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Abstract

Background: Haplotype information is useful for many genetic analyses and haplotypes are usually inferred using
computational approaches. Among such approaches, the importance of single individual haplotyping (SIH), which
infers individual haplotypes from sequence fragments, has been increasing with the advent of novel sequencing
techniques, such as dilution-based sequencing. These techniques could produce virtual long read fragments by
separating DNA fragments into multiple low-concentration aliquots, sequencing and mapping each aliquot, and
merging clustered short reads. Although these experimental techniques are sophisticated, they have the problem of
producing chimeric fragments whose left and right parts match different chromosomes. In our previous research, we
found that chimeric fragments significantly decrease the accuracy of SIH. Although chimeric fragments can be
removed by using haplotypes which are determined from pedigree genotypes, pedigree genotypes are generally not
available. The length of reads cluster and heterozygous calls were also used to detect chimeric fragments. Although
some chimeric fragments will be removed with these features, considerable number of chimeric fragments will be
undetected because of the dispersion of the length and the absence of SNPs in the overlapped regions. For these
reasons, a general method to detect and remove chimeric fragments is needed.

Results: In this paper, we propose a general method to detect chimeric fragments. The basis of our method is that a
chimeric fragment would correspond to an artificial recombinant haplotype and would differ from biological
haplotypes. To detect differences from biological haplotypes, we integrated statistical phasing, which is a haplotype
inference approach from population genotypes, into our method. We applied our method to two datasets and
detected chimeric fragments with high AUC. AUC values of our method are higher than those of just using cluster
length and heterozygous calls. We then used multiple SIH algorithm to compare the accuracy of SIH before and after
removing the chimeric fragment candidates. The accuracy of assembled haplotypes increased significantly after
removing chimeric fragment candidates.

Conclusions: Our method is useful for detecting chimeric fragments and improving SIH accuracy. The Ruby script is
available at https://sites.google.com/site/hmatsu1226/software/csp.
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Background
Advances in experimental techniques for DNA sequenc-
ing and genotyping have made it possible to determine
many individual human genomes and detect variations,
such as single nucleotide polymorphisms (SNPs) [1,2].
This has brought about great progress in genome anal-
yses, such as genome-wide association studies (GWAS)
[3], inference of population structure [4], and expression
phenotypes [5]. However, most technologies give only
genotype information and most current research does not
determine the haplotype origin of the variations. Haplo-
types contain more detailed information than genotypes
and are valuable for GWAS [6], and for analyzing genetic
structures such as linkage disequilibrium, recombina-
tion patterns [1], and correlations between variations and
diseases [7].

Determining haplotypes experimentally is difficult, and
there are three main computational approaches for haplo-
type inference. The first approach is the statistical phasing
method, which infers population haplotypes from pop-
ulation genotypes using statistical computation [8-12].
Algorithms for statistical phasing have been developed in
response to technological advances for genotyping, and
its basis is that the diversity of haplotypes is limited,
and there are conserved haplotypes [13]. Because of the
strategy, statistical phasing does not work well in chromo-
somal regions which exhibit several different haplotypes,
particularly regions of low linkage disequilibrium. This
approach is also weak in inferring long haplotypes because
the complexity of population haplotypes increases expo-
nentially according to the number of SNPs.

In the second approach, haplotypes are inferred from
genotypes of pedigrees. For example, a child’s haplotypes
are determined from the genotypes of child and its par-
ents (trio-based haplotyping). The origin of child’s alleles
can be determined if only one of the parents has the
same alleles. However, the haplotypes of sites at which all
family members have the same genotype cannot be deter-
mined and, furthermore, family genotype data are not
always available. In addition, neither the statistical phas-
ing method nor this approach can identify spontaneous
mutations.

The third approach uses DNA sequencing data and is
called single individual haplotyping (SIH) or haplotype
assembly [14-22]. SIH utilizes the fact that each sequenced
read is derived from only one of the haplotypes. If a read
spans two or more heterozygous sites, the haplotype can
be determined from the co-occurrence of alleles in the
read. Two reads are determined to originate from the same
chromosome if they overlap at a region that has at least
one heterozygous site, and they have the same alleles at
these sites.

SIH did not attract much attention until recently, since it
needed long DNA sequencing reads that spanned multiple

heterozygous sites, and obtaining such reads quickly and
economically was difficult. However, this situation is
changing rapidly with the advent of new experimental
techniques, such as fosmid pool-based next-generation
sequencing [17,23,24], long read fragment technology
[25], and dilution-amplification-based sequencing [26]
that can produce virtual long reads. In these methods,
long DNA fragments are separated into distinct low-
concentration aliquots which each contain less than one
fragment per chromosomal region. After sequencing an
aliquot with a next-generation sequencer and mapping
short reads, clusters are formed in which the reads are
close to each other. A cluster corresponds to a long DNA
fragment and is supposed to be derived from a single
haplotype. Thus, virtual long reads can be obtained by
merging the short reads in a cluster (see Figure 1).

Although such experimental techniques are sophis-
ticated, they have the problem of producing chimeric
fragments whose left and right parts match different chro-
mosomes very well. Because long DNA fragments are
separated into aliquots randomly, there are cases where
an aliquot has some long DNA fragments derived from
the same region of different chromosomes and, conse-
quently, reads with different chromosomal origins are
regarded as one cluster and merged into a single fragment
(see Figure 1). In the process of developing MixSIH [22],
which is the first SIH algorithm that can evaluate the reli-
ability of a haplotype region, we have shown that such
chimeric fragments significantly decrease the accuracy of
SIH. This is because the chimeric fragments can lead to
opposite haplotypes between right and left of haplotype
regions.

