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Abstract

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. How-

ever, the biological characteristics of ucfDNA are not well understood. We explored the

roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the

fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-)

caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concen-

tration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of frag-

ments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded

protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 dele-

tion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease con-

tributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration

of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel

electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in

plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensi-

tive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients

with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when

compared with participants without bladder cancer. The area under the curve (AUC) for dif-

ferentiating patients with and without bladder cancer was 0.83, suggesting the analysis of

ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection.

This work revealed the intrinsic links between the nucleases in urine and ucfDNA

fragmentomics.
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Author summary

Cell-free DNA (cfDNA) in various bodily fluids, for example blood plasma and urine, is

of great importance for noninvasive cancer detection and noninvasive prenatal testing.

Many emerging studies on the fragmentation of plasma DNA (i.e., fragmentomics) have

received much recent interest. However, the fragmentomics in urinary cfDNA (ucfDNA)

remained much less explored. In this study, we explored the biological links between

ucfDNA fragmentation and DNA nucleases, using mice for which either the Dnase1 or

Dnase1l3 gene was genetically inactivated. Interestingly, we found that the deletion of

Dnase1, but not Dnase1l3, caused dramatic alterations of ucfDNA fragmentation patterns,

including the elevation of DNA concentration, lengthening of fragment size, disruptions

of ucfDNA end motifs (i.e., nucleotide sequences at fragment end) and the jagged ends

(i.e., the single-stranded protruding ends). The proportion of fragment ends within

DNase I hypersensitive sites (DHSs) was greatly increased in mice with the Dnase1 dele-

tion. Such ucfDNA fragmentation pattern surrounding DHSs holds potential for classify-

ing the human subjects with and without bladder cancer. The analysis combining various

fragmentomic features could further improve the performance for bladder cancer detec-

tion, with an AUC of 0.91. This study has shed mechanistic insights into fragmentomics

of ucfDNA in urine and has opened up new possibilities for applying ucfDNA fragmen-

tomics in a clinical context.

Introduction

Cell-free DNA (cfDNA) in plasma has been intensively studied as a class of biomarkers with

many diagnostic applications [1], including noninvasive prenatal testing [2–4], cancer assess-

ment [5–8], and organ transplant monitoring [9–11]. cfDNA was nonrandomly fragmented in

plasma in such a way that its cleavage patterns were related to nucleosomal packaging [1,12],

i.e., the 166-bp major peak with a series of 10-bp periodic small peaks. A number of recent

studies focused on mechanistic insights of fragmentomics of cfDNA, including preferred ends,

nucleotide motifs at the fragment ends (i.e., end motifs), single-stranded jagged ends, and the

relationship between nucleases and cfDNA fragmentation patterns [13,14]. For instance, dif-

ferent nucleases would preferentially generate DNA fragments carrying particular end motifs

[15,16]. DNASE1L3 favors cutting cfDNA fragments with the ‘C’ termini, whereas DNASE1

contributes towards the generation of fragments with ‘T’ termini [16]. Furthermore, double-

stranded cfDNA molecules were found to commonly possess single-stranded protruding ends

[17]. The extent of the jagged ends (i.e., jaggedness) appeared to have association with the sizes

of plasma cfDNA molecules and exhibited nucleosomal characteristics.

Compared with cfDNA in plasma, cfDNA in urine exhibited unique fragmentation pat-

terns. For example, ucfDNA molecules were generally more fragmented, with a reduced

166-bp peak but enhanced amplitudes of the 10-bp periodic peaks [18–20]. The jaggedness of

ucfDNA was recently reported to be higher than that of plasma cfDNA [21]. However, there is

a paucity of mechanistic studies on whether and how the nucleases contribute to ucfDNA

fragmentation.

As DNASE1 and DNASE1L3 had been demonstrated to play different roles in plasma DNA

fragmentation [15,16], we used mouse models by deleting the Dnase1 or Dnase1l3 gene to

study their role in ucfDNA fragmentation, including the fragment sizes, end motifs, jagged

ends, and end density within DNase I hypersensitive sites (Fig 1). In addition, we explored the

potential clinical application of ucfDNA in human subjects with bladder cancer.
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Results

Concentration of ucfDNA in nuclease-deficient mice

We analyzed the ucfDNA concentrations of urine samples from wildtype (WT) mice (n = 32),

Dnase1l3-/- mice (n = 10), and Dnase1-/- mice (n = 21) using Qubit dsDNA high-sensitivity

assay kit (Thermo Fisher Scientific, Waltham, Massachusetts). The ucfDNA concentration was

normalized by the urine sample volume (i.e., ng/mL). The median ucfDNA concentration of

the Dnase1-/- group (44.1 (range: 11.6–96.3) ng/mL) was 24-fold higher than that of the WT

group (1.8 (range: 0–9.7) ng/mL) (P-value< 0.0001; Mann-Whitney U test). There was no sta-

tistically significant difference between Dnase1l3-/- (0.9 (range: 0–6.9) ng/mL) and WT groups

(P-value = 0.572; Mann-Whitney U test) (Fig 2). These results suggested that DNASE1 played a

role in the degradation of ucfDNA. The conclusion remained the same after the urine samples

lacking quantifiable ucfDNA by Qubit dsDNA high-sensitivity assay were removed (S1 Fig).

