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Abstract. The present study aimed to develop a reliable 
pyrosequencing method to detect four single nucleotide 
polymorphisms (SnPs) of the flavin‑containing monooxy‑
genase 3 (FMO3) gene and to compare the ethnic differences 
in their allelic frequencies. The pyrosequencing method was 
used to detect four FMO3 SnPs, namely, c.855c>T (n285n, 
rs909530), c.441c>T (S147S, rs1800822), c.923a>G (e308G, 
rs2266780) and c.472G>a (e158K, rs2266782). The allelic 
frequencies of these SnPs in 122 unrelated Korean subjects 
were as follows: i) 44.7% for c.855c>T; ii) 23.4% for c.441c>T; 
iii) 23.0% for c.923a>G; and iv) 27.1% for c.472G>a. linkage 
disequilibrium (ld) analysis revealed that the SnPs c.923a>G 
and c.472G>a exhibited a strong ld (d'=0.8289, r2=0.5332). 
in conclusion, the pyrosequencing method developed in 
this study was successfully applied to detect the c.855c>T, 
c.441c>T, c.923a>G and c.472G>a SnPs of FMO3.

Introduction

Flavin‑containing monooxygenases (FMos) form a family 
of microsomal antioxidant defense enzymes responsible for 
nicotinamide adenine dinucleotide phosphate‑dependent 
oxygenation of soft nucleophiles (1,2). Five functional isoforms 
of FMO have been identified in humans (FMO1‑5) (2). FMO3, 
primarily located in the liver, is the second most common FMo 
that metabolizes various nitrogen‑ and sulfur‑containing drugs 
and exhibits a broad range of substrates (3‑5). The FMO3 gene 
is clustered on chromosome 1 (q24.3) and contains nine exons 
ranging from 80 to 705 bp (2). Several genetic polymorphisms 

have been identified in this region (2). Moreover, previous 
studies have reported genetic polymorphisms of FMO3 that 
affect the enzyme activity and plasma concentrations of 
certain medications, and diseases such as trimethylamin‑
uria (6‑8). of these polymorphisms, the c.855c>T (n285n, 
rs909530), c.441c>T (S147S, rs1800822), c.923a>G (e308G, 
rs2266780) and c.472G>a (e158K, rs2266782) mutations are 
commonly detected single nucleotide polymorphisms (SnPs) 
in east asian populations (9‑12). considering their clinical 
importance and prevalence, there is a need to investigate the 
differences in the allelic frequencies of these polymorphisms 
between various ethnic groups and develop a reliable method 
for such analysis, which could be applied for optimal subject 
group targeting in clinical practice (8).

in the present study, a rapid and reliable pyrosequencing 
method was developed to detect SnPs of the FMO3 gene, 
including two synonymous (c.855c>T and c.441c>T) and two 
non‑synonymous (c.923a>G and c.472G>a) variants, all of 
which are clinically important and common in the Korean 
population (13,14). additionally, this study aimed to compare 
the allelic frequencies of these SnPs in a Korean population 
with those reported in other ethnic groups.

Materials and methods

Subjects and methods. This study was conducted in Korea 
university anam Hospital (Seoul, Korea) between april 2017 
and February 2020. Genomic dna was extracted from the 
blood samples of 122 unrelated healthy Korean subjects 
(age: 20‑45, all male participants) who provided written 
informed consent to participate in this study. The protocol 
for this assay was approved by the institutional review board 
of anam Hospital, Korea university Medical center (irB 
approval no. 2017an0117, Seoul, South Korea).

Polymerase chain reaction (PCR) conditions and FMO3 geno-
typing using pyrosequencing. Genomic dna was extracted 
from peripheral blood leukocytes as previously described (15). 
Geneall® exgene Blood SV kit (Geneall) was used according 
to the manufacturer's instructions. DNA quantification was 
processed by using Biospec‑nano (Shimadzu, Kyoto, Japan). 
a pyrosequencing method was developed to detect the func‑
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tional SnPs of the FMO3 gene: c.855c>T, c.441c>T, c.923a>G 
and c.472G>a. Pcr primers used for FMO3 genotyping and 
pyrosequencing are listed in Table i. Pcr was performed to 
amplify the specific sequences and detect each SNP of FMO3 
using the newly developed primer sets after tagging the 5' end 
of each forward (or reverse) primer with biotin using the PSQ 
assay design software (version 2.0; Qiagen GmbH).