In our previous study we detected chimeric fragments
under the condition that parents genotypes were given.
However, independence from pedigree data is one of the
advantages of SIH and, therefore, it is common to assume
that pedigree genotypes are not available. Even if pedigree
genotypes are available, there are regions whose haplo-
types are not determined from pedigree genotypes and
the chimeric fragments in such regions cannot be detected
with the previous method. The length of a reads cluster
and heterozygous calls in a reads cluster were also used for
detecting chimeric fragments [17]. The length of a reads
cluster which correspond to a chimeric fragment will be
larger than that of most reads clusters because reads with
different long DNA fragment origins are regarded as one
cluster and merged into one fragment. In addition, if there
are some heterozygous SNPs in an overlapped region
where reads with different haplotype origins coexist, these
SNPs will show heterozygous calls in a reads cluster.
Although some chimeric fragments will be detected with
cluster length and heterozygous calls, considerable num-
ber of chimeric fragments will be left behind because of
the dispersion of the cluster lengths, and non-detection of
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Figure 1 An illustration of dilution-based sequencing. (i) The DNA fragments are separated into multiple low-concentration dilutions. (ii) After
sequencing and mapping an aliquot, mapped reads form clusters which correspond to DNA fragments. (iii) Clusters are merged into read fragments
and result in natural fragments (a), (b) and a chimeric fragment (c). Chimeric fragments are produced when short reads derived from multiple DNA
fragments are regarded as one cluster.

the heterozygous calls in the overlapped regions due to the
lack of coverage and absence of heterozygous SNPs. For
these reasons, chimeric fragment detection method which
does not depend on pedigree genotypes and can detect
chimeric fragments which are overlooked by the cluster
length and the heterozygous calls is necessary to obtain
high quality assembled haplotypes.

In this paper, we propose a general method to detect
chimeric fragments without using pedigree genotypes.
Our method is based on the assumption that chimeric
fragments are derived artificially and differ from the bio-
logical conserved haplotypes in the population. Under
this assumption, we use population genotypes to evalu-
ate inconsistency between virtual long read and inferred
haplotypes.

Previous researches showed that the quality of haplo-
type inference will increase by integration of SIH and
statistical phasing [27-29]. These approach basically con-
sider the SNP fragments as reliable information sources
and use population haplotypes to supplement inferred
individual haplotypes. Therefore, these approaches will
not be suitable for preventing the effect of chimeric frag-
ments, which are unreliable and can lead to incorrect
haplotypes. Our research presents the importance of con-
sidering chimeric fragments in SIH and proposes a novel
strategy for integration by focusing on the process of
dilution-based sequencing.

We applied our method to two real datasets and showed
that the chimeric fragments could be detected with high
accuracy. Moreover, we compared the accuracy of multi-
ple SIH algorithm for before and after removing chimeric

fragments candidates. We found that accuracy of assem-
bled haplotypes improved considerably after chimeric
fragment candidates were removed using our method.
In addition, we found that SIH algorithm successfully
inferred long haplotypes and showed the usefulness of
SIH.

Methods
Notation
Throughout the paper, we denote chimeric fragment as
CF, and natural fragment as NF.

Because SIH is trivial for homozygous sites and because
it is usually much easier to determine the genotype than
to determine the haplotypes, we focus on heterozygous
sites and represent heterozygous alleles by a simple binary
representation. Fragments from which the homozygous
sites have been removed are called SNP fragments. SNP
fragments are represented by F = {

fi|i = 1, . . . , N
}

, and
fragment fi takes value fij ∈ {0, 1} at site j if fi covers the
site. We denote the set of sites which fi covers by X

(
fi
)
.

Statistical phasing method
In this paper, we describe a method to detect CFs by using
statistical phasing. The statistical phasing method esti-
mates haplotypes from population genotype data based on
the fact that the diversity of local haplotypes is low.

Here, we use the software PHASE (version 2.1.1) with
default settings for statistical phasing [10,11]. PHASE
infers haplotypes of the specified set of SNPs S using the
Gibbs sampling method which samples each individual in
a random order, updates the individual haplotypes under
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the assumption that all the other haplotypes are given,
and repeats this process. PHASE outputs several candi-
date haplotypes and their probabilities for each individual.
In detecting CFs, we are interested in the individual hap-
lotypes of the individual who is the target of SIH and
denote the set of candidate haplotypes for the individual
by H(p) =

{
H(p)

i |i = 1, . . . , M
}

, where M is the number

of candidates and H(p)
i is composed of the haplotype pair

H(p)

i0 and H(p)

i1 . H(p)
ij is composed of the set of H(p)

ijk (k ∈ S)

which represent the binary allele of the haplotype H(p)
ij at

site k. We denote the probability of H(p)
i for the individual

by P
(

H(p)
i

)
.

Chimeric fragment detection model
We model probabilities that a fragment fi is NF

(
Pn (

fi
))

and CF
(
Pc (

fi
))

, and develop an indicator for detecting
CF with these probabilities. Upon the calculation of the
NF and CF probabilities of a fragment, we obtain H(p) and
P

(
H(p)

i

)
by running PHASE for S = X

(
fi
)
.

