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Abstract

IgA nephropathy is the most common cause of primary glomerulonephritis. There are different pathologic biopsy-
based scoring systems in use, but there is no consensus among nephrologists yet regarding the best classification
method. Our aim was to test urine proteomics as a non-invasive method for classification of IgA nephropathy. This
aim was pursued by discovering novel prognostic protein biomarkers in urine, and linking them to pathogenesis of the
disease through known signaling and metabolic pathways. 13 urine samples of the patients with biopsy-proven IgA
nephropathy were analyzed via two proteomics approaches: nanoflow LC-MS/MS and GeLC-MS/MS. The results of
label-free quantification were subjected to multivariate statistical analysis, which could classify patients into two
groups, broadly corresponding to the primary and advance stages. The proteome classification correlated well with
biopsy-based scoring systems, especially endocapillary hypercellularity score of the Oxford’s classification.
Differentially excreted candidate proteins were found as potential prognostic biomarkers: afamin, leucine-rich
alpha-2-glycoprotein, ceruloplasmin, alpha-1-microgolbulin, hemopexin, apolipoprotein A-I, complement C3, vitamin
D-binding protein, beta-2-microglobulin, and retinol-binding protein 4. Pathway analysis suggested impairment of
Extra Cellular Matrix (ECM)-Receptor Interaction pathways as well as activation of complement and coagulation
pathway in progression of IgA nephropathy.
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Introduction

IgA nephropathy is the most common cause of primary
glomerulonephritis throughout most of the developed world [1].
Although previously thought to be a benign pathology, less
than 10% of patients have complete remission and 6% to 43%
of patients develop end-stage renal disease in 10 to 20 years
after the initial diagnosis [1,2].

Many efforts have been made over decades of research to
predict the clinical course of the disease and to design a
prognostic scoring system based on demographic (age and
gender), clinical (hypertension), laboratory (creatinine level and
proteinuria at presentation), and pathologic indices [3,4].

Different pathologic scoring systems were developed over
decades, notably the H.S. Lee’s glomerular grading system
and the Oxford histologic classification of IgA nephropathy
[5-8].

According to the H.S. Lee’s system, biopsy specimens are
graded into five different groups: grade I, normal or focal
mesangial cell proliferation; grade II, diffuse mesangial cell
proliferation or <25% of glomeruli with crescent (Cr)/segmental
sclerosis (SS)/global sclerosis (GS); grade III, 25–49% of
glomeruli with Cr/SS/GS; grade IV, 50–75% of glomeruli with
Cr/SS/GS; and grade V, >75% of glomeruli with Cr/SS/GS [6].

In 2009, an international consensus working group has
developed Oxford classification which is based on four
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histiopathological features (MEST): mesangial hypercellularity
(M), endocapillary hypercellularity (E), segmental
glomerulosclerosis (S), and tubular atrophy and interstitial
fibrosis (T) [7,8]. According to the Oxford classification, both
chronic fibrotic changes and mesangial and endocapillary
hypercellularity can provide the prognosis. Since then, several
studies have been performed to validate the Oxford
classification in different cohorts [9-12].

The results have been somewhat inconsistent [13]. These
inconsistencies, the limitations in risk stratification of IgA
nephropathy and the invasive nature of kidney biopsy bring the
need for novel IgA nephropathy biomarkers into the spotlight.

The urine proteomics approach is a noninvasive and
promising novel method for evaluating the changes in protein
patterns as a potential prognostic marker for predicting the
clinical course of IgA nephropathy [14]. Here we study the
differences in urine proteome patterns of different pathological
classifications of IgA nephropathy and their relation to clinical
and pathological indices. The hope was to find a prognostic
biomarker among urine proteins, and to learn more about the
mechanisms involved in the pathogenesis of IgA nephropathy.
The number of patients (13) was in line with recent studies on
urine proteomes (e.g. in reference [15], seven subjects have
been studied). The limited goal of our study (differentiation
between stages of a known disease) and the fact that each
subject provided not only urine sample but also kidney biopsy,
justifies such a limited cohort.

Methods

Patients
At Labbafinejad Hospital, thirteen patients (11 males and 2

females) with biopsy-proven IgA nephropathy were
consecutively enrolled in this study during 2011. Age, sex,
smoking habits and also diet (a day before sampling) of the
patients were noted and patients with other implications like
diabetes were excluded. None of the patients had gross
hematuria at the time of sampling. Written consents were
provided for participants according to recommended consent
form of "Medical Ethics" committee of Shahid Beheshti
University of Medical Sciences. These consents were included
these issues: brief introduction of study, advantages, dangers,
confidentiality of the identity of participants, a contact
information for answer to questions, the right for resign of the
study. Each participant signed the consent form because
collecting urine samples were non-invasive and simple.
"Medical Ethics" committee of Shahid Beheshti University of
Medical Sciences approved this consent procedure and also
approved this study. IgA nephropathy was histologically
classified as class I–V, according to both H.S. Lee’s
classifications and the Oxford classification (MEST). For each
patient, data were collected concerning serum creatinine,
eGFR (estimated glomerular filtration rate) (by CKD-EPI
equation (chronic kidney disease epidemiology collaboration)),
presence of hypertension, MAP (mean arterial blood pressure),
and proteinuria at presentation.