The Pcr mixture (30 µl) comprised genomic dna 
(30 ng), 10X Pcr buffer (intron Biotechnology, inc.), dnTPs 
(0.25 mM), 10 pmol primers (1 µl each) and 5 units Taq 
polymerase (intron Biotechnology, inc.). Pcr was performed 
with an initial denaturation step at 95˚C for 3 min, followed 
by 45 cycles of denaturation at 95˚C for 30 sec, annealing at 
60˚C for 30 sec, and extension at 72˚C for 30 sec. The final 
termination step was performed at 72˚C for 5 min. For pyro‑
sequencing reactions, 25 µl Pcr template in a single well 
was immobilized by incubation (with continuous shaking at 
1,400 rpm for 10 min at room temperature) with a mixture 
of 5 µl streptavidin beads (Streptavidin Sepharose™ High 
Performance; cytiva) and 40 µl annealing buffer containing 
0.4 µM sequencing primer incorporated into each well. For 
strand separation, the liquid component was removed using a 
vacuum prep workstation (Qiagen GmbH). The beads captured 
on the probes were treated in 70% ethanol, and the solution was 
passed through a filter for 5 sec. The beads were then treated 
with a denaturing solution (0.2 M naoH), and the solution 
was passed through a filter for 5 sec. Thereafter, a wash buffer 
(10 mM Tris‑acetate, pH 7.6) was used to rinse the beads for 
5 sec. The liquid component was completely removed from 
the probes, and the beads were placed into a PSQ 96 Plate 
low (Pyrosequencing aB) containing the sequencing primer. 
The prepared PSQ 96 Plate Low was heated at 85˚C for 2 min, 
and the reactions were allowed to cool to room temperature. 
The resulting mixture was analyzed using the PSQ 96Ma 
pyrosequencer (Pyrosequencing aB). The accuracy of 
pyrosequencing was validated by direct dna sequencing of 
randomly selected samples using the same genomic dna. The 
analyzed allelic frequencies were then compared with those of 
other ethnic groups and those reported in the HapMap data‑
base (https://www.ncbi.nlm.nih.gov/snp).

Statistical analysis. Genetic equilibrium and linkage disequi‑
librium (ld) were tested according to the Hardy‑Weinberg 
equation (HWe) (16) using SnPalyzer software (version 9.0; 
dYnacoM co., ltd.). a chi‑square test was performed to 
assess the deviation of the pyrosequencing results from the 
HWe. The detected genotype frequencies were then compared 
to the expected frequencies. P<0.05 (two‑tailed) was consid‑
ered to indicate a statistically significant difference. D' and r2 
are standard measurements for the ld (17). d' values were 
calculated as d/dmax, where D is the coefficient of LD ranging 
from ‑0.25 to 0.25. in general, the standardized value of d' 
is preferred because d is often affected by allelic frequen‑
cies (18).

Results

each FMo3 SnP, including c.855c>T, c.441c>T, c.923a>G 
and c.472G>a, was successfully detected, as shown in the 
predicted pyrosequencing histogram (Fig. 1). representative 

peaks for each SnP are shown in Fig. 2. The sequenced data 
obtained using the pyrosequencing method were randomly 
selected and validated by direct dna sequencing. The results 
were 100% concordant with the pyrosequencing data, indi‑
cating 100% specificity and sensitivity (data not shown).