The NF probability of fragment fi is composed of the
probability of the individual haplotypes and the probabil-
ity of the SNP fragment given the haplotypes:

Pn (
fi
) =

M∑
j=1

P
(

H(p)
j

)
Pn

(
fi|H(p)

j

)
,

Pn
(

fi|H(p)
j

)
= 1

2

(
Pn

(
fi|H(p)

j0

)
+ Pn

(
fi|H(p)

j1

))
,

Pn
(

fi|H(p)

jk

)
=

∏
l∈X(fi)

P
(

fil|H(p)

jkl

)
,

P
(

fil|H(p)

jkl

)
=

{
(1 − α) for fil = H(p)

jkl
α for fil �= H(p)

jkl ,

where α is a error term to deal with sequencing and
PHASE errors. In this paper, we use α = 0.01 (the effect
of changing α is described in the Additional file 1).

The CF probability is similar to the NF probability,
but the probability of SNP fragments given haplotypes
is slightly different. Pc(fi|H(p)

jk ) is calculated by assuming
that left and right parts of fi are derived from different
haplotypes in a haplotype pair:

Pc (
fi
) =

M∑
j=1

(
P

(
H(p)

j

) 1
2

1∑
k=0

Pc
(

f |H(p)

jk

))
,

Pc
(

fi|H(p)

jk

)
=

∑
l∈X(fi)

⎛
⎝∏

m≤l
P

(
fim|H(p)

jkm

) ∏
m>l

P
(

fim|H(p)

jk̄m

)⎞⎠ ,

where 0̄ = 1 and 1̄ = 0. Although we assume that the CF
changes the origin of haplotype only once, it is possible

that a CF changes the derivation many times over. How-
ever, such a CF would be rare and the CF probability given
above would, in such a situation, approximate the result
obtained by marginalizing over the switched sites.

Using these probabilities, we would like to define an
indicator that evaluates the degree of artificiality of
a recombinant SNP fragment which we will call the
‘chimerity based on statistical phasing’ (CSP). In principle,
we would like to use

CSP
(
fi
) = ln Pc (

fi
) − ln Pn (

fi
)

.

However, because the number of possible haplotypes
and their combinations increase exponentially and the
running time of PHASE increases according to SNP frag-
ment size, we use a sliding-window approach to calculate
CSP if the size of a SNP fragment is over sliding window
width:

CSP
(
fi
) = max

β∈X′(fi)

(
ln Pc

(
f (β ,β+W−1)
i

)
− ln Pn

(
f (β ,β+W )−1
i

))
,

where f (β ,β+W−1)
i is the partial fragment of fi which starts

from the βth site and whose size is W . X′ (fi
)

is X
(
fi
)

in
which X

(
f (γ ,γ+W−1)
i

)
is removed, where f (γ ,γ+W−1)

i is
the rightmost partial fragment. W is the sliding window
width and we use W = 5 for the default setting (see the
Additional file 1 for the effect of changing W ). In the pro-
cess of sliding window calculation, H(p) and P(H(p)

i ) are
obtained by running PHASE for S = X

(
f (β ,β+W−1)
i

)
.

We detect the CF candidates in a set of SNP fragments
by selecting the SNP fragments whose CSP are larger than
a threshold.

Cluster length and heterozygous calls for detecting
chimeric fragment
In the previous research, the length of a reads cluster and
heterozygous calls in a reads cluster were used for filtering
CFs [17]. Because a CF is produced when two long DNA
fragments are regarded as one reads cluster, the length
of reads cluster (cluster length) which corresponds to s
CF tends to be larger than that of reads clusters which
corresponds to NFs. Therefore, CFs can be detected by
selecting the SNP fragments whose cluster length are over
than a threshold. Moreover, if there are some heterozy-
gous SNPs in a overlapped region and there are enough
coverage, reads in a reads cluster will show heterozygosity.
Because there are several evaluation for heterozygous calls
in a reads cluster, we used three measure, the total number
of reads which cover minority allele (total heterozygos-
ity), maximum of the rate of the minority allele (maximum
heterozygosity), and average of the rate of the minority
allele (average heterozygosity) (see the Additional file 1
for the detailed definition). We compare the performance
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of CSP with that of methods based on cluster length and
heterozygosity.

Recovering SNP fragments from CF candidates
The CSP method might regard NFs as CF candidates when
the NFs differ from population haplotypes due to rare
variants or spontaneous recombination. To recover such
NFs from CF candidates, we use coverage data. Because
CFs are produced when an aliquot happens to contain
some DNA fragments which cover the same regions, CFs
would be distributed randomly. Therefore, if there are
many CF candidates that cover the same regions, they
would be NFs. We, therefore, recover the CF candidates
which fulfill a coverage threshold condition. However, CFs
might be accidentally located in a high coverage region
and, therefore, we run SIH for recovered SNP fragments,
calculate the chimerity based on inferred haplotypes, and
remove SNP fragments whose chimerity is larger than a
threshold. The detailed process and results are shown in
the Additional file 1.

Mixture model for SIH
We have previously developed a mixture model for SIH
(MixSIH) [22]. Our model provides a confidence score for
haplotype regions, and we could extract reliable haplotype
blocks using this confidence score.