Size distribution of ucfDNA among nuclease-deficient mice

The overall size profile of ucfDNA from Dnase1-/- mice was altered when compared with WT

and Dnase1l3-/- mice. Dnase1-/- mice had a higher frequency of ucfDNA fragment sizes than

WT mice spanning a size range of approximately 20 bp to 50 bp and another size range of

around 150 bp or larger (Fig 3A and 3B). The median percentage of fragments with sizes less

than 50 bp was 2-fold higher in Dnase1-/- mice (Dnase1-/-: 29.9%; WT: 16.1%; P-value = 0.011;

Mann- Whitney U test) (Fig 3C), whereas those molecules ranging from 50 bp to 150 bp were

significantly reduced in Dnase1-/- mice (Dnase1-/-: 39.9%; WT: 74.1%; P-value = 0.003; Mann-

Fig 1. Overview of the study design. Urinary cfDNA was isolated from the urine samples of WT, Dnase1l3-/- and Dnase1-/- mice and subjected to

massively parallel sequencing. Analyses of ucfDNA fragmentation, including the sizes, end motifs, jagged ends and end density across the regions

within the DHSs, were performed.

https://doi.org/10.1371/journal.pgen.1010262.g001
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Whitney U test) (Fig 3D). Also, we observed a 3-fold higher in the median percentage of the

long DNA fragments (> 150 bp) in Dnase1-/- mice (Dnase1-/-: 25.0%; WT: 8.6%; P-value =

0.008; Mann-Whitney U test) (Fig 3E). However, those changes in size were not observed in

ucfDNA of Dnasel13-/- mice. These data suggested that DNASE1 and DNASE1L3 might play

different roles in ucfDNA fragmentation. DNASE1 might be involved in generating the major

population of ucfDNA fragments within a size range of 50 to 150 bp.

The size profile of ucfDNA in Fig 3B was plotted on a logarithmic scale for better visualiza-

tion of the changes in the proportion of the long fragments. The size profile of ucfDNA from

Dnase1-/- mice exhibited increases in the frequencies at mono-, di-, tri-nucleosomal sizes. Such

fragments with one or more nucleosomal sizes might be suggestive of internucleosomal cleav-

age by other nucleases (e.g., DNASE1L3) in the urine of mice with Dnase1 deletion. The

absence of fragments with multiple nucleosomal sizes in the urine of WT mice might be due to

highly efficient DNASE1-mediated DNA digestion.

End motifs of ucfDNA among nuclease-deficient mice

The 4-nucleotide oligomer (4-mer) motifs of cfDNA fragment ends could reflect the nuclease

activities [22]. We analyzed 256 4-mer end motifs of ucfDNA molecules of different groups. The

top 25 4-mer motifs ranked in descending order according to the frequencies in WT (Fig 4A),

Fig 2. DNA concentrations of ucfDNA in WT, Dnase1l3-/- and Dnase1-/- mice. DNA concentrations were measured

by Qubit and normalized to the corresponding urine volume. Each dot represents a urine sample pooled from three

mice.

https://doi.org/10.1371/journal.pgen.1010262.g002
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Fig 3. Size distributions of ucfDNA molecules. Size distribution plotted on a linear scale (A), on a logarithmic scale (B) of the y-axis. The grey, blue and red

lines represent the median size profile of ucfDNA in WT (n = 9), Dnase1l3-/- (n = 3), and Dnase1-/- (n = 4) mice, respectively. Boxplots showing the proportion

of the fragments< 50 bp (C), ranging from 50 to 150 bp (D), and>150 bp (E).

https://doi.org/10.1371/journal.pgen.1010262.g003

Fig 4. Heatmap showing the end motifs of ucfDNA among different groups. The top 25 4-mer motifs were ranked in descending order according to the

frequencies in WT (A), Dnase1l3-/- (B) and Dnase1-/- (C).

https://doi.org/10.1371/journal.pgen.1010262.g004
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Dnase1l3-/- (Fig 4B) and Dnase1-/- (Fig 4C) were visualized in the heatmap plots, respectively.

Interestingly, the Dnase1-/- group showed a distinct heatmap pattern as compared to WT and

Dnase1l3-/- groups, while the patterns between WT and Dnase1l3-/- groups were similar. We

noticed that the abundance of 4-mer motifs beginning with thymine termini (i.e., T ends)

decreased in Dnase1-/- mice in comparison with WT and Dnase1l3-/- mice. Thus, we analyzed

fragments with T ends. Dnase1-/- group showed a significant reduction in the median percentage

of the fragments with the ‘T’ ends (24.8%) compared with WT (27.0%) and Dnase1l3-/- (27.8%)

groups (S2 Fig). Hence, DNASE1 might be responsible for generating the T-end fragments in

murine urine, which was in concordance with the previous finding in plasma [16].

In Fig 5A and 5B, the rankings of 256 end motifs of the Dnase1l3-/- and Dnase1-/- groups

were plotted against those of the WT group, respectively. The pink area highlighted motifs that

were ranked within the top 10 for Dnase1l3-/- or Dnase1-/- group but ranked 11 or lower for

WT group. Conversely, the yellow area highlighted motifs that were ranked within the top 10

for WT group but ranked 11 or lower for Dnase1l3-/- or Dnase1-/- group. In Fig 5A, a linear

relationship between the motif rankings in Dnase1l3-/- and WT mice was observed. In con-

trast, the motif ranking in the Dnase1-/- was discordant to that in the WT group (Fig 5B).