The allelic frequencies of FMO3 SnPs in the Korean 
population obtained using our pyrosequencing method were 
as follows: i) 44.7% for c.855c>T; ii) 23.4% for c.441c>T; 
iii) 23.0% for c.923a>G; and iv) 27.1% for c.472G>a (Table ii). 
The allelic frequencies obtained in these genetic analyses did 
not deviate from the Hardy‑Weinberg equilibrium (χ2=0.1843, 
0.1201, 0.0318 and 0.4729 for c.855c>T, c.441c>T, c.923a>G 
and c.472G>a, respectively; P=0.6677, 0.7290, 0.8584 and 
0.4917 for c.855c>T, c.441c>T, c.923a>G and c.472G>a, 
respectively); however, the ld analysis revealed that 
c.923a>G and c.472G>a exhibited strong ld (d'=0.8289, 
r2=0.5332; Table Si).

The ethnic differences of the SnPs were described 
in Table iii. although the data were limited, particularly for 
the european and african populations; however, the trend of 
the allelic frequencies for FMO3 SnPs obtained in the present 
study was similar to that previously reported in a Japanese popu‑
lation (12). in particular, the allelic frequencies of c.923a>G 
and c.472G>a appeared to be similar to those in the chinese 
population (3). The SnP c.923a>G frequency exhibited some 
similarity to the minor allele frequency (MaF) of the HapMap 
data of europeans (utah residents with northern and Western 
european ancestry from the cePH collection reported by the 
national center for Biotechnology information SnP database; 
HapMap‑ceu; https://www.ncbi.nlm.nih.gov/snp), whereas 
the frequencies of other SnPs exhibited remarkable differ‑
ences from the MaF of this population.

Discussion

The results of the present study indicated that this newly 
developed rapid pyrosequencing method for analyzing the 
c.855c>T, c.441c>T, c.923a>G and c.472G>a SnPs of the 
FMO3 gene was a reliable and accurate technique. The allelic 
frequencies obtained in 122 Korean subjects using this method 
revealed that these frequencies were most similar to those 
reported in the Japanese population (12). To the best of our 
knowledge, this was the first study to analyze FMO3 SnPs 
using a pyrosequencing method.

Various methods have been proposed to analyze the 
targeted SnPs. For example, FMO3‑related SnPs have been 
detected by using Pcr‑restriction fragment length polymor‑
phism analysis (19), real‑time Pcr (20) and direct sequencing 
methods (21). Sequencing technology was first conceptualized 
and developed in the 1970s by Sanger et al (22). The principle 
of this method is based on the use of dideoxynucleotide triphos‑
phates for dna sequence termination. The pyrosequencing 
method that was designed to analyze FMO3 SnPs in the 
current study was based on the solution‑based pyrosequencing 
method suggested by ronaghi et al (23) in 1998. This is a 
simple method that is suitable for automation as it uses apyrase, 
dna polymerase and luciferase, which eventually detect light 
emission through pyrophosphate production during dna 
synthesis (23). The major advantages of this method are its 
simplicity, reliability, high sensitivity and specificity compared 
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with conventional sequencing systems (24). Therefore, it was 
speculated that the method described in the present study 
could be suitable for precise, rapid and cost‑effective assess‑
ment of SnP frequencies in a relatively large sample set.

SnPs are the most frequently occurring sequence varia‑
tions in the human genome and often vary among different 
ethnic groups (1,2). The allelic frequencies of selected FMO3 
SnPs observed in this study were comparable to those 
reported in the Japanese population (9), whereas the frequency 
of each genotype in the chinese population was generally 
lower than that in the Korean or Japanese populations (3,12). 

FMO3 c.855c>T was the most commonly detected SnP in 
the current study; this result was consistent with that previ‑
ously reported in a smaller Korean population previously 
(n=41, MaF=0.329) (13). The frequencies of the c.855c>T 
and c.472G>a SnPs were higher in the african population 
(HapMap‑Yri database; https://www.ncbi.nlm.nih.gov/snp,32) 
than in the asian populations; however, the frequencies of 
c.441c>T and c.923a>G in the african population were 
markedly lower (<5%) (HapMap‑Yri database; https://www.
ncbi.nlm.nih.gov/snp). Therefore, FMO3 appears to exhibit a 
large interethnic difference (3,9,13).