Collection of urine samples and protein extraction
Approximately 20-40 mL of second morning midstream urine

from patients were collected and 1 mL of dissolved protease
inhibitor (one tablet, Cocktail protease inhibitor, Sigma,
dissolved in distilled water) was added to each 10 mL of urine.
The samples were centrifuged at 3000 rcf for 20 minutes at 4
°C to pellet the cell debris. The supernatant was transferred
into 15 mL tubes and stored at -80 °C until the samples were
processed further. The supernatant were concentrated and
desalted by ultrafilteration as follow: urine samples were
transferred to individual Amicon Ultra-15 Centrifugal Filter Units
with a 3 kDa cutoff (Millipore, Billerica, MA, USA) and spun at
3220 rcf at 4°C for 1h. The initial concentration was followed by
two wash steps by adding 14 mL of PBS and spinning each
tube at 3220 rcf at 4 °C for 1 h. By filtering, the sample volume
was reduced from 15 mL to a final volume of approximately
800-1000 µL. In order to inactivate potential bacterial activity,
1200 µL of cold acetone was added to 300 µL of concentrated
urine and incubated at -20 °C overnight. The samples were
dried in a vacuum concentrator and stored at -20 °C.

Sample preparation for LC-MS analysis
Dried samples were re-suspended in 0.1 M ammonium

acetate (pH 5) and the protein concentrations of the samples
were determined using the BCA (Bicinchoninic Acid) Protein
Assay (Pierce, Thermo Scientific, USA). 10 µg urinary proteins
from the individual samples were digested in duplicates using
sequencing-grade trypsin (Promega, USA). The samples were
digested by trypsin in a ratio of 1:50 (enzyme:protein) at 37 °C
overnight after reduction and subsequent alkylation in turn by
20 mM DTT (dithiothreitol) and 66mM IAA (Iodoacetamide).
The resulting peptides were desalted using C18 StageTip
(Thermo Scientific, USA) [16]. The eluted peptides were
evaporated in a SpeedVac and re-suspended in a buffer
containing 0.1% formic acid and 3% ACN (acetonitrile) v/v
before loading to a nano-LC-MS/MS system.

Liquid chromatography tandem mass spectrometry
Liquid chromatography tandem mass spectrometry (nLC-

MS/MS) analyses were performed on an Easy-nLC system
coupled online to a Q Exactive mass spectrometer (both -
Thermo Scientific, Bremen, Germany) Separation of peptides
was performed using a 10 cm fused silica tip column
(SilicaTips™ New Objective Inc., Woburn MA, USA) in-house
packed with Reprosil-Pur C18-AQ 3 µm resin (Dr. Maisch
GmbH, Ammerbuch-Entringen, Germany) using a methanol
slurry and a pressurized ‘‘packing bomb’’ operated at 40 bar
(Proxeon Biosystems). Mobile phases consisted of 0.1% formic
acid in water v/v (buffer A) and 0.1% formic acid in acetonitrile
v/v (buffer B). The LC gradient was set up as following: 5−35%
buffer B in 89 min, 48−80% buffer B in 5 min, and 80% buffer B
for 8 min, all at a flow rate of 300 nL/min. Samples (10 µL
corresponding to approximately 2.3 µg of total protein) were
injected via a temperature-controlled autosampler.

The MS acquisition method was comprised of one survey full
scan ranging from m/z 300 to m/z 1650 acquired with a
resolution of R= 70,000 at m/z 400, followed by data-
dependent HCD (high energy collision dissociation) MS/MS of
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maximum ten most abundant precursor ions with a charge
state ≥ 2. MS/MS spectra were acquired with a resolution of
R=17,500, with a target value of 2e5 ions, isolation m/z width
was set to 4 and normalized collision energy to 26 eV. For all
sequencing events, dynamic exclusion was enabled and
unassigned charge states were rejected.

One-dimensional SDS-PAGE, in-gel digestion and
cleaning procedure

Proteins (5 µg for each sample) were loaded on a 4-12% Bis-
Tris mini gel (Novex, Invitrogen, Carlsbad, CA, USA) using 2-
(N-morpholino)-ethanesulfonic acid or 3-(N-morpholino)-
propanesulphonic acid SDS running buffer (Invitrogen), in
accordance with manufacturer's instructions. After staining with
Coomassie blue, each gel lane was cut into eight pieces and
subjected to in-gel tryptic digestion. The digestion was
performed by a liquid-handling robot (MultiProbe II, Perkin
Elmer), including protein reduction in 10 mM DTT and
alkylation in 55 mM IAA. Gel pieces were dehydrated in 100%
acetonitrile, trypsin was added to a final concentration of 13
ng/µL, and the pieces were digested for 5 h at 37 °C. Extracted
peptides from consecutive bands were pooled according to
their protein levels, resulting in eight pools for each lane.