Intriguingly, the rankings of TGTG, TGTT, and TGAA decreased, while that of CCAG,

CCTG, and CCCA increased in Dnase1-/- mice. There were 9 of the 10 motifs in the pink area

starting with ‘C’, suggesting that the DNASE1L3 cutting signatures became apparent when

DNASE1 was absent.

Jagged end of ucfDNA among nuclease-deficient mice

We further studied whether the ucfDNA of mice with nuclease deficiency would affect the gen-

eration of jagged ends. The amounts of jaggedness of cfDNA in urine from WT, Dnase1l3-/-

and Dnase1-/- mice were measured by a metric, which we called Jagged Index-Unmethylated

Fig 5. Relationship of motif rankings in ucfDNA between WT and nuclease deficient mice. Correlations of the end motif rankings between WT and

Dnase1l3-/- groups (A), and WT and Dnase1-/- groups (B). Each circle represents a 4-mer motif. Top 10 motifs in WT group were indicated with blue circles,

while those derived from Dnase1l3-/-, and Dnase1-/- groups were indicated by red circles.

https://doi.org/10.1371/journal.pgen.1010262.g005
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(JI-U). As shown in Fig 6, the median value for JI-U of ucfDNA fragments without size selec-

tion in the Dnase1-/- group (17.8 (range: 13.7–22.9)) was found to be lower than that of WT

(28.2 (range: 27.7–33.9)) (P-value = 0.014; Mann-Whitney U test) and Dnase1l3-/- groups (31.1

(range: 29.2–35.8)) (P-value = 0.028; Mann-Whitney U test). There was no statistically signifi-

cant difference between WT and Dnase1l3-/- groups (P-value = 0.216; Mann-Whitney U test).

These data demonstrated that the DNASE1 was one of the enzymes responsible for generating

jagged ends in ucfDNA.

UcfDNA fragments at the DNase I hypersensitive sites (DHSs)

As multiple lines of evidence in this study showed that DNASE1 was a key factor in regulating

ucfDNA fragmentation, we hypothesized that ucfDNA within the region of the DHSs might

be sensitive to DNASE1 activity. In Fig 7A, the normalized end density in DHSs from mouse

Fig 6. Jagged index-unmethylated (JI-U) values of ucfDNA. Boxplot showing the JI- U values in WT (n = 4), Dnase1l3-/- (n = 3), and

Dnase1-/- (n = 6) groups.

https://doi.org/10.1371/journal.pgen.1010262.g006
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kidney tissue (0 bp to DHS center) of ucfDNA in Dnase1-/- group (4.28) was much higher than

the other two groups (WT: 1.71; Dnase1l3-/-: 1.81). In addition, the Dnase1-/- group (23.8%

(range: 21.7–26.1%) had a higher proportion of fragments within the DHSs when compared to

the WT (18.9% (range: 18.2–22.4%)) and Dnase1l3-/- groups (19.3% (range: 18.8–20.4%) (P-

value < 0.0001; WT vs Dnase1-/-; Mann-Whitney U test) (Fig 7B). However, there was no sta-

tistically significant difference between WT and Dnase1l3-/- groups (P-value = 0.416; WT vs

Dnase1-/-, Mann-Whitney U test). Of note, we observed similar differential trends in end den-

sity around DHS sites between B cells (S3A Fig) and bladder tissues (S3B Fig) for mice across

different groups. It would require a further study to demonstrate whether such end density

around DHS sites might bear tissue-specific information with the obtaining of the DHS sites

across different tissue types.

Experimental validation for DNASE1 activity

To explain why DNASE1 is a key driver in the degradation of ucfDNA, which contrasts with

blood where DNASE1L3 is the dominant enzyme, we first measured the amounts of DNASE1

and DNASE1L3 protein expression in both healthy human subjects and WT mice using west-

ern blot analysis (SDS-PAGE) with a standardized volume (2 μl) of either urine or plasma.

Interestingly, in the human samples from three healthy subjects, the amount of human

DNASE1 in urine was shown to be greater than that in plasma which was seemingly undetect-

able (Fig 8A). In sharp contrast, the concentration of DNASE1L3 in plasma (Fig 8B) was

shown to be greater than that in urine (Fig 8C). Moreover, we performed the same analysis

using murine urine and plasma. The western blot analysis for DNASE1 has shown that the

amount of DNASE1 in urine was higher than that in plasma (Fig 8C), consistent with the

observation regarding human urine. Conversely, the amount of DNASE1L3 in murine plasma

was greater than that in urine (Fig 8D).

Fig 7. End density of the ucfDNA fragments within the DHSs. (A) End density of ucfDNA fragments across the regions close to the DHSs. The grey, blue

and red lines represent the median end density derived from WT (n = 13), Dnase1l3-/- (n = 6), and Dnase1-/- groups (n = 10), respectively. (B) Proportion of

ucfDNA fragments falling within the DHSs.

https://doi.org/10.1371/journal.pgen.1010262.g007
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Fig 8. Western blot and zymogram analysis of DNASE1 and DNASE1L3 in urine and plasma samples from healthy human subjects and C57BL/6 mice.