Figure 1. Predesigned predicted histograms of FMO3 SnPs generated using the pyrosequencing software. (a) c.855c>T, (B) c.441c>T, (c) c.923a>G and 
(d) c.472G>a SnPs of the FMO3 gene. area under the black box indicates the detected polymorphism site. FMO3, flavin‑containing monooxygenase 3; 
SnPs, single nucleotide polymorphisms.

Table i. oligonucleotide primers used for Pcr and pyrosequencing to detect FMO3 SnPs.

SNP Primer Sequences Size, bp PCR Tm, ˚C

FMO3 c.855c>T (rs909530) Forward B 5'‑TTGGGTcaTTTTTTccTTccTTaT‑3' 261 60
 reverse 5'‑acccTGTTGcaaaGaTTacacaGT‑3'
 Sequencing 5'‑TTGcTGGGaGcTcaT‑3'
FMO3 c.441c>T (rs1800822) Forward B 5'‑ccacTGaaaGGGaTGGTaaaaa‑3' 125 60
 reverse 5'‑aGcaGcTTaaaTTTTGGccTTac‑3'
 Sequencing 5'‑TGGGaTacacaTGaTGTc‑3'
FMO3 c.923a>G (rs2266780) Forward 5'‑aGcaTTcTGTGTGGcaTTGT‑3' 144 60
 reverse B 5'‑aaGGaaGGGGTaGGcaaaacTaT‑3'
 Sequencing 5'‑cGTGaaGGaaTTcacaG‑3'
FMO3 c.472G>a (rs2266782) Forward B 5'‑aTGGTaaaaaaGaaTcGGcTGTc‑3' 132 60
 reverse 5'‑TTTTGTcaGTTaTGTGGcTaGcaG‑3'
 Sequencing 5'‑GccTTaccTGGaaaGGacT‑3'

FMO3, flavin‑containing monooxygenase 3; SNP, single nucleotide polymorphism; PCR, polymerase chain reaction; B, biotinylated at the end 
of the primer; Tm, melting temperature. 
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Table ii. Genotyping and allelic frequencies of FMO3 SNPs identified in this study.

a, c.855c>T

Genotype counts Genotyping frequency allele allelic frequency  χ2 P‑value

G/G 36 0.2951 G 0.5533 0.1843 0.6677
G/a 63 0.5164 a 0.4467
a/a 23 0.1885

B, c.441c>T

Genotype counts Genotyping frequency allele allelic frequency χ2 P‑value

G/G 70 0.5738 G 0.7664 0.1201 0.7290
G/a 47 0.3852 a 0.2336
a/a   5 0.0410

c, c.923a>G

Genotype counts Genotyping frequency allele allelic frequency χ2 P‑value

a/a 72 0.5901 a 0.7705 0.0318 0.8584
a/G 44 0.3607 G 0.2295
G/G   6 0.0492

d, c.472G>a

Genotype counts Genotyping frequency allele allelic frequency χ2 P‑value

c/c 63 0.5164 c 0.7295 0.4729 0.4917
c/T 52 0.4262 T 0.2705
T/T   7 0.0574

The expected and observed frequencies were compared using the Hardy‑Weinberg equation. FMO3, flavin‑containing monooxygenase 3; 
SnP, single nucleotide polymorphism.

Figure 2. Representative pyrograms of flavin‑containing monooxygenase 3 single nucleotide polymorphisms. Yellow highlights show (A) c.855C>T, 
(B) c.441C>T, (C) c.923A>G and (D) c.472G>A identified using the established pyrosequencing method.
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FMO3 genetic polymorphisms have been the focus of 
considerable interest in research; these findings can be 
applied to various studies on the pharmacokinetics of various 
medications, including anti‑diabetics (e.g., teneligliptin) (5,6), 
antibiotics (e.g., voriconazole) (20,25) and non‑steroidal 
anti‑inflammatory drugs (e.g., sulindac) (4,13,14), as well as 
human diseases, such as cardiovascular disorders (2,7). FMo3 
increases plasma trimethylamine n‑oxide (TMao) levels by 
catalyzing the conversion of trimethylamine (TMa) derived 
from the gut microbiome (26,27). Therefore, SnPs responsible 
for FMo3 loss‑of‑function seem to result in increased plasma 

TMa levels (9). at a clinical level, TMao is associated with 
atherosclerosis (28), and a recent study demonstrated that 
higher plasma TMao levels were associated with poor cardio‑
vascular outcomes, while the FMO3 SnP (c.472G>a) has been 
shown to reduce TMao levels in the asian population (7).