The extracts were concentrated in vacuum and then de-
salted using C18 ZipTips(Millipore, Billerica, MA, USA,).
ZipTips were first wetted with 100% acetonitrile and then
equilibrated with a solution containing 3% acetonitrile and 0.1%
TFA (trifluoroacetic acid). Elution of the peptides was
performed with 80% acetonitrile and 0.1% TFA. Dried peptides
were solubilized again in a 0.1% formic acid in water (HPLC
grade) prior to loading onto the nano-LC column.

MS data analysis
Tandem mass spectra were extracted using Raw2MGF (in-

house-written program) and the resulting Mascot generic files
(.mgf) were searched against a concatenated SwissProt
protein database (Human taxonomy) using Mascot 2.3.0
search engine (Matrix Science Ltd., London, UK).
Carbamidomethylations of cysteins was set as a fixed
modification and deamidation of asparagine and glutamine as
well as oxidation of methionine were set as variable
modifications. Up to two missed tryptic cleavages were allowed
and the mass tolerance was set to 10 ppm and to 0.05 Da for
the precursor and fragment ions, respectively. Only peptides
having individual MS/MS Mascot score above significant
threshold corresponding to E<0.05 were accepted. Only
proteins identified with at least two peptides with a significant
score and at 0.25% false discovery rate (FDR) were
considered for further quantification.

Relative abundance of proteins identified with ≥ 2 unique
peptides and a significance threshold of E < 0.05 was
determined using Quanti (an in-house developed software
package) [17]. The areas of the chromatographic peaks were
taken as the peptide abundances and the same peptides were
quantified in each nLC-MS/MS data file using accurate mass
and the order of elution as identifiers. The sum of the
abundances of all unique peptides of a protein was used as the
protein abundance value. The list of quantified proteins was

further filtered to 1% FDR, which corresponded to the protein
Mascot score of 23.63 for in solution digestion and 28.76 for in
gel digestion.

Statistical analysis
The quantitative proteome data was subjected to multivariate

statistical analysis using SIMCA (SIMCA-p 13.0, Umetrics,
Umeå, Sweden). Unsupervised principal component analysis
(PCA) [18,19] was performed without consideration of group
information. By reducing the number of proteins in the PCA
input based on the number of peptides per protein (by keeping
the proteins with larger number of peptides, i.e. most reliable
data), several PCA were performed. In order to find the best
model with a maximal distance between the groups, a quality
factor was calculated for each model using the following
empirical formula:

Q=IA(x,y)-B(x,y)I2/(δ2Ax+δ2Bx+δ2Ay+δ2By),
where Ax is the average x value (from PC1) for all samples

with advanced stage of the disease (class IV and V according
to H.S. Lee’s classification), Bx is the average x value for all
samples with primary stage of the disease (class II and III
according to H.S. Lee’s classification), Ay and By are the
average y values (from PC2) for patients in advanced and
primary stages, respectively, and δ2Ax, δ2Bx, δ2Ay, δ2By

represent the standard deviations of x and y values for the
samples in two stages.

The model with the highest quality factor was selected as the
best model, and significant (according to PCA) proteins were
considered as potential biomarkers.

PLS (Partial Least Squares) analysis was applied using
SIMCA in order to introduce a predictive model for stage
classification of IgA nephropathy based on proteomics data
obtained by PCA. In PLS, the X matrix contains the data
variables (all quantified proteins), while the Y matrix contains
the class variable for which values are chosen to be the class
descriptor (predictive biomarkers which were common in
GeLC-MS/MS and nLC-MS/MS) [20]. Unlike other popular
dimension reduction techniques, such as principal components
analysis, the PLS algorithm calculates each latent variable from
X based on Y. The objective is to maximize the covariance
between Y and X, unlike PCA which maximizes the variance of
the variables, X, alone. Thus PLS, unlike PCA, explicitly
accounts for the covariates within the model [21].