Urine (left three) and plasma (right three) samples (2 μl/lane) from three human subjects were subjected to SDS-PAGE and then immunoblotted with anti-

DNASE1 antibody (Abcam ab113241) (A) and anti-DNASE1L3 antibody (Abcam ab152118) (B). The same western blot experiment was performed for murine

urine (left three) and plasma (right three) samples against anti-DNASE1 antibody (Abcam ab113241) (C) and anti-DNASE1L3 antibody (Abcam ab152118)

(D). Urine and plasma samples (2 μl/lane) from human subjects and mice were loaded on the native PAGE gel containing plasmid DNA (pcDNA3.1

Invitrogen) (E). Bands represent the existence of nuclease activity to digest plasmid DNA. Samples from Dnase1-/- mice (right) serve as a control. Molecular

weight markers (Bio-platform BP106) were used to estimate the sizes of the respective proteins in the immunoblotting. Chemiluminescence detection and gel

imaging were performed using ChemiDoc MP Imaging Systems (Bio-Rad Laboratories). The experiments were repeated three times, and one representative

experiment with three biological replicates was shown in western blot and zymogram.

https://doi.org/10.1371/journal.pgen.1010262.g008
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Compared with the mouse data (Fig 8C), the differential signal for DNASE1 protein

expression in human was relatively low even though a trend for a higher protein expression

in urine than in plasma was evident. Hence, we performed the DNASE1 activity assay to

compare the DNA-digestion activity of DNASE1 in urine and plasma of the human and

mice using a zymogram. Briefly, native polyacrylamide gel electrophoresis (PAGE) was per-

formed on the DNASE1 using a gel containing plasmid DNA (pcDNA3.1; Invitrogen).

Instead of using antibodies for protein detection, the trace of digested DNA showing as

bands on the gel would be observed, indicating both the activity and the identity of the

DNASE1. Samples from Dnase1-/- mice were also employed for this zymogram experiment

to serve as a control. As shown in Fig 8E, the activity of DNASE1 was shown to be higher in

the urine than in the plasma for both human and wildtype mice, while the DNASE1 activity

was not observed in the urine and plasma of Dnase1-/- mice. Taken together, we observed a

higher DNASE1 protein expression and activity in the urine compared to the plasma in both

human and murine samples.

Potential clinical application of ucfDNA for bladder cancer detection

As we have demonstrated in a previous study that the average contribution of cfDNA from the

urinary tract to human urine was substantial (~50%) [19], we reasoned that studying ucfDNA

fragmentomics in human participants with urinary tract malignancies would reveal potential

applications in cancer diagnostics such as bladder cancer. Additionally, the Cancer Genome

Atlas (TCGA) data demonstrated that DNASE1 mRNA levels were elevated in bladder cancer

tumoral tissues as compared to surrounding normal tissues (S4 Fig). In mouse urine from WT

mice, a lower fraction of fragments within DHSs was detected (i.e., higher DNASE1 activity),

compared to Dnase1-deficient animals (i.e., no DNASE1 activity). Thus, it was hypothesized

that an increase in DNASE1 activity in bladder cancer tumoral tissues would result in a reduc-

tion in ucfDNA molecules produced from DHSs. Indeed, the percentages of ucfDNA fragment

ends located within regions 1-kb upstream and 1-kb downstream of DHS (from human kidney

tissues) center were significantly decreased in patients with bladder cancer (n = 39) as com-

pared to control subjects with hematuria but without bladder cancer (n = 46) (P-

value < 0.0001; Mann-Whitney U test) (S3D Fig). We also analyzed DHS sites from B cells

and observed a decreased trend in end density around DHS sites in patients with bladder can-

cer, compared with control samples. Such differential trends were shown to be consistent

between B cells (S3C Fig) and kidney tissues (S3D Fig). We observed a further decline in the

proportion of human ucfDNA fragments within DHSs from kidney tissues in patients with

muscle-invasive bladder cancer (MIBC) when compared to subjects with low-grade non-mus-

cle-invasive bladder cancer (NMIBC LG) or with high-grade non-muscle-invasive bladder

cancer (NMIBC HG) (Fig 9A). The clinical factors, including age, creatinine, and DNA con-

centration, showed no significant correlation with respect to the ucfDNA fragments within

DHSs in the control or bladder cancer group (S5 Fig).

According to receiver operating characteristic (ROC) curve analysis, the area under ROC

curve (AUC) value for differentiating subjects with and without bladder cancer based on the

percentage of ucfDNA fragment ends located within the DHSs was 0.83 (Fig 9B). The AUC

increased slightly to 0.85 from 0.83 when using ucfDNA molecules within DHSs with a size

range of 130–160 bp (S6 Fig). We observed that there was an age difference between controls

and bladder cancer patients (P value < 0.0001). To evaluate the potential impact of age on the

classification analysis, we analyzed ucfDNA within DHSs for those individuals sampled from

the original dataset within a comparable age range of 50 to 70 years, forming two age-compa-

rable groups (P value: 0.19, Mann-Whitney U test) (S7A Fig). We still observed a significantly
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lower proportion of ucfDNA within DHSs between such age-comparable groups (P
value < 0.001, Mann-Whitney U test) (S7B Fig). The diagnostic performance using ucfDNA

within DHSs did not differ between the result based on age-comparable groups (AUC = 0.82)

and the original result based on all subjects (AUC = 0.83) (S7C Fig), suggesting that age

appeared not to be a confounding factor in this study.