FMO3 also affects the levels of several clinically impor‑
tant medications, and its polymorphisms are associated with 
drug toxicity (25,29,30). The c.923a>G SnP has been shown 
to increase voriconazole concentrations by reducing FMo3 
enzyme activity (25), while c.855c>T SnP can increase 
the concentration of teneligliptin (6). FMO3 c.441c>T and 

Table iii. comparisons between FMO3 allele frequencies obtained in this study and those in other ethnic groups.

a, c.855c>T

Population number, n MaF, % refs.

Korean 122 44.7 Present study
Japanese 3,552 38.8 (12)
chinese 285 26.1 (3)
european 226 27.9 HapMap‑ceu database
Sub‑Saharan african 226 54.0 HapMap‑Yri database

B, c.441c>T

Population number, n MaF, % refs.

Korean 122 23.4 Present study
Japanese  3,552 19.9 (12)
chinese  285 5.8 (3)
european  226 6.6 HapMap‑ceu database
Sub‑Saharan african 226 3.1 HapMap‑Yri database

c, c.923a>G

Population number, n MaF, % refs.

Korean 122 23.0 Present study
Japanese 3,552 19.8 (12)
chinese  285 19.8 (3)
european 170 35.9 (31)
Sub‑Saharan african 226 1.3 HapMap‑Yri database

d, c.472G>a

Population number, n MaF, % refs.

Korean 122 27.1 Present study
Japanese  3,552 21.0 (12)
chinese  285 16.5 (3)
european  224 42.0 HapMap‑ceu database
african‑american 133 41.9 (32)

FMO3, flavin‑containing monooxygenase 3; MAF, minor allele frequency; CEU, Utah residents with Northern and Western European ancestry 
from the cePH collection; Yri, Yoruba in ibadan, nigeria.
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c.855c>T have been associated with fast tacrolimus elimi‑
nation in chinese patients (30). Studies by Park et al (13) 
and Sung et al (14) demonstrated that the SnPs c.855c>T 
and c.472G>a affected the pharmacokinetics of sulindac in 
women who underwent preterm labor. Febrile neutropenia, 
myelosuppression and agranulocytosis related to these SnPs 
have also been reported previously (25,29,30).

considering the relatively high frequency of FMO3 
genetic polymorphisms in the population, the functional 
defects in FMo3 enzymes associated with these SnPs may 
have notable clinical implications, such as the variations in 
drug exposure followed by toxicity or delayed elimination of 
toxic substances. Therefore, the development of a faster and 
more precise method to identify FMO3 SnPs could be clini‑
cally beneficial when purposed for optimal treatment (e.g., 
suggesting lower dosage in the patients with FMO3 genetic 
polymorphism to reduce the drug toxicity and adverse 
events). However, evidence should be accumulated through 
clinical studies.

The ethnic and interindividual differences in SnPs and 
their suspected clinical manifestations, personalized dosing, 
pharmacokinetics and pharmacodynamics studies of drugs 
based on FMO3 SnPs may present a novel research direc‑
tion. Thus, the pyrosequencing method developed in this 
study could be applied directly to analyze individual FMO3 
SnPs for research in this domain.

in conclusion, the pyrosequencing method developed in 
the present study was successfully applied to detect the SnPs 
c.855c>T, c.441c>T, c.923a>G and c.472G>a of the FMO3 
gene. in Korean subjects, c.855c>T was the most frequent 
among the four FMO3 SnPs.
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