual lock-and-key type
activatable nanotherapeutic platform (ABTS@PAH-CNts), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); ceria nanocubes
(CN); Prussian blue-modified ferritin nanoparticles (PB-Ft NPs); bovine serum capped bimetallic silver palladium nanoparticles loaded
with doxorubicin (AgPd@BSA/DOX); iron oxide-based nanozymes loaded with glucose oxidase (MIONzyme-GOx); polydopamine
(PDA) and ammonium bicarbonate (NH4HCO3) coated and doxorubicin (Dox) loaded hollow cerium oxide (CeO2) NPs (PDAC NPs);
graphene quantum dots/semiconducting polymer nanocomposites (GQD-SPNs); ultrasound-targeted microbubble destruction (UTMD);
chemotherapy (CHT); Fe-Metal organic framework-based nanozyme (FeN); chemodynamic therapy (CDT); cobalt sulfide nanodots
(Co9S8 NDs).

3. Current Trends and Future Perspectives

As discussed earlier, several POD mimetic nanozymes have been successfully used to
overcome tumor hypoxia. However, the mechanism by which current POD mimetic NMs
generate cytotoxic ROS mainly relies on the amount of intracellular H2O2 and pH. Intracel-
lular H2O2 concentrations are very low, estimated at around (50 − 100 × 10−6 M) [64,99].
As a result, most nanozymes have limited therapeutic efficiency in the tumor microenvi-
ronment, and catalytic nanozyme therapy alone is not comparable to combination therapy.
To this end, some studies have shown that ROS generation on nanozymes can be improved
by photothermal therapy [64,88,100]. Zhang et al. fabricated a viruslike Fe3O4@Bi2S3
nanocatalyst (F-BS NCs) by simple ultrasound. Synergistic coupling of POD mimetic
Fe3O4 NPs with a narrow band gap semiconductor Bi2S3 (BS) significantly increased
POD mimetic activity [101]. As shown in Figure 6, MNP particles exhibit better enzyme
POD-like catalytic activity under mild temperatures compared to at room temperature/no
temperature applied. As a result, POD-like activity promotes the conversion frequency of
Fe3+/Fe2+ under mild hyperthermia effect on BS under 808 nm laser irradiation [102,103].
Furthermore, POD enzymatic reaction in the tumor microenvironment improves the yield
of ROS and resists the cancer under this mild photothermal effect.
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The synergistic effects of dual enzyme mimetic nanostructures in tumor therapy were
later investigated. Gao et al. reported a dual inorganic nanozyme-based nanoplatform of
Gold (Au) NPs and Fe3O4 NPs co-loaded mesoporous silica materials for nanocatalytic
tumor therapy [104]. Since Au NPs as a GOx mimic, so it will also catalyze β-D-glucose
oxidation into gluconic acid and H2O2, which is subsequently catalyzed by the peroxidase-
mimic Fe3O4 NPs to liberate high-toxic hydroxyl radicals to induce tumor-cell death by the
typical Fenton-based catalytic reaction. To further enhance the efficacy of dual nanozyme
catalytic therapy, Yi et al. fabricated Wonton-like Bismuth@poly vinyl pyrrolidine@gold
platinum (Bi@PVP@AuPt) NPs which exhibited both POD and oxidaselike activity. The sta-
ble dual enzymatic behavior of NPs will produce oxygen in hypoxic tumors. Applying the
hyperthermia effect to the dual nanozyme significantly promotes ROS generation, resulting
in good therapeutic outcomes under combined photothermal and nanocatalytic treatment.
Xu et al. designed glucose–oxidase (GOx)-loaded biomimetic Au–Ag hollow nanotriangles
(Au–Ag–GOx HTNs) for NIR light-triggered tumor therapy by regulating the tumor en-
vironment, where GOx in HTNs triggers the generation of gluconic acid and H2O2 [105].
Subsequently, H2O2 will be converted to O2 on the POD mimetic HTNs, eventually boost-
ing the formation of •OH radicals under NIR II light for efficient tumor therapy. Dong
et al. reported ceria nanozymes decorating uniform Bismuth sulfide nanorods (Bi2S3 NRs)
with dendritic mesoporous silica (Bi2S3@DMSN) material for tumor catalytic therapy [106].
Synthesized nanozymes exhibited a dual enzyme mimic such as POD and CAT properties
under acidic conditions, significantly overcoming tumor hypoxia and elevating oxidative
stress under hyperthermia. Recently, Alizadeh et al. reported pH-switchable POD and
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CAT mimic activities of hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers [107].
The POD activities of the as-synthesized nanoflowers were dominant at acidic pH whereas
the CAT activities were dominant at basic pH. Indeed, these catalytic materials produced
ROS by decomposition of H2O2 in both acidic and basic condition, resulting in good anti-
cancer behavior as well as cancer cell detection. Building on these advancements in dual
nanozymes and their efficacy in tumor treatment, Ai et al. fabricated a manganese dioxide
encapsulated selenium-melanin (Se@Me@MnO2) multishell nanozyme for intracellular
antioxidation [108]. Se@Me@MnO2 nanozyme exhibits multiple enzyme activities such
as CAT, SOD and glutathione peroxidase (GPx). This multishell platform can effectively
scavenge the ROS species via synergistic and fast electron transfer between Se, Me and
MnO2. These multienzyme mimetic nanoplatforms are good candidates for future tumor
therapy applications.