In addition to ucfDNA within DHSs, we further examined other features in ucfDNA

including jaggedness [21], end motifs, and ucfDNA concentration (S8 Fig). The metric regard-

ing end motifs was herein referred to as a ratio of two sets of ucfDNA molecules which were

tagged by any of the top 25 end motifs identified from WT and Dnase1-/- mice, respectively.

ROC analysis revealed that fragmentomic features including jaggedness, end motifs, and

ucfDNA within DHS, with an AUC of at least 0.80 outperformed the metric of ucfDNA con-

centration [19] (AUC: 0.58) (Fig 9B). The variation of cutoff values across leave-one-out itera-

tions of classification between patients with and without bladder cancers was shown to be

small for each metric (S1 Table). We further provided ROC analysis using the ucfDNA con-

centration normalized by the creatinine concentration (i.e., the ratio of ucfDNA to creatinine

concentration) for a subset of samples for which the creatinine measurements were available

(38 controls and 21 bladder cancer patients). The diagnostic performance of ucfDNA concen-

tration after the creatinine normalization (AUC = 0.61) did not show any improvement com-

pared to that before the creatinine normalization in the same subset of subjects (AUC = 0.62)

(S9 Fig). When these three fragmentomic features were combined using a support vector

machine (SVM), one could observe an improved performance in differentiating between

cancerous and non-cancerous patients (AUC: 0.91) (Fig 9B). These data indicated that the

ucfDNA fragmentomics features may serve as biomarkers for bladder cancer.

Fig 9. Proportion of human ucfDNA molecules falling within the DHSs. (A) Boxplot showing the proportions of ucfDNA molecules within the DHSs in urine of

control subjects with hematuria without bladder cancer (n = 39), and subjects with NMIBC LG (n = 19), NMIBC HG (n = 18), and MIBC (n = 9). (B) ROC plot of

differentiation between patients with and without bladder cancer using ucfDNA concentration, jaggedness, end motifs, and the percentage of ucfDNA within DHS.

https://doi.org/10.1371/journal.pgen.1010262.g009
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Discussion

In this study, we demonstrated that DNASE1 played a significant role in ucfDNA fragmenta-

tion, whereas the impact of DNASE1L3 on ucfDNA fragmentation appeared to be much less

significant. The changes in the ucfDNA fragmentation occurring in Dnase1-deficient mice

included an increase of DNA concentration, an increase of long DNA (>150 bp) with a multi-

nucleosomal pattern (i.e., multiples of 166-bp), a reduction of fragments with the thymine

ends as well as the decrease of jaggedness. On the other hand, in plasma, cfDNA from Dna-
se1l3-deficient mice had more significant aberrations in fragment size and end motif frequen-

cies than that of Dnase1-deficient mice [15,23].

The different roles of nucleases in urine and plasma might be attributed to multiple factors.

First, as shown in the western blot analysis in this study, the concentration of DNASE1 in

urine was higher than that in plasma. In addition, the activity of DNASE1 measured by zymo-

graphy in urine was higher than that in plasma, which was consistent with a previous report

[24], possibly partly due to the low concentration of actin in urine that could inhibit the

DNASE1 activity [25,26]. Second, the high concentrations of urea and salt in urine might

impair the DNA coiling around histones to form nucleosomal structures [27], resulting in

reduced protection of DNA from DNASE1 degradation. Further insights into this process

might be seen in a recent study that ucfDNA was associated with histone tetramer (i.e.,

H32H42) instead of intact octamer [20].

The ucfDNA of Dnase1-/- mice contained two major peaks, the first at 46 bp and the second

at 165 bp. We conjecture that ucfDNA is derived primarily from two sources: locally shed

ucfDNA from the urinary tract (nontransrenal DNA) and transrenal DNA that passes through

the glomerular filtration system [18]. The ucfDNA at the 46-bp peak was reminiscent of the

fetal DNA in urine [18], hinting that such a peak might be in part of transrenal origin. DNA-

SE1L3 could digest chromatin DNA into fragments contributing to the peak at 150–160 bp

[28]. Hence, we conjecture that DNASE1L3-mediated cleavage of nontransrenal ucfDNA pos-

sibly contributes to the presence of ucfDNA fragments around 165 bp in Dnase1-/- mice. We

also observed the multinucleosomal pattern of the ucfDNA in the urine of mice with Dnase1
deletion, which was reminiscent of the plasma DNA fragmentation pattern caused by DNA-

SE1L3 [15]. Such parallels were further highlighted by the increase of ucfDNA fragments with

the cytosine ends in the urine of Dnase1-deficient mice. These observations suggested one pos-

sibility that the DNA substrates for DNASE1 digestion in urine of WT could be in part origi-

nated from the fragments generated by DNASE1L3. Because DNASE1 may predominate in

the ucfDNA fragmentation in a highly efficient manner, the DNASE1L3-cutting signature in

WT mice urine would be overshadowed. To obtain a more complete mechanistic picture of

fragmentation patterns of ucfDNA, a future investigation should include nucleases other than

DNASE1 and DNASE1L3.