Here, we give a brief explanation of MixSIH. The prob-
ability distribution of the observed SNP fragments F were
modeled by parameter �, which represents the phase
of each site. P(F|�) can be represented by the indi-
cator function that represents the haplotype origin of
fragments. We used the VBEM algorithm to optimize �

with the indicator function, and inferred haplotypes from
optimized �.

In SIH, the associations in each segment are almost
random if the number of connecting fragments is not
sufficient or there are many conflicting fragments. Such
sites often cause switch errors and, therefore, we need a
method to evaluate the reliability of the connection of the
haplotypes. With the optimized parameters, we defined
the connectivity at site j0 as a ratio of the marginal log
likelihoods:

connectivity(j0) = P(F|�)

P(F|�′)
,

where �′ correspond to a recombinant of � at site j0. The
connectivity measures the resilience of the assembly result
against swapping the two haplotypes at site j0.

We extended the idea of connectivity to give a confi-
dence score for a region. For the region

[
j1, j2

] (
j1 < j2

)
,

we defined the minimum connectivity (MC) sore as

MC
(
j1, j2

) = min
j1<j≤j2

connectivity(j) .

We can extract reliable assembled blocks by selecting
regions with high MC values.

CF detection based on trio-based haplotypes
We defined the chimerity used to detect CF by using trio-
based haplotypes in our previous research and use this
indicator to define the true dataset.

chimerity
(
fi
) = − ln

⎛
⎜⎜⎝ maxj=0,1 Pt

(
fi|H(t)

j

)
max j=0,1

k∈X(fi)
Pt

(
fi,≤k |H(t)

j

)
Pt

(
fi,>k |H(t)

j̄

)
⎞
⎟⎟⎠

Pt
(

fi|H(t)
j

)
=

∏
k∈X(fi)

P0
(

fik |H(t)
jk

)
,

P0
(

fik |H(t)
jk

)
=

{
(1 − α0) for fik = H(t)

jk
α0 for fik �= H(t)

jk ,

where H(t) =
(

H(t)
0 , H(t)

1

)
is the pair of true haplo-

types which are determined by trio-based haplotyping,
fi,≤k and fi,>k represent the left and right parts of fragment
fi divided at site k, and α0 is the sequence error rate term.
We define a CF as being an SNP fragment whose chimerity
is over a threshold.

Dataset and data processing
For the sequencing data, we used the data from Kaper
et al. [26] and Duitama et al. [17]. Kaper and cowork-
ers diluted and distributed long DNA fragments into
physically distinct aliquots, while Duitama and cowork-
ers partitioned long DNA fragments into distinct low-
concentration aliquots using fosmid clones. The aliquots
were sequenced using next-generation sequencers. After
mapping the short reads onto the reference genome, short
reads formed clusters in which the reads were close to
each other. Each cluster corresponded to a long DNA
fragment and was supposed to originate from the same
haplotypes and, therefore, the alleles observed in a cluster
could be merged into a SNP fragment. In the above pro-
cedure, CFs would be produced because an aliquot might
contain some long DNA fragments derived from the same
region of a different chromosome, and reads with different
chromosomal origins might be merged into a single SNP
fragment (Figure 1).

Both groups conducted analyses of the HapMap trio
child NA12878 from the CEU population [1]. NA12878
had about 1.65 × 106 heterozygous sites on an autosomal
chromosome and the haplotypes of about 1.36 × 106 sites
were determined by a trio-based phasing method [2].

We aligned Kaper’s data and Duitama’s data to a human
reference genome (hg18) using bowtie (version 1.0.0) and
bfast (version 0.7.0), respectively. We identified read clus-
ters that corresponded to long DNA fragments by using
the targetcut function of SAMtools (version 0.1.19), and
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converted the clusters into SNP fragments by majority
decision at the alleles of the heterozygous sites determined
by the 1000 genomes project [2]. SNP fragments whose
sizes were below 1 were discarded. Accordingly, 323,734
and 212,351 of SNP fragments were found for Kaper’s
data and Duitama’s data, respectively. The average SNP
fragment size in Kaper’s (Duitama’s) data was about 8.8
(22.6), and the average coverage of SNP fragments was
1.7 (2.9).

Next, we implemented filtering step for the reads cluster
data to filter CFs by using the cluster length and het-
erozygous calls. This step is based on the preprocessing
method proposed by previous research [17]. The reads
cluster were divided into multiple reads clusters at the
SNPs which show heterozygous calls. The heterozygous
call was defined so that either one of the following two
conditions were satisfied: (1) the number of reads which
contain minority allele is larger than half the average
coverage of the aliquot; (2) the number of reads which
contain minority allele is larger than half of the number
of reads which contain majority allele. The reads clus-
ter which is significantly large (> 30 kb for Kaper’s data
and > 45 kb for Duitama’s data) are divided into mul-
tiple reads cluster so that each cluster length is below
threshold (30 kb and 45 kb, respectively). Accordingly,
346,417 and 436,543 of SNP fragments were found for
Kaper’s data and Duitama’s data, respectively. The average
SNP fragment size in Kaper’s (Duitama’s) data was about
8.0 (10.2), and the average coverage of SNP fragments
was 1.7 (2.7). Hereafter, we designate this procedure as
filtering.

In addition, we also used the original SNP fragments
data of Duitama’s data which was downloaded from http://
owww.molgen.mpg.de/~genetic-variation/SIH/data/. We
designate this dataset as Duitama’s SNP fragments.