Protein GO-term Enrichment, Pathway and Regulator
Analysis

Gene ontology annotation was performed for the proteins in
the data set, pathways and regulator analysis was done using
the “GeneXplain platform” (GenExplain GmbH, Wolfenbüttel,
Germany) and DAVID open-source software tool [22]. DAVID
uses the EASE score [23], a modified Fisher Exact p-value, to
determine whether a GO-term is over- or under-represented in
a given proteomic data set with reference to a background data
set (e.g. the human proteome). To identify the upstream key
nodes of proteins of interest, regulator analysis was performed
using a”GeneXplain” tool with a FDR of 0.05 and the
TRANSPATH database. Key nodes are signaling molecules
found on pathway intersections in the upstream vicinity of the
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genes from the input list. Each key node was given a score
reflecting its connectivity, i.e. how many input-list genes were
reached and the proximities to those genes. The score
calculation also included the abundances of the downstream
proteins detected in the proteomics experiment [24].

Results

Clinical and pathological characteristics of patients
Clinical and laboratory information on patients are provided

in Table 1. Thirteen patients (11 males and 2 females, between
18-52 years old, mean age 33 years) with biopsy-proven IgA
nephropathy were enrolled. The biopsy samples were
classified by a single pathologist according to both H.S. Lee’s
and Oxford classifications. In order to estimate the amount of
protein excretion, a 24 h urine collection was used. The mean
24 h protein concentration was 3010 mg/day, with ten patients
having urine protein concentration higher than 1 g/day. Renal
function was evaluated by eGFR using CKD-EPI equation. The
mean eGFR level was 67.7 cc/min/1.73 m2 and six patients had
an eGFR of less than 60 cc/min/1.73 m2. Six patients had been
diagnosed with hypertension in the past and were on
antihypertensive treatments at presentation.

Principal Component Analysis (PCA) of in-solution
digestion proteomes

A total number of 232 unique proteins were identified and
quantified by nLC-MS/MS. The proteins were sorted according
to their relative abundances. Top N proteins (N was varied)
were used for PCA; the optimal N=38 was selected (see

Table 1. Demographic and laboratory characteristic of
patients with IgA nephropathy.

Oxford
Classification

H.S.Lee’s
Classification

Proteinuria
(mg/day)

eGFR
(cc/min/
1.73m2) Sex

Age
(yr) Case

M1 S1 E0 T0 II 4600 44.10 M 52 1

M1 S0 E0 T1 III 1000 119.42 M 18 2

M1 S0 E1 T2 V 6000 8.58 M 29 3

M1 S0 E0 T0 II 6420 79.52 M 42 4

M1 S1 E1 T2 V 7020 46.60 M 29 5

M0 S1 E0 T0 III 1680 117.91 F 28 6

M1 S1 E0 T1 IV 4100 49.04 M 32 7

M1 S0 E1 T2 V 2330 16.11 M 28 8

M1 S1 E1 T1 III 800 63.65 F 23 9

M1 S0 E0 T0 II-III 1310 97.76 M 34 10

M1 S1 E1 T0 III 720 68.01 M 45 11

M1 S1 E0 T1 V 2640 35.71 M 34 12

M1 S0 E0 T0 II-III 520 133.51 M 42 13

(eGFR: Estimated Glomerular Filtration Rate by CKD-EPI equation; Oxford
Classification M: Mesensial hypercellularity, S: Segmental glomerulosclerosis, E:
Endocapilary hypercellularity, T: tubular atrophy/ interstitial fibrosis).
doi: 10.1371/journal.pone.0080830.t001

Material and Methods) based on the best separation between
the high and low disease stage groups (Figure 1A). Score plot
(Figure 1B) shows two clusters separated along the main
principal coordinate, PC1. Out of the 38 proteins used for
classification, 18 proteins were with statistically significant
abundance changes, and thus were identified to be the most
important markers responsible for the observed clustering
(Table S1).

By and large, the obtained clustering of the proteomics data
agrees with the biopsy results. In the first cluster, patients 1, 2,
4, 6, 7, 10, 11 and 13 are all in pathologic class II and III
according to H.S. Lee’s classification and thus belong to the
low stage group. In the second cluster, patients 3, 5 and 8 are
all in pathologic class V and therefore belong to the high stage
group. Patient 9, according to biopsy results, belongs to stage
III, i.e. to the low stage, but the proteomics data are closer to
the high-stage cluster. Another disagreement concerns the
patients 7 and 12, who were in the high stage group according

Figure 1.  Quality factor Q against number of proteins N
included in the model.  The proteins were sorted according to
the number of detected peptides per protein, and N top
proteins were retained for the model. The highest Q
corresponds to a model N=38 proteins, which was accepted as
the best model (A). Unsupervised PCA scores plot based on 38
quantified proteins across all 13 samples. All the replicates
were close to each other and there was no statistical outlier
(B).
doi: 10.1371/journal.pone.0080830.g001
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to biopsy, but whose proteomics results clustered together with
the low stage group.