The cfDNA jaggedness was reported to be higher in urine than in plasma [21]. In the

mouse model, we found that the deletion of Dnase1 led to the reduction of ucfDNA jagged-

ness, while the deletion of Dnase1l3 did not cause appreciable difference in ucfDNA jagged-

ness. These results suggested that DNASE1 might be responsible for the generation of jagged

ends of ucfDNA. This finding was consistent with the decreased jaggedness of plasma DNA in

the Dnase1-deficient mice [17].

DNA organized in cells is well-structured in a way that some regions are relatively more

accessible (e.g., euchromatin) and some are less accessible (e.g., heterochromatin) by nucle-

ases. The DHS regions are a set of genomic regions which are supposed to be highly accessible

by the DNASE1 enzyme. We reasoned that the cutting frequency within the DHSs would be

altered in mice with Dnase1 deletion. In this study, we observed higher cutting ends of
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ucfDNA occurring across regions within DHSs in Dnase1-/- mice urine. Interestingly, analyz-

ing a bisulfite sequencing dataset in a previous study [19], we found the cutting end frequency

of ucfDNA was significantly decreased in patients with bladder cancer compared with controls

without bladder cancer. When we made use of ucfDNA end frequency within DHSs for classi-

fying the subjects with and without bladder cancer, an AUC of 0.83 was observed. Thus, such

signals of cutting end occurrence within DHSs would be a useful noninvasive biomarker for

bladder cancer.

One limitation of this study is that we only sequenced urine samples from mice with detect-

able ucfDNA concentration using the Qubit assay. All urine samples without quantifiable

ucfDNA concentrations were from WT and Dnase1l3-/- mice. Such a ‘bias’ might be an intrin-

sic characteristic for urine of WT and Dnasel13-/- mice because the high activity of DNASE1 is

present in WT and Dnasel13-/- mice. The properties of ucfDNA in such samples with unquan-

tifiable ucfDNA concentrations by the Qubit assay remain unknown and will be studied in a

future investigation using enhanced sequencing technology.

In summary, this study unveiled the intrinsic link between nuclease activities and the frag-

mentation of ucfDNA, providing biological insights into the generation of ucfDNA. This

study confirmed that the nuclease-preferred cutting signatures identified from plasma could

be generalizable to the urine. Such realization opens up many possibilities to develop biomark-

ers by utilizing the links between nuclease activities and cfDNA fragmentations in different

bodily fluids.

Materials and methods

Ethics statement

All animal studies were approved by the Animal Experimentation Ethics Committee of The

Chinese University of Hong Kong. The data sets of human subjects were generated following

obtaining informed consent from all participants under the approval of the Joint Chinese Uni-

versity of Hong Kong–Hospital Authority New Territories East Cluster Clinical Research Eth-

ics Committee.

Animals

The Dnase1l3-/- and Dnase1-/- mouse models were on C57BL/6 (B6) background and were

described in a previous study [29]. Wildtype mice on B6 background were used as control and

maintained in the same animal facility.

Sample collection and sample processing

Each urine sample was pooled from the urine of three mice and was collected three times a day

for three consecutive days. The urine was collected into a microcentrifuge tube and added

with 50 mM EDTA, pH 8.0 (Ambion, Austin, Texas) immediately. The urine was centrifuged

at 1,600 g for 10 min at 4˚C, followed by another centrifugation at 16,000 g for 10 min at 4˚C.

All urine samples were kept at -80˚C until DNA extraction. We collected a total of 63 urine

samples, consisting of 32, 10, and 21 samples from wildtype, Dnase1l3-/-, and Dnase1-/- groups,

respectively.

Data set

The sequencing data of urinary DNA for bladder cancer and control participants (median: 30

million; interquartile range: 19–46 million) was obtained from our previous study [19]. There

are 46 patients with bladder cancer (37 non-muscle-invasive bladder cancer and 9 muscle-
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invasive bladder cancer). All the cancer cases were diagnosed as urothelial cell carcinoma.

There are 39 control subjects with hematuria but without bladder cancer. We provided clinical

data on the human subjects, including age, gender, degree of bladder cancer invasiveness, and

ucfDNA and creatinine concentrations in S2 Table.

UcfDNA extraction

The ucfDNA was extracted from 2–3 mL of the centrifuged urine using the Wizard Plus Mini-

preps DNA Purification System (Promega, Madison, Wisconsin). Each 1 mL of urine was

mixed with 1.5 mL of 6 M guanidine (Sigma–Aldrich, St. Louis, Missouri). The mixture was

incubated with 1 mL of resin for 2 h at room temperature with gentle mixing. The resin-DNA

complex was then purified using the Wizard mini-column. The extracted ucfDNA sample was

eluted with 70 μL nuclease-free water after centrifugation at 10,000 g for 1 min. Those samples

with quantifiable ucfDNA were used for the downstream sequencing library preparation. A

total of 44 pooled urine samples had quantifiable ucfDNA by the Qubit dsDNA high sensitivity

assay with a Qubit Fluorometer (ThermoFisher Scientific), consisting of 18, 5, and 21 samples

from wildtype, Dnase1l3-/-, and Dnase1-/- groups, respectively.