For statistical phasing, we used CEU population geno-
types downloaded from the 1000 genomes project. To
exclude the bias of related genotypes, the parents geno-
types were removed. In total, 61 genotypes including
NA12878 itself were used for PHASE. The influence of
the number of individuals is discussed in the Additional
file 1.

For SIH, we used ReFHap [17], FastHare [21], and
DGS [19], which were implemented by Duitama [17] in
addition to MixSIH.

Accuracy measure for CF detection
To evaluate the detection of CFs by CSP, we defined
true NFs and CFs by using chimerity. A true CF was
defined to be an SNP fragment which satisfies chimerity ≥
2 ln (α0/(1 − α0)), and a true NF was an SNP fragment
which satisfies chimerity < 2 ln (α0/(1 − α0)). However,
the chimerity of fragments for which haplotypes of the
region could not be determined by trio-based haplotyping

could not be calculated. For this reason, we removed such
fragments from the evaluation. We defined sensitivity and
specificity as the proportion of CFs which are detected
and the proportion of the NFs which are detected by
mistake, respectively.

Based on the chimerity threshold, the number of
NFs and CFs in Kaper’s data (before filtering) are
283,270 and 6,864, respectively, while the number of
NFs and CFs in Duitama’s data (before filtering) are
188,928 and 13,063, respectively. After filtering with clus-
ter length and heterozygous calls, the number of NFs
and CFs in Kaper’s data are 304,423 and 3,830, respec-
tively, while the number of NFs and CFs in Duitama’s
data are 384,857 and 6,381 respectively. The results of
Duitama’s SNP fragments are shown in the Additional
file 1.

The CF rate of Duitama’s data (before filtering) (6.5%)
is larger than that of Kaper’s data (before filtering) (2.4%)
because Duitama’s experimental approach tends to con-
tain long DNA fragments from the same regions in a
single aliquot, which results in CFs. Kaper separated long
DNA fragments into 196 aliquots so that each aliquot
would have a low concentration while Duitama sepa-
rated fragments into 32 aliquots. Moreover, the DNA
fragments in Duitama’s data are longer than those of
Kaper’s data and the longer the DNA fragments are,
the higher the probability that the DNA fragments
overlap.

Although it is better for SIH to have fewer CFs, one
cannot say unconditionally that Kaper’s data is better
than Duitama’s data. This is because longer DNA frag-
ments result in longer SNP fragments which are useful
for assembling haplotypes. Moreover, from the perspec-
tive of efficiency and cost, separating long DNA frag-
ments in more aliquots is difficult. For these reasons,
each of the experimental approaches has merits and
demerits.

Accuracy measure for SIH
To evaluate the accuracy of the partially assembled haplo-
type, we defined a pairwise accuracy measure in previous
research [22]. Let H(t) be the true haplotypes, and Ĥ =(

Ĥ1, Ĥ2, . . . , ĤB
)

be the inferred haplotypes blocks. A
pair of heterozygous sites j and j′ (j < j′) was defined
as consistent if

(
Ĥi,j, Ĥi,j′

)
=

(
H(t)

0,j , H(t)
0,j′

)
or

(
H(t)

1,j , H(t)
1,j′

)
,

and inconsistent otherwise, where Ĥi,j represents the
allele of the jth locus belonging to the ith haplotype seg-
ment. For each haplotype block, we count the consistent
and inconsistent pairs. The total numbers of consistent
and inconsistent pairs over all the haplotype blocks are
denoted by CP and IP, respectively. We defined precision
by CP/ (CP + IP). The detailed explanation is shown in
previous research [22].

http://owww.molgen.mpg.de/~genetic-variation/SIH/data/
http://owww.molgen.mpg.de/~genetic-variation/SIH/data/
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We also used other two accuracy measures, switch error
rate and QAN50 [17]. The switch error rate is defined as
the frequency of switch errors which are inconsistency
between inferred haplotypes and true haplotypes. The
QAN50 is remodeled from N50 so that it takes consis-
tency between inferred haplotypes and true haplotypes
into account. In short, prediction is divided into smaller
haplotype blocks that do not contain any switch errors,
and QAN50 is N50 of divided inferred haplotypes with
some adjustments.

Results and discussion
Detection of chimeric fragments
We compared the CSP density distributions for NFs and
CFs of the data before filtering (Figure 2). The CSP of CFs
shows a tendency to be larger than that of NFs. This result
suggests that the CFs are regarded as artificial recom-
binant haplotypes and hence differ from the biological
haplotypes which exist in the population. There are peaks
in the CSP density distributions at 4.6 and 9.2. These peaks
correspond to SNP fragments which are inconsistent with
statistically phased haplotypes and are consistent when
the SNP fragment changes the derivation to another
haplotype. The CSP is around 4.6 (≈ − ln (α/(1 − α))

when a SNP fragment changes the haplotype origin at
the first site from the end, and the CSP is around 9.2
(≈ −2 ln (α/(1 − α)) when a SNP fragment changes the
haplotype origin at the second site from the end. For
W = 5, the CSP of CFs which are inconsistent with sta-
tistically phased haplotypes is expected to be around 9.2
because in that case the SNP fragment is recombinant at
the second site from the end in the sliding window calcula-
tion. Actually, 74.1% (71.9%) of CFs in Kaper’s (Duitama’s)
data are between CSP = 7 and CSP = 12, and 1.5% (9.7%)

of NF are within the same bounds. The peak at 4.6 is
likely to be caused by sequencing and statistical phasing
errors.

