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Abstract: In the competing risks frame, the cause-specific hazard model (CSHM) can be used to test
the effects of some covariates on one particular cause of failure. Sometimes, however, the observed
covariates cannot explain the large proportion of variation in the time-to-event data coming from
different areas such as in a multi-center clinical trial or a multi-center cohort study. In this study, a
multi-center competing risks model (MCCRM) is proposed to deal with multi-center survival data,
then this model is compared with the CSHM by simulation. A center parameter is set in the MCCRM
to solve the spatial heterogeneity problem caused by the latent factors, hence eliminating the need to
develop different models for each area. Additionally, the effects of the exposure factors in the MCCRM
are kept consistent for each individual, regardless of the area they inhabit. Therefore, the coefficient of
the MCCRM model can be easily explained using the scenario of each model for each area. Moreover,
the calculating approach of the absolute risk is given. Based on a simulation study, we show that the
estimate of coefficients of the MCCRM is unbiased and precise, and the area under the curve (AUC) is
larger than that of the CSHM when the heterogeneity cannot be ignored. Furthermore, the disparity
of the AUC increases progressively as the standard deviation of the center parameter (SDCP) rises.
In order to test the calibration, the expected number (E) of strokes is calculated and then compared
with the corresponding observed number (O). The result is promising, so the SDCP can be used to
select the most appropriate model. When the SDCP is less than 0.1, the performance of the MCCRM
and CSHM is analogous, but when the SDCP is equal to or greater than 0.1, the performance of the
MCCRM is significantly superior to the CSHM. This suggests that the MCCRM should be selected as
the appropriate model.
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1. Introduction

Cardio-cerebrovascular diseases have become a severe public health issue. In particular, stroke
is the primary cause of disability. With the aging population, the ante-displacement of the age of
disease onset, and the improvement of the material standard of living, the prevention and treatment
of stroke is still a great challenge worldwide [1,2]; therefore, the development of new theories and
methods is of utmost importance [3,4]. Carrying out risk assessments on individuals prior to stroke
can provide important information for medical research, hence reduce the social economic burden in
the future. To this end, either the effects of multiple covariates for each individual must be determined,
or the absolute risk of every person can be calculated through regression or other approaches. The
most commonly used regression analysis for risk assessment is the Cox model [5]. The traditional
hazard-based Cox model uses a semi-parametric setting with non-parametric baseline hazard, perfect
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link and exponential functions. However, although it has been widely used in medical studies, cox
model ignores the existence of competing risks.

Medical practice produce a large amount of competing risks data, which is especially related to
elderly people [6,7]. A common type of competing risks data is survival data with multiple causes of
death. For example, in a clinical trial that compares different treatment therapies for breast cancer,
interest may be focused on death from breast cancer, but a patient may die due to causes other
than breast cancer, such as coronary heart disease, hospital infection, or a traffic accident [8]. The
standard methods for analyzing competing risks data include cause-specific hazard functions [9,10],
subdistribution hazard model [11], Framingham models [12–14] and fine adjustment Framingham
models, depending on the population characteristics. However, the application and imitation of
Framingham models have caused many problems, such as variables significant in clinical treatment
becoming insignificant in models or coefficients being unexplainable [15–18]. Therefore, a more
adequate modeling approach is needed for the stroke patients in China.

Sometimes, the observed covariates cannot explain the large proportion of variation in
time-to-event data from different areas, for instance, the data of multi-center clinical trials or multi-center
cohort studies [19–23]. China has a vast territory and many ethnic groups. The heterogeneity of the
public in different areas caused by climate, economic level, living habits, and many other factors, is
enormous. Therefore, the effects of these latent factors should not be ignored when studying the risk
factors of diseases and calculating the absolute risk, even though some of these important factors are
unavailable in some circumstances. Furthermore, the effect of a specified covariate should be consistent
for individuals at different centers, according to the risk assessment in survival analysis. Therefore,
in a multi-center competing risks scenario, with the presence of heterogeneity caused by some latent
factors, it is inappropriate to establish different models for every center, even the sample size at each
center is sufficient.

In this paper, we demonstrate that most of the predictors (covariates) are not effected by spatial
heterogeneity. For example, for smokers with the same amount of cigarette consumption each day,
smoking should have the same effect in different areas. That is, the effect of smoke is not related to the
smoker’s geographical location. However, it is not ideal if we established different models for different
areas, because we may obtain different odds ratios about smoke. Therefore, for multi-center cohort
data or multi-center randomized controlled trials (RCT), we established a uniform model for different
areas based on the Frailty model [24–27], while also setting a center parameter to eliminate the problem
detailed above. All the effects of latent factors were incorporated in the center parameter, which was
helpful for obtaining accurate and consistent estimators of all of the predictors. Furthermore, based on
the Gail model [28], we estimated the absolute risk of stroke for each person under the competing risks
frame. These methods can be easily applied to other cardio-cerebrovascular diseases, and perhaps
even to other diseases.