Library preparation

DNA libraries for the analyses of size distribution and end motif of urine samples were pre-

pared as previously described and subjected to massively parallel sequencing [28]. Briefly, the

ucfDNA libraries were constructed using the TruSeq DNA Nano Library Prep Kit (Illumina,

San Diego, California) and purified using the MinElute Reaction Cleanup Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions. The adaptor-ligated DNA was ampli-

fied with fourteen cycles of PCR and then analyzed on an Agilent 4200 TapeStation (Agilent

Technologies, Santa Clara, California) using the D1000 ScreenTape System (Agilent Technolo-

gies). The libraries were quantified by qPCR using a KAPA Library Quantification Kit (Roche,

Basel, Switzerland) on a LightCycler 96 instrument (Roche) before sequencing.

For the jagged end analysis, the libraries were prepared using TruSeq DNA Nano Library

Prep Kit (Illumina) with modifications and bisulfite treatment. The ucfDNA was firstly end-

repaired with unmodified deoxyribonucleotide triphosphates as previously described [17].

The end-repaired DNA molecules were ligated with methylated sequencing adaptors, followed

by two rounds of the bisulfite treatment using the EpiTect Plus Bisulfite Kit (Qiagen). The

bisulfite-converted DNA was amplified by 14 cycles with KAPA HiFi HotStart Uracil + Ready-

Mix (Roche) before the QC validation.

We randomly sequenced a total of 28 pooled mouse urine samples, including 13, 5 and 10

samples with wildtype, Dnase1l3-/-, and Dnase1-/- groups, respectively.

DNA sequencing and alignment

The ucfDNA libraries were sequenced in a paired-end mode (75 bp x 2) using NextSeq 500

(Illumina). Real-time image analysis and base calling were performed using the NextSeq Con-

trol Software v2.1.0 and Real Time Analysis Software v2.4.11 (Illumina) as previously reported

[15]. After base calling, adapter sequences and bases with low quality (i.e., quality score < 20)

on the 30 ends of the reads were removed. For the analysis of sequencing data, the sequenced

reads were aligned to the non-repeat-masked mouse reference genome (GRCm39/mm39)

using the Short Oligonucleotide Alignment Program 2 (SOAP2) [30]. For bisulfite sequencing,

the trimmed reads were analyzed using Methy-Pipe software [31]. Only paired-end reads

which were uniquely aligned to the same chromosome in a correct orientation, spanning an

insert size less than 600 bp were used for further analysis. For reads with the same start and
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end aligned genomic coordinates, only one would be kept for downstream analysis, whereas

the rest were considered as PCR duplicates and were removed. The number of sequenced frag-

ments of DNA library and bisulfite-converted library were summarized in S3 and S4 Table,

respectively.

Jagged index analysis

The jagged index analysis of ucfDNA was performed as described previously [17,21]. Briefly,

the JI-U was calculated by the percentage change of methylation density between read 1 and

read 2 by the formula:

JI � U ¼
M1 � M2

M1
� 100%

where M1 represents the methylation density of 30 bases proximal to the 5’ end, and M2 repre-

sents the methylation density contributed by 30 bases proximal to the 3’ end. The higher are

the JI-U values, the more jagged ends the ucfDNA would contain.

Calculation of end density across regions close to DHSs

The DHSs of mouse tissues including kidney (https://www.encodeproject.org/files/

ENCFF046NXA/@@download/ENCFF046NXA.bed.gz), B cells (https://www.encodeproject.

org/files/ENCFF761OVL/@@download/ENCFF761OVL.bed.gz) and bladder (https://www.

encodeproject.org/files/ENCFF073ADQ/@@download/ENCFF073ADQ.bed.gz) were down-

loaded from the Mouse ENCODE project. The DHSs of human tissues including kidney

(https://www.encodeproject.org/files/ENCFF132KNJ/@@download/ENCFF132KNJ.bed.gz)

and B cell (https://www.encodeproject.org/files/ENCFF963BED/@@download/

ENCFF963BED.bed.gz) were downloaded from Human ENCODE project. UcfDNA fragment

ends within the 1-kb upstream and 1-kb downstream of DHSs were analyzed. The end density

was defined as the count of fragment ends located within the 1-kb upstream and 1-kb down-

stream of DHSs divided by the median count across the loci flanking all DHSs.

Leave-one-out procedure

For the analysis combining different fragmentomics features using SVM, a leave-one-out pro-

cedure was used. We excluded one urine DNA sample from 85 human subject samples as a

testing sample and used the remaining 84 samples to train a classification model based on

SVM. Then, we used this trained SVM model to determine whether or not the testing sample

was classified as from a bladder cancer patient. We repeated the aforementioned steps 84 times

to validate the model across the remaining samples. To determine the variation of cutoff values

for classification between patients with and without bladder cancers for each metric, a similar

leave-one-out procedure was adopted as described above.