Single-atom-based nanozymes are being developed for various applications. Cost
effective and atomically dispersed single atom metal centers can significantly enhance
enzyme mimetic properties by maximizing the atomic utilization efficiency and density
of active sites. As a result, single atom-based platforms have been developed for vari-
ous kinds of enzymelike properties such as POD, SOD, CAT, OXD, etc. [109]. By using
the enzyme mimetic properties of single atoms, Xu et al. fabricated a zinc-based single
atom supported by a metal organic framework and observed excellent POD-like proper-
ties [110]. These POD-like activities further help to efficiently deactivate in vivo bacterial
infections. Huo et al. fabricated PEGylated single-atom Fe-containing nanocatalysts (PSAF
NCs) atoms and observed that the present Fe-based single atom could effectively trigger
intracellular H2O2 and selectively generate hydroxyl radicals (•OH) in acidic tumor envi-
ronments [111]. More recently, Wang et al. fabricated single-atom ruthenium as the active
catalytic site anchored in a metal-organic framework Mn3[Co(CN)6]2 with encapsulated
chlorin e6 (Ce6), which serves as a catalaselike nanozyme for oxygen generation [112].
Figure 7 presents a schematic representation of the detailed fabrication and in vivo appli-
cations. Single-atom Ru loading content can degrade intracellular H2O2 to O2 to relieve
hypoxia in solid tumors, leading to enhanced ROS generation, and finally causing apoptotic
cell death both in vitro and in vivo.

Despite nanozymes offering significant advantages such as high stability, low cost,
long-term stability and large scale production, several considerations/improvements are
needed for future practical applications. Some key considerations for future nanozymes in
cancer applications are as follows.

(i) Activity: Most nanozymes exhibit lower activity than natural enzymes, possibly due
to the additional surface conjugation on NMs, thus, the development of new surface
conjugation strategies to improve nanozyme activity is highly desired.

(ii) Sensitivity: Most nanozymes show good performance in in vitro studies but their
application in biomedical applications is still questionable. For example, POD mimetic
nanozymes in cancer therapy were designed to alleviate tumor hypoxia, but the
presence of in vivo endogenous H2O2 is at concentrations of a few micromolars, thus,
nanozymes must be ultra-sensitive to detect and decompose the H2O2 to O2.

(iii) Toxicity/biosafety: Unlike natural enzymes, the cytotoxicity effects and biocompati-
bility of nanozymes are still unconfirmed. Therefore, more research is needed prior to
the development of practical applications.

(iv) Selectivity: Most nanozymes can catalyze a broad range of substrates for multiple
enzyme activity. For example, some enzymes exhibit both POD and CAT or POD
and OXD mimetic activities. Although several studies have examined various types
of surface conjugation techniques to attain selectivity, a complete investigation of
catalytic mechanisms is still needed.

(v) Theoretical studies: Additional theoretical studies of nanozymes are needed to com-
bine both experimental and computational results to better understand their complete
mechanisms of nanozymes.
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(vi) Limited to cancer therapy: Currently, most nanozymes are limited to cancer therapy.
Nanozyme-mediated disease diagnostics and therapeutics should be applied to other
diseases as well as the environmental and agricultural domains.

(vii) Single atoms: Single atom nanozymes represent potential candidates for cancer
therapeutic applications. However, more studies are needed on long term cytotoxicity,
biosafety, stability and mechanisms.

(viii) Most nanozymes are limited to only POD, CAT, OXD and SOD. Future work should
explore nanozymes in terms of other enzyme mimetic activities for use in a wide
variety of applications.Biomolecules 2021, 11, x FOR PEER REVIEW 11 of 17 
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Figure 7. Schematic illustration of Ce6 loaded Ruthenium incorporated metal organic framework-based single atom
nanozyme (OxgeMCC-r SAE) in PDT. (a) Schematic representation of the fabrication of Ru-based single atom nanozyme.
(b,c) are molecular structure and H2O2 decomposition mechanisms of Ru-based nanozyme. (d) Schematic representation of
in vivo ROS mediated catalytic therapy on OxgeMCC-r SAE. Image was reproduced with permission from reference [112].
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Besides a good design of POD nanozymes, one should also consider the current
objective evaluation indicators in tumor treatment for significant future therapeutic im-
provements. By addressing all the concerns, the design/fabrication of novel and efficient
nanozymes will show considerable potential for a broad range of research for future
environmental, agricultural and biomedical applications.

4. Conclusions

In summary, this review presents past and current advancements in the development
of nanozymes, especially POD mimetic nanomaterials for oxygen-dependent phototherapy,
with a detailed explanation of the mechanisms and roles of POD mimetic nanozymes in
cancer therapeutics. The main obstacle of effective tumor phototherapy is tumor hypoxia.
Most phototherapy modalities are oxygen-dependent, and tumor microenvironments con-
tain insufficient oxygen for effective therapeutic application. To overcome this limitation,
we review the advantages of POD mimetic nanomaterials which can catalyze endogenous
H2O2 to H2O and ROS, thus overcoming tumor hypoxia. Further therapeutic improvement
can be achieved through combining therapeutic platforms such as mild PTT-induced en-
hancement of nanozyme activities and dual, multienzyme strategies. Future perspectives
and challenges facing the continued development of nanozyme applications are discussed
to elucidate directions for future nanozyme-based therapeutics and to transform clinical
settings. We believe the present review helps to provide a more systematic understanding
of the advantages, mechanisms and challenges of nanozymes and will facilitate the devel-
opment of novel POD mimetic nanozymes for efficient cancer phototherapy applications.
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