In attempt to verify the proteomics-based classification, 1D
GeLC-MS/MS analysis was performed. In this approach,
instead of being directly digested in solution, the urine proteins
were first separated on a 1D gel, with each lane being cut in
eight pieces, individually digested and run by nLC-MS/MS. In-
solution and in-gel digestion often produce somewhat
complementary results in terms of peptide abundances, but
both types of analyses reflect the same biological differences
between the samples. Since gel-based analysis takes more
work and time to perform than in-solution digestion, it is less
suitable in clinical setting, and thus we used it here just for
verification.

PCA of in-gel-digested proteomes
A total of 336 unique proteins were detected and quantified

by 1D GeLC-MS/MS. The larger number of proteins compared
to in-solution digestion was not surprising, because each
sample produced eight separately analyzed fractions. PCA with
N top proteins (Figure 2A) gave the best model at N=230
(Figure 2B). The results generated by this method were
consistent with those of nLC-MS/MS. Again, two main clusters
were observed, separated along the main coordinate PC1.
Patient 9 data again clustered together with the high stage
group, while patients 7 and 12 belonged to the low stage
cluster, contrary to biopsy results but in agreement with in-
solution analysis. Note also that the order of disease severity in
the high-stage patients, according to both analyses, was
9<8<5<3. Such conformity between the two proteomics
approaches testifies to the high precision of proteomics
measurements.

Seventy three out of 230 proteins had significant abundance
changes between the disease stages, and were the most
important proteins responsible for the best clustering. After
applying an additional filter criterion, where only proteins with a
fold change of 1.5 or higher were retained, 62 proteins
remained, of which 31 proteins were upregulated
(overrepresented) in higher disease stages and 31 proteins
were downregulated, or under-represented (Table S2).

All significant proteins obtained in either GeLC-MS/MS (61
proteins) or nLC-MS/MS (18 proteins) were used in GO and
pathway analyses.

Molecular weight analysis
In general, glomerular permeability is affected by molecular

weight of proteins, as well as their size, shape and electrical
charge. Normally, the renal threshold is ca. 68 kDa, therefore
the glomerular filtrate contains proteins with lower molecular
weight (MW) than the threshold. These filtered proteins are
then taken up and catabolized by renal tubular epithelial cells,
therefore in disease, these proteins can appear in the urine.
Glomeruli malfunction may also result in high-MW proteins in
urine. Thus the most straightforward hypothesis is that of the
link between the protein MW and the disease stage. This
hypothesis has been considered in some studies [25,26] which
implied tubular damage and diminished protein reabsorption in
proximal tubule as an upstream reason for excretion of low

molecular weight proteins (B2MG, AMBP). To test this
hypothesis in our data, we have analyzed the MW distribution
of the significant proteins. Seven out of eight (87%) proteins
reported as over-represented biomarkers in advanced stage
are found to be below the physiological threshold of glomeruli,
and have mean MW of 37 kDa. The MW of these low molecular
weight (LMW) proteins (RET4, B2MG, APOA4, VTDB, APOA1,
HEMO, AMBP) were significantly different from the under-
represented proteins (p=0.048). This finding is consistent with
the suggestion that evaluation of LMW proteins could be an
indication for severity of glomerular disease such as IgA
nephropathy. However, our proteomics results are not limited
to the above finding.

Proteomics-based predictive model
Owing to the significant proteins obtained from PCA results

of in-solution digestion and in-gel digestion proteomes, a
predictive model could be built for distinguish between primary
and advanced stage of IgA nephropathy (Figures 3A and 3B).
This model was constructed using PLS (Partial Least Squares)
method [27]. The plot of X and Y loading weights (w* and c) of
PLS component 1 against component 2 shows how the X-
variables correlate with Y- variables, where X- variables are
quantified proteins and Y-variables are prognostic biomarkers
common in the best PCA models obtained from both
proteomics methods (Table 2). For better clarity, only the Y-

Figure 2.  Quality factor plot for 1D GeLC-MS/MS.  The best
model corresponded to 230 proteins (A). Score plot of PCA
using 1D GeLC-MS/MS (B).
doi: 10.1371/journal.pone.0080830.g002
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variables are shown on the Figures 3A and 3B. The proteins on
the right are under-represented and the proteins on the left are
over-represented in the advanced stages. The predictive (Q2)
and fitness values (R2) were 0.64 and 0.864, respectively,
which means high quality of the model.

Discussion

We have performed label-free proteomics analyses of urine
samples from patients with IgA nephropathy using nLC-MS/MS
and GeLC-MS/MS approaches. The obtained quantitative data
were subjected to a multivariate analysis in order to classify
patients based on the disease severity as well as finding novel
diagnostic biomarkers.