Figure 3 shows the ROC curves of CSP, cluster length,
and total heterozygosity for each dataset before filtering.
The ROC curves of maximum heterozygosity and average
heterozygosity are inferior to that of total heterozygosity,
and are shown in the Additional file 1. The area under the
curve (AUC) of CSP for Kaper’s data is 0.97 and the AUC
for Duitama’s data is 0.88. These values are higher than
those of cluster length (0.71 for Kaper’s data and 0.85 for
Duitama’s data) and total heterozygosity (0.80 for Kaper’s
data and 0.82 for Duitama’s data). The AUC values of clus-
ter length are lower than that of CSP, especially in the
case of Kaper’s data, and this is because the cluster length
of NFs and CFs overlap significantly (see the Additional
file 1 for the distribution of cluster length of NFs and CFs).
The AUC values of total heterozygosity are lower than
that of CSP and this is because there are considerable CFs
which do not show heterozygosity due to the lack of cov-
erage and absence of heterozygous SNPs in overlapped
regions. Moreover, sequencing error will disturb to distin-
guish NFs and CFs because sequencing errors in NFs will
bring heterozygous calls and such NFs might be regarded
as CFs by mistake. These results show the high perfor-
mance of the detection of CFs using CSP, regardless of
the experimental conditions. The difference between the
AUC values of CSP for each dataset might be caused by
the error rate in SNP fragments; The SNP fragment error
rate of Duitama’ data is 4.0% and that of Kaper’s data is
1.2% (see the Additional file 1 for the SNP fragment error
rate calculation).

Figure 4 shows the Venn diagrams of CFs detected
by CSP, cluster length, and total heterozygosity for each

Figure 2 Comparison of CSP density distributions for NFs and CFs. (A) and (B) are the distributions of Kaper’s data and Duitama’s data,
respectively.
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Figure 3 The ROC curves of CSP, cluster length, and total heterozygosity for classification of CFs and NFs. The ROC curves are obtained by
changing the threshold of CSP, cluster length, total heterozygosity, respectively. There is a region that the data point of the ROC curve of total
heterogeneity for Kaper’s data is absent, and hence, the ROC curve is supplemented (shown as gray line). (A) and (B) correspond to Kaper’s data
and Duitama’s data, respectively.

dataset. The threshold of each measure was set so that
(1-specificity) was under 0.1. In Kaper’s data, the num-
ber of CFs which were detected with CSP was largest, and
about 94% of CFs which were detected with either cluster
length or total heterozygosity were also detected with CSP.
In Duitama’ data the number of CFs which were detected
with CSP was slightly lower than that of CFs detected
with cluster length, but about 14% of CFs detected with
CSP were detected with neither cluster length nor total
heterozygosity. These results also show that CSP is an
effective indicator for detecting CFs which are detected
with neither cluster length nor heterozygosity. Since there
are significant number of CFs which are detected only
with cluster length and heterozygosity calls, we compare
the SIH accuracies of the SNP fragments that are filtered
with cluster length and heterozygous calls with those of
the SNP fragments that are further filtered with CSP, and

examined the usefulness of CSP in SIH in the following
section.

SIH accuracy after removing suspicious CFs by using CSP
We defined a CF candidate as a SNP fragment whose CSP
was larger than 7, and removed these from SNP frag-
ments. We hereafter represent the SNP fragments filtered
with cluster length and heterozygous calls as “filtered”,
and the SNP fragments further filtered with CSP as “fil-
tered+CSP”. The CSP threshold was determined so that
many CFs were removed while avoiding a high false-
positive rate; many CFs had a CSP of around 9.2 and there
were many NFs with around CSP = 4.6 (Figure 2). With
this procedure, 1.6% (5,375/346,417) of Kaper’s data and
3.8% (16,715/436,543) of Duitama’s data were removed.
The removed fragment rate for Duitama’s data was higher
than that for Kaper’s data because Duitama’s data would

Figure 4 The Venn diagrams of CFs detected by CSP, length, and total heterozygosity. The number in each cell is the number of CFs in the
corresponding category. The threshold for CF detection of each measure was set so that the 1-specificity was under 0.1. (A) and (B) correspond to
Kaper’s data and Duitama’s data, respectively.
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contain more CFs because of the experimental approach
(see Section ‘Dataset and data processing’ for a detailed
explanation).

Figure 5 shows the accuracies of MixSIH, ReFHap,
FastHare, and DGS for each dataset: filtered with clus-
ter length and heterozygous calls (filtered); further filter-
ing with CSP (filtered+CSP). The precision of MixSIH
increased from about 0.972 to 0.985 at (CP+IP) = 1.5 ×
107 for Kaper’s data, and increased from about 0.950
to 0.966 at (CP+IP) = 5.0 × 107 for Duitama’s data.
The precision of other algorithm increased likewise. In
addition, the precision for Duitama’s SNP fragments also
increased after removing CFs candidates with CSP (shown
in the Additional file 1). Thus, CSP increases SIH accuracy
by removing CF candidates which would have a serious
influence.

In addition, (CP+IP) for Duitama’s data is larger than
that for Kaper’s data because the SNP fragment size and
coverage are larger. The precision of Kaper’s data is higher
because it contains fewer CFs and the SNP error rate
is lower; the decrease of (CP+IP) is lower for the same
reason.