Western blot analysis of DNASE1 and DNASE1L3

The DNASE1 and DNASE1L3 levels of the equal volume of urine and plasma samples from

healthy human subjects and C57BL/6 mice were compared in western blot analysis. 2 μl of

human or murine samples were first diluted to 15 μl with 1 × phosphate-buffered saline (PBS)

and mixed with 5 μl 4 × Laemmli sample buffer. The boiled samples were loaded on a 12.5%

SDS-PAGE gel and transferred onto a 0.45 μm PVDF membrane (Millipore IPVH00010). The

membrane was then immunoblotted with anti-DNASE1 antibody (Abcam ab113241) or anti-

DNASE1L3 antibody (Abcam ab152118). Chemiluminescence detection was performed using
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ChemiDoc MP Imaging Systems (Bio-Rad), and the images were analyzed in Image Lab (Bio-

Rad).

Native PAGE zymogram assay on detecting DNASE1 activity

The DNASE1 activity for urine and plasma samples from human subjects, as well as WT and

Dnase1-/- C57BL/6 mice, were detected on a 10% native polyacrylamide gel containing plasmid

DNA. 10 ml of polyacrylamide gel containing 3.33 ml of 30% Acrylamide/Bis Solution (Bio-

Rad, 1610158), 2 ml of 5 × electrophoresis buffer [125 mM Tris, 1250 mM glycine, pH 8.6] and

50 μg pcDNA3.1 plasmid (Thermo Fisher V79020) were polymerized by mixing with 50 μl

10% APS and 8 μl TEMED for 30 mins at room temperature. 2 μl of urine and plasma samples

were mixed with an equal volume of 2 × sample loading buffer [25 mM Tris, 250 mM glycine,

50% glycerol, pH 8.6], and loaded on the native PAGE gel without boiling. The gel was run in

1 × electrophoresis buffer at 100 V for 3 hours, and then it was placed into 20 ml of the activa-

tion buffer [25 mM Tris, 5 mM CaCl2, 5 mM MgCl2, 1 × SYBR Gold Nucleic Acid Gel Stain

(Thermo Fisher S11494)] in a shaking incubator at 37˚C for 2.5 hours. After the activation, the

gel was imaged using ChemiDoc MP Imaging Systems (Bio-Rad), and the images were ana-

lyzed in Image Lab (Bio-Rad).

Statistical analysis

Analysis was performed with programs written in Python and R languages. Statistical differ-

ences were calculated using Mann-Whitney U test. A P-value of<0.05 was deemed statistically

significant.

Supporting information

S1 Fig. DNA concentrations of ucfDNA across WT, Dnase1l3-/- and Dnase1-/- mice with

quantifiable ucfDNA using Qubit assay.

(TIF)

S2 Fig. Percentages of ucfDNA fragments starting with T. Boxplot showing the percentages

of ucfDNA fragments starting with T in WT (n = 9), Dnase1l3-/- (n = 3), and Dnase1-/- (n = 4)

groups.

(TIF)

S3 Fig. The end density of ucfDNA across different tissue types. The end density of mouse

ucfDNA according to the DHSs from B cells (A) and bladder tissues (B) was determined,

respectively. The end density of human ucfDNA according to the DHSs from B cells (C) and

kidney tissues (D) was determined, respectively.

(TIF)

S4 Fig. Comparison of DNASE1 mRNA expression levels in bladder tumoral tissues

(n = 41) and adjacent non-tumoral tissues (n = 19) using the TCGA dataset.

(TIF)

S5 Fig. Correlations between the proportions of fragments within DHSs and clinical factors,

including ages of human subjects (A), DNA concentration (B), and creatinine concentration

in urine (C) in both the control group and bladder cancer group.

(TIFF)

S6 Fig. The receiver operating characteristic curve (ROC) for using ucfDNA molecules

with a size range of 130 to 160 bp within the DHSs to distinguish control subjects with
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hematuria from bladder cancer subjects.

(TIF)

S7 Fig. Analysis of ucfDNA in DHSs between control and age-comparable bladder cancer

groups. (A) Boxplot shows that there is no statistically significant difference in age between

control subjects and bladder cancer patients. (B) Boxplot of the proportion of ucfDNA within

DHSs between two age-comparable groups sampled from the original cohort within an age

range of 50 to 70. (D) Comparison between differentiation powers of two age-comparable

groups and the originally reported result.

(TIFF)

S8 Fig. Boxplots of ucfDNA concentration (A), end motif ratio (B), and jaggedness (C)

between controls and patients with bladder cancer.

(TIFF)

S9 Fig. ROC analysis for differentiating bladder cancer patients from controls using the

ucfDNA concentration before and after normalization by creatinine concentration in

those samples with the availability of creatinine measurements (38 controls versus 21 blad-

der cancer patients).

(TIFF)

S1 Table. Summary of cutoff values in each iteration of leave-one-out analysis for classify-

ing patients with and without bladder cancers using different metrics. The metrics include

the proportion of ucfDNA within DHSs, ucfDNA jaggedness, and ucfDNA end motifs.

(DOCX)

S2 Table. The clinical data of controls and bladder cancer patients.

(DOCX)

S3 Table. The number of sequenced reads of each sample using massively parallel sequenc-

ing.

(DOCX)

S4 Table. The number of sequenced reads of each sample using Bisulfite sequencing.

(DOCX)
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