Classification based on proteomic results
Based on the clustering of PCA analysis of nLC-MS/MS and

1D GeLC-MS/MS data sets, a classification model for IgA
patients could be built which demonstrates 60% sensitivity and
87% specificity in comparison with H.S. Lee’s classification and
80% sensitivity and 100% specificity in comparison with Oxford
classification (see the comparison in Table 2). Thus the
proteomic results were more consistent with Oxford than H.S.
Lee’s classification. For patients 9 and 11 who were classified

Figure 3.  Proteomics-based predictive model using PLS
analysis based on loading plot.  The variables on the right
are under-represented proteins and the variables on the left are
over-represented proteins in advanced stage of IgA
nephropathy (A). Score plot of Predictive model (B).
doi: 10.1371/journal.pone.0080830.g003

as stage III by H.S. Lee’s classification but had endocapillary
proliferation and therefore were E1 in Oxford classification
which is associated with worse prognosis, proteomic data
clustered together with patients who had more severe disease
(stages IV and V).

There is still disagreement on the relevance of the pathologic
variable E (endocapillary hypercellularity) of the Oxford
classification to the severity and prognosis of IgA nephropathy
[13]. Based on urine protein profiles, patients with high stage of
IgA nephropathy (samples number 3, 5, 8 and 9) correspond to
E1 variable in the Oxford classification, while patients with low
stage of the disease (except for patient 11) correspond to E0
(see Table 1 and Table 2). Since E1 is associated with worse
prognosis than E0, the broad agreement between protein
clustering and endocapillary proliferation suggests that the
latter might be a better reflection of severity of IgA
nepheropathy than the other variables (M, S and T).

Proteins Differentiating Pathologic Severity of IgA
nephropathy

Proteins that were common in both types of proteomics
analyses and which correlated with eGFR (Estimated
Glomerular Filtration Rate; a parameter used evaluation of
renal function) were selected as probable biomarkers for
severity stratification (Table 3). These proteins were used as
variables in our predictive model (Figure 3A and 3B).
Association of all reported biomarkers in Table 3 were
examined with proteinuria level which resulted in significant
association of three proteins: APOA1 (p= 0.0239), APOA4
(p=0.0285) and CO3 (p=0.00865).

RET 4 (retinol binding protein 4) was reported by Li et al. [28]
as a diagnostic biomarker for IgA nephropathy and the
increased amount of it was positively related to tubulointerstitial
lesion. The involvement of this LMW protein in regulation of
immunoglobulin secretion (Inferred from sequence or structural

Table 2. A new classification based on proteomics data and
comparison with other classification based on biopsy.

Patients code
based on PC1

Proteomics-based
classification
(stage)

H.S. Lee’s
Classification
(stage)

Oxford Classification
based on E score
(stage)

3 advanced advanced advanced
5 advanced advanced advanced
8 advanced advanced advanced
9 advanced primary advanced
1 primary primary primary
2 primary primary primary
4 primary primary primary
6 primary primary primary
7 primary advanced primary
10 primary primary primary
11 primary primary advanced
12 primary advanced primary
13 primary primary primary

doi: 10.1371/journal.pone.0080830.t002
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similarity in GO database) might be the cause of its positive
correlation with IgA nephropathy progression.

Excessive losses of AMBP and B2MG have been known to
be a sign of tubular damage since early proteomic studies of
IgA nephropathy [29,30]. One of the molecular functions of
AMBP is IgA binding [31], but the role of this protein in
pathogenesis of IgA nephropathy is still unknown. Lundsberg et
al. [32] studied blood samples of IgA nephropathy patients and
implied the role of apolipoproteins as a risk factor for IgA
nephropathy. However, Wang et al. [33] claimed that urinary Lp
(a) excretion in various nephropathy patients (such as IgA
nephropathy patients) was decreased compared to controls,
while our results showed a clearly increased level of Apo AI
and Apo AIV in advanced stage (p<0.0001 and p<0.0003,
respectively) (Table 3). Downregulation of urinary ApoAI has
been reported in diabetic patients with macroalbuminuria and
was associated with disease progression [34]; however, Julian
et al. reported ApoAI as a urinary biomarker of IgA
nephropathy [35]. Consisted with that earlier finding, our data
indicate upregulated urinary ApoAI in patients with more
advanced disease.

ApoAIV, a glycoprotein with a known role in reverse transport
of cholesterol, has recently been reported as a biomarker for
prediction of progressive chronic kidney disease [36,37]. In our
study, elevated urinary level of ApoAIV was also associated
with advanced disease. ApoAIV is freely filtered by glomerulus
and mostly reabsorbed by proximal tubule cells. Its plasma
level correlates with chronic kidney disease progression [38].
Increased urinary excretion of ApoAIV is related to tubular
injury and decreased reabsorption. Patients with tubular
damage have increased urinary excretion of ApoAIV and
AMBP [39]. As patients with more advanced IgA nephropathy
are believed to be with more severe tubulointerstitial injury, this
may explain the higher urinary level of ApoAIV.