Tables 1 and 2 show the switch error rate and the
QAN50 of each algorithm for each dataset, respectively.
In these analyses, MC of MixSIH were set to 10. The
switch error rate improved after removing suspicious CFs
in all conditions. This result is consistent with the result
based on pairwise accuracy measure and shows the use-
fulness of removing CFs with CSP. Switch error rates of
MixSIH were lowest in all conditions and this suggests
that MixSIH succeeds to extract reliable haplotype regions
with MC values.

The QAN50 also improved after removing suspicious
CFs in all conditions excluding the QAN50 of MixSIH
at MC = 10. The QAN50 of MixSIH at MC = 10
were lowest in those of other algorithm and did not
improve after removing CF candidates. This is because
QAN50 does not contain the penalty of connecting
wrong haplotypes and will improve just by connect-
ing two haplotypes blocks randomly with probability
0.5, and is inappropriate to evaluate extracting reliable
haplotypes.

From these results, we concluded that CSP is an efficient
indicator to improve SIH accuracy by removing suspicious
CFs.

Assembled haplotype block size
We examined the size distribution of assembled haplotype
blocks. The haplotypes were inferred from each dataset
in which the fragments with CSP larger than 7 were
removed. Table 3 shows the number of haplotype blocks
that contain the certain range of the number of phased
SNPs for each dataset. For comparison, the number of
SNP fragments that cover the certain range of the number
of SNPs are also shown.

The averages of haplotype block size are about 19.2 and
42.6 for Kaper’s data and Duitama’s data, and they are
larger than the averages of SNP fragment size (8.0 and
10.2, respectively). Moreover, the number of haplotype
blocks that contain more than 100 SNPs are larger than
the number of SNP fragments for both dataset. These
results suggest that MixSIH succeeds to assemble haplo-
types from SNP fragments. 1.8% and 12.9% of haplotype
blocks in Kaper’s data and Duitama’s data contain more

Figure 5 Precision curves based on consistent pair counts. The x-axis represents the number of predicted pairs on a log scale. MC of MixSIH was
changed from 0 to 10. The accuracies of the data filtered with cluster length and heterozygous calls (filtered) (filled point symbols) and the further
filtered data, in which fragments with CSP > 7 are removed (filtered+CSP) (empty point symbols), are shown for Kaper’s data (A) and Duitama’s data
(B): ◦ MixSIH; 	 ReFHap; � FastHare; 
 DGS.
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Table 1 The switch error rate (%) of each SIH algorithm for
data (filtered) and data (filtered+CSP)

MixSIH ReFHap FastHare DGS

(A)
filtered 0.67 1.54 1.59 1.73

filtered+CSP 0.52 1.22 1.28 1.38

(B)
filtered 2.75 3.22 3.28 3.47

filtered+CSP 2.13 2.77 2.84 3.03

MC of MixSIH is set to10. (A) and (B) correspond to Kaper’s data and Duitama’s
data, respectively.

than 100 phased SNPs, and the ratio of phased SNPs
in such long haplotype blocks to total SNPs are about
13.1% and 53.8%, respectively. This result suggests that
SIH is able to determine long haplotypes which are not
determined by statistical phasing.

In addition, the haplotype blocks in Duitama’s data
tend to be longer than those of Kaper’s data because
the SNP fragment size and coverage are larger. This
result shows that SIH will be able to infer longer hap-
lotypes in accordance with improvements of sequencing
technologies.

Comparison of MixSIH and PHASE
The strong and weak points of SIH and statistical phas-
ing will differ because they use different information
for inferring haplotypes. For example, SIH cannot infer
haplotype regions which lack SNP fragments because
of sequencing and mapping difficulties. Statistical phas-
ing is weak in determining haplotype regions where
linkage disequilibrium values are high and there are
multiple haplotypes in population. To investigate these
differences, we compared the reliabilities of MixSIH and
PHASE.

We selected 10,000 regions in chromosome 1 randomly
so that each region had five SNP sites and the haplotypes
of the regions were determined by trio-based haplotyp-
ing. We used Kaper’s data (filtered) and Duitama’s data
(filtered) for SIH in this section. Figure 6 shows the MC
value and the maximum probability of the PHASE for each
region. The x-axis is ln(1.001 − max P), where max P is

Table 2 QAN50 (kb) of each SIH algorithm data (filtered)
and data (filtered+CSP), in which fragment with CSP > 7
are removed

MixSIH ReFHap FastHare DGS

(A)
filtered 16.6 27.3 27.1 26.8

filtered+CSP 16.6 27.5 27.4 27.2

(B)
filtered 32.7 69.2 68.4 67.7

filtered+CSP 32.5 70.4 70.0 68.6

MC of MixSIH is set to10. (A) and (B) correspond to Kaper’s data and Duitama’s
data, respectively.