The role of CO3 as a common key factor of three
complement pathways (classical, lectin and alternative
pathways) and its implication in pathogenesis of IgA
nephropathy has been widely discussed [40,41]. A positive
correlation between excessive loss of CO3 and advance stage
of the disease was also observed in our results, but the main
cause for the elevated amount of this protein and other
complement pathway proteins in urine could not be clearly
identified.

In this study, we report for the first time an increased urinary
excretion of VTDB (Vitamin D binding protein), A2GL (Leucin-
rich alpha-2-glycoprotein), AFAM (Afamin) and HEMO
(Hemopexin) in patients with more severe IgA nephropathy,
and suggest these proteins to be predictive biomarkers for
severity of IgA nephropathy.

Glycoproteins have critical role in cell-to-cell interaction and
their urinary excretion may be an early marker of injury.
Vivekanandan-Giri et al. reported altered urinary glycoprotein
profile in CKD. Afamin, Hemopexin and leucin-riched alpha-2-
glycoprotein were among those glycoproteins with altered
expression in CKD, although their significance could not be
shown [42].

Afamin (a-albumin, a1T-glycoprotein) is the newest member
of the albumin family comprising albumin, a-fetoprotein, and
vitamin D binding protein. Afamin mRNA expression is
predominantly in liver and kidney [43].

Since here we are attempting not to diagnose IgA, but only to
determine its severity, the found biomarkers do not have to
have absolute specificity (i.e., be unique for IgA compared to
other immune-mediated glomerulonephritis). Indeed, some of
the potential biomarkers of the IgA nephropathy severity
reported in the present study have previously been reported for
other immune-mediated glomerulonephritis, although urinary
proteomic studies are limited for such diseases. Proteins
CERU [44], CO3 [45], A2GL1, HEMO, RET4, AMBP [46] and

Table 3. Comparison of the proteomics-determined regulation of proteins and the values of eGFR (Estimated Glomerular
Filtration Rate, an estimate of renal function).

p-value of
correlation

Correlation with
eGFR

Up/Down
Regulation

Fold Change
(GeLC-MS)

Fold change
(LC-MS) Biological process Protein Name Protein ID

0.001 0.634 ↓ 1.8 1.7 Vitamin ETransport Afamin(Alpha-albumin) AFAM

0.000 0.675 ↓ 2 1.7  Brown fat cell differentiation
Leucine-rich alpha-2-
glycoprotein

A2GL1

0.000 0.666 ↓ 1.7 1.6 Ion Transport Ceruloplasmin CERU
0.001 -0.631 ↑ 1.9 2.6 cell adhesion Alpha-1-microgolbulin AMBP

0.002 -0.579 ↑ 2.7 6
Positive regulation of immunoglobulin
production

Hemopexin HEMO

0.003 -0.555 ↑ 5.8 7.2 Steroid metabolism Apolipoprotein A-I APOA1
0.001 -0.621 ↑ 1.7 8.2 Inflammatory response Complement C3 CO3
0.004 -0.549 ↑ 5.3 11.1 Response to estradiol stimulus Vitamin D-binding protein VTDB

0.006 -0.527 ↑ 2.6 11.7
Positive regulation of fatty acid
biosynthetic process

Apolipoprotein A-IV APOA4

0.001 -0.593 ↑ 31 16.5 Regulation of immune response Beta-2-microglobulin B2MG

0.001 -0.616 ↑ 52 35.3
Positive regulation of immunoglobulin
secretion

Retinol-binding protein 4 RET4

doi: 10.1371/journal.pone.0080830.t003
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B2MG [47] have been found among urinary biomarkers for
lupus nephritis and membranous glomerulonephritis.

In addition, CO3 has been reported as tissue biomarker for
immunotactoid glomerulopathy [48] and C3 Glomerulonephritis
[49]. On the other hand, none of the reported in this study
potential biomarkers have been associated with post-infectious
glomerulonephritis or post-streptococcal glomerulonephritis.
Moreover, to the best of our knowledge AFAM, VTDB, APOA-I
and APOA-IV have not been associated with any other
immune-mediated glomerulonephritis, and may be specific for
IgA nephropathy.

Gene Ontology enrichment, pathway and regulator
analysis

Although urine itself does not support any metabolic or
signaling pathway, it is instructive to perform GO classification
of the significantly changing proteins and pathway analysis
based on them, to obtain additional insight on the possible
biological role of these proteins in IgA nephropathy.

DAVID GO analysis yielded "response to wounding" as the
most significant biological process (p=6.0x10-4) (Figure 4) for
under-represented proteins and the only significant biological
process present according to GeneXplain was lipid catabolic
process (p=0.011). The significant cellular components and
molecular function are listed in Table S3 and S4. Pathway
analysis using DAVID with the KEGG database showed two
major pathways, “Extra Cellular Membrane (ECM)-receptor
interaction pathway” (p=0.02) and “lysosome” (p=0.0003)
(Table S5). Upstream regulator and pathogenesis analyses
were performed using GeneXplain (Table S6). The majority of
master molecules (regulators) refer to CD44.

According to DAVID, the most significant biological process
(p=2×10-5) for over-represented proteins was “acute
inflammatory response” (Table S7). Details of cellular
component and molecular function for over-represented

Figure 4.  Gene Set Enrichment Analysis of biological
Process.  This analysis was done by "DAVID" using under-
represented proteins obtained from both methods.
doi: 10.1371/journal.pone.0080830.g004

proteins have been tabulated at Table S8 and S9. Pathway
analysis using the KEGG database revealed that the
complement and coagulation pathway is the only significant
(p=3×10-6) pathway. The results of regulator analysis are given
in Table S10.

CD44 is present in four of the biological processes obtained
from DAVID, pointing out the importance of this protein in
progression of IgA nephropathy. Increased tissue expression of
CD44 has been found in renal biopsy of IgA nephropathy, but
Qiaoling et al. have found its expression to be significantly
lower in the pathologic stage IV than III, which might be
explained by the presence of more severe fibrosis [50]. Our
analysis also demonstrates decreased urinary excretion of
CD44 in more advanced stages of IgA nephropathy.
Enrichment of this molecule in the GO-term, pathway and
regulator analyses hints on its role in IgA nephropathy that can
be further investigated.

Activation of the Complement and coagulation pathway has
been implied in a number of studies as one of the mechanisms
of IgA nephropathy [40]. We suggest that over-representation
of antithrombin-III (SERPINC1) andalpha-2-macroglobulin
(A2M) as two major regulatory proteins of the coagulation
pathway which observed in the dataset may explain
implementation of complement and coagulation pathway in IgA
nephropathy mechanism by inhibition coagulation cascade and
thus leading to availability of substrates for the kallikerein-kinin
system and complement cascade (Figure 5).

Regulator analysis agreed with some previous findings and
suggested a probable mechanism for progression of IgA
nephropathy. Myeloperoxidase (MPO) is the master key of
apolipoprotein a-1 (APOA1) that binds to high density
lipoprotein (HDL) by APOA1 moiety. Oxidative modification by
MPO of APOA1 in HDL can modify HDL and affect the
cholesterol efflux from peripheral tissues to liver. By another
mechanism, it can alter anti-inflammatory properties of HDL
and convert it to a pro-inflammatory molecule [51]. Modified
HDL by MPO can activate signaling cascade of NF-kB [50] that
is believed to have important role in making atherosclerotic
plaques. In our case, this can happen in kidney arteries and
lead to inflammation and kidney injury.

Renin, another key node which is upstream of angiotensin in
a number of known pathways, could play a role in IgA
nephropathy progression by activation the intra-renal oxygen
reactive species [52]. ADAM19 (Meltrin-beta) is the upstream
regulator for alpha-2-macrogulbulin (A2M) whose role in renal
disease has been identified in several studies [53]. The role of
ADAM19 in progression of IgA nephropathy might be the
regulation of the A2M downstream processes, such as binding
to cytokines [54] which result in inflammation, or regulation of
complement and coagulation pathway [55] by cleavage of this
protein [56].

Conclusions

In this study, we performed a classification of IgA
nephropathy based on the results of two proteomic analyses
based on semi-complementary nLC-MS/MS and GeLC-MS/MS
approaches. Classification based on protein pattern was
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broadly consistent with Oxford’s classification and supported
the importance of endocapilary hypercellularity as a prognostic
feature. Eleven protein candidates identified with both methods
were found to be the most probably prognostic biomarkers. A
correlation was confirmed between excretion of LMW proteins
and advanced disease stages. A proteomics-based predictive
model was built that showed 80% sensitivity and 100%
specificity in comparison with Oxford classification.
Complement and coagulation pathways as well as Extra
Cellular Membrane (ECM)-receptor interaction pathway were
found as the most probable pathways in progression of IgA

nephropathy. Using regulator analysis, myeloperoxidase, renin
and ADAM19 were identified as important probable players in
disease pathogenesis also candidates for future targeted
experiments.

Most proteins identified as potential biomarkers in this work
have been implicated in other diseases as well. This however
is not diminishing the practical utility of the findings, as they are
to serve a limited purpose of differentiation between the stages
of a known disease.

Overall, this study found urine proteomics to be an
informative and noninvasive method for determining the

Figure 5.  Complement-coagulation pathway from KEGG database [57,58].  The proteins over-represented in our data set are
marked by an arrow.
doi: 10.1371/journal.pone.0080830.g005
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severity of IgA nephropathy. Since the disease classification
based on the invasive kidney biopsy does not always correctly
provide prognosis and predict response to treatment,
proteomics can be a helpful addition to, and with time could
become even a replacement of, the established invasive
diagnostic approaches.
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