Table 3 The number of the SNP fragments which cover the
certain range of the numbered of SNPs (before SIH) and
the number of haplotype blocks which contain the certain
range of the number of phased SNPs (after SIH)

–10 11–20 21–50 51–100 101–200 201–

(A)
Before SIH 261,537 65,429 18,894 540 16 1

After SIH 28,631 10,503 11,186 3,998 923 72

(B)
Before SIH 291,495 92,104 49,092 3,652 192 8

After SIH 15,273 4,037 6,039 4,882 3,267 1,202

(A) and (B) correspond to Kaper’s data and Duitama’s data, respectively.
Note that a SNP can be contained in multiple SNP fragments and the halotype
blocks do not overlap each other. The first row defines the range of the number
of SNPs.

the maximum haplotypes probability of PHASE for the
region. We used 1.001 to deal with the case that max P =
1.0. The vertical dotted line corresponds to the maxi-
mum probability above which the precision of PHASE
is over 0.9, and the horizontal dotted line corresponds
to the MC value above which precision of MixSIH is
over 0.9 (see the Additional file 1 for the calculation of
precision).

Table 4 shows the number of regions for each division
created by the previously noted dotted lines. In Duitama’s
data, the rates in upper left division and lower right
division are 8.4% and 22.2%, respectively. This result sug-
gests that there are chromosomal regions for which SIH
successfully infers the haplotypes and statistical phasing
fails, and vice versa. The rate in the lower right divi-
sion of Duitama’s data decreases from 22.2% to 14.1%
when we remove the regions which contain sites that lack
SNP fragments. This result suggests that many regions
where SIH does not work are the result of a lack of SNP
fragments.

Moreover, the rate in the upper divisions for Kaper’s
data and Duitama’s data are 39.3% and 70.9%, respectively.
The rate for Duitama’s data is larger than that for Kaper’s
data because SNP fragment size and coverage are larger.
This result suggests that SIH results will be improved just
by getting larger and more SNP fragments.

In summary, there are regions where either SIH or sta-
tistical phasing can infer the haplotypes for these data. In
the case of SIH, a shortage of data is likely to be the main
reason for inference failure. For this reason, the perfor-
mance of SIH will increase with advances in sequencing
techniques.

Conclusions
In this paper, we have developed a general method to
detect chimeric fragments (CFs) on the assumption that
CFs correspond to an artificially recombinant haplotype
and differ from the biological haplotypes in the popu-
lation. Based on this assumption, we developed natural
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Figure 6 Comparison of MC scores and maximum PHASE probabilities. (A) and (B) correspond to Kaper’s data and Duitama’s data,
respectively. The x-axis represents ln(1.001 − max P), where max P is the maximum PHASE probability and we use 1.001 to deal with max P = 1.0.
The y-axis represents the MC score of MixSIH. Data are randomly selected 1000 times from chromosome 1. The vertical dotted line corresponds to
the maximum PHASE probability above which the precision of PHASE is over 0.9, and the horizontal dotted line corresponds to the MC value above
which precision of MixSIH is over 0.9.

fragment (NF) and CF probabilities of a fragment which
use the result of statistical phasing. The NF probabil-
ity calculates the consistency between a fragment and
statistically inferred haplotypes. The CF probability also
calculates the consistency, but it assumes that left and
right parts of the fragment are derived from different
haplotypes in a haplotype pair. With these probabili-
ties, we developed an indicator CSP which evaluates
the degree of chimerity by calculating the logarithmic
difference.

We applied CSP to two sequencing datasets, Kaper’s
data and Duitama’s data [17,26]. The CSP of CFs tends to
be lower than that of NFs Moreover, there are a lot of CFs
at around possible largest value. These results support the
propriety of our model. The high AUC values of CSP (0.97
for Kaper’s data and 0.88 for Duitama’s data) also shows

Table 4 The numbers of regions for each of the areas
which are defined by the precision of MixSIH and PHASE:
(A) Kaper’s data and (B) Duitama’s data

PHASE < 0.9 PHASE ≥ 0.9

(A)
MixSIH ≥ 0.9 433 (366) 3,499 (2,792)

MixSIH < 0.9 1,096 (251) 4,972 (988)

(B)
MixSIH ≥ 0.9 842 (749) 6,250 (5,337)

MixSIH < 0.9 687 (390) 2,221 (1,061)

The rows and columns represent the accuracy of MixSIH and PHASE,
respectively. The numbers in parentheses are the numbers of regions
remaining after regions which contain sites that lack SNP fragments have been
removed.

that CSP is a highly efficient measure to detect CFs. The
AUC values of CSP are higher than that of measures based
on cluster length and heterozygosity. Moreover, there are
significant number of CFs which are only detected with
CSP. These results suggests the usefulness of CSP for
detecting CFs.

We then compared the accuracies of MixSIH before
and after removing the chimeric fragment candidates
detected using CSP. The accuracies of MixSIH increased
significantly after removing CFs. From these results, we
conclude that CSP is a useful method for detecting CFs
and improving SIH accuracy, regardless of the type of
dilution-based sequencing.

In addition, we analyzed the results of MixSIH. The
assembled haplotype blocks contain a lot of long hap-
lotype blocks and this supports the capability of SIH
that SIH can determine long haplotypes. We also
compared the performance of MixSIH and statistical
phasing method (PHASE). At the moment, the num-
ber of correctly inferred regions of PHASE is larger
than that of MixSIH. However, lack of SNP fragments
is the main reason for failure of SIH and, there-
fore, the importance of SIH and our method will
increase in accordance with the advance of sequencing
technologies.

In the future the amount of dilution-based sequencing
data will increase, and our approach will be an important
strategy not only for SIH but also for many other types
of analysis, such as the detection of novel recombinant
events.
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Additional file

Additional file 1: Supplementary text. This file includes the explanation
of parameter selection and some additional analyses.
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