The rest of this paper is organized as follows. Section 2 reviews the cause-specific hazard model
(CSHM), and then introduces the multi-center competing risks model (MCCRM) and the approach
of calculating absolute risks. Section 3 presents the results of the simulation study, assesses the
performance of the proposed model, and describes the calibration of the approach to calculate absolute
risks. Section 4 compares the performance of the two models (CSHM and MCCRM) on a dataset
from the Shandong Center for Disease Control and Prevention. Section 5 presents the discussion.
Concluding remarks are given in Section 6.
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2. Methods

2.1. The Cause-Specific Hazard Model

For the CSHM, without loss of generality, we assumed that there were only two causes of failure
for the following description [9,10]. For example, when death caused by stroke was the event of
interest, all other causes of death were treated as competing risks. The cause-specific hazard function is

α(t|Z(t)) = lim
∆t→0

P
{
t ≤ T < t + ∆t|T ≥ t; Z(t)

}
/∆t

where Z(t) denotes the value of the regression vector at time t [5]. If cases with only two competing
risks, the proportional cause-specific hazard model based on the Cox model can be expressed as

α01(t|Z) = α01;0(t) exp(βT
01Z)

α02(t|Z) = α02;0(t) exp(βT
02Z).

2.2. The Multi-Center Competing Risks Model

This model deals with a multi-center scenario with the presence of heterogeneity.
Zki(k = 1, 2, · · · , K; i = 1, 2, · · · , nk) denotes the covariates vector, where K is the number of centers, and
nk is the number of individuals in the kth center. We add a center parameter ηk to the CSHM, so the
MCCRM can be given as

α
(k)
01 (t|Zki) = α01;0(t) exp(βT

01Zki + ηk) (1)

α
(k)
02 (t|Zki) = α02;0(t) exp(βT

02Zki + ηk) (2)

The center parameter ηk incorporates all other effects of latent factors (covariates) such as economy,
politics, climate, and living habits. α01;0(t) and α02;0(t) are the baseline hazard functions. The
coefficients vector β0 j is consistent for every center. This means that the effect of the specified covariate
given to other covariates to every individual is consistent. For example, smoke has the same negative
effect for each person regardless of the center or area they belong to.

Under the multi-center competing risks scenario, we can derive the following formulas according
to reference [7].

The all causes hazard can be expressed as

α
(k)
0 (t|Zki) = α

(k)
01 (t|Zki) + α

(k)
02 (t|Zki) (3)

and the cumulative hazard for the kth is

A(k)
0 (t|Zki) =

∫ t

0
α
(k)
0 (u|Zki)du. (4)

Therefore, the distribution function for the ith individual who belongs to the kth center is

F(k)(t|Zki)= P(T ≤ t|Zki)= 1− exp
{
−A(k)

0 (t|Zki)
}

= 1− exp
{
−

∫ t
0 [α01;0(u) exp(βT

01Zki + ηk) + α02;0(u) exp(βT
02Zki + ηk)]du

}
.

(5)

From here, we assumed that our data had been stratified by gender and age; in other words, the
MCCRM was developed using data from individuals with the same gender and age period. In such a
scenario, the baseline hazard α01;0(u) and α02;0(u) can be assumed to be constant, and Equation (5) can
be simplified as follows:

F(k)(t|Zki)= 1− e−λt (6)
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where λ = α01;0(u) exp(βT
01Zki + ηk) + α02;0(u) exp(βT

02Zki + ηk).
As mentioned above, the distribution function of the event of interest for the ith individual who

belongs to the kth center has a similar expression to Equation (6):

F(k)
01 (t|Zki)= 1− e−λ01t (7)

where λ01 = α01;0(u) exp(βT
01Zki + ηk).

Therefore,

α01;0(u) exp(βT
01Zki + ηk) = −

1
t

ln(1− F(k)
01 (t|Zki)). (8)

At the baseline level, we assumed that all of the covariates and the center parameter equaled to
zero; thus Equation (8) was simplified as

α01;0(u) = − ln(1− P) (9)

where P is the overall incidence of all centers.
Pk was taken as the incidence of the kth center, so the center parameter ηk could be calculated

as follows:
ηk = ln(− ln(1− Pk)) − ln(− ln(1− P)). (10)

A detailed derivation of the formula can be found in Appendix A.
Now, we give the absolute risk equation as in the Gail model [23]:

P{a, τ|Zki} =

∫ a+τ

a
lkα01;0(t)r(t) exp

{
−

∫ t

a
lkα01;0(u)r(u)du

}
S2(t)
S2(a)

dt (11)

where a is the age of the ith individual of the kth center and τ is a time interval. P{a, τ|Zki} is the absolute
risk that a person has a certain disease in the time interval [a, a + τ] with covariates Zki. The relative
risk r(t) is calculated as follows:

r(t)= lk · exp(βT
01;a · Z̃ki) = eηk · exp(βT

01;a · Z̃ki). (12)

In addition, in Equation (11), S2(t) = exp
{
−

∫ t
0 lkα02;0(u)du

}
.

As our model was established after the data had been stratified by age and gender, the baseline
hazard could be set as constant. Therefore, Equation (11) was simplified as follows:

P{a, τ|Zki} =
ξ exp{ξ · a}·[expλ(a + τ) − exp(λa)]

S2(a) · λ
(13)

where ξ = lkα01;0(t)r(t) and λ = −ξ− lkα02;0(t).

3. Simulations

In this section, we show the performances of the CSHM and the MCCRM. First, we generated
random data with the method introduced by Jan Beyersmann et al. [7,29] and then established the
two models with random data. Next, we assessed the above-mentioned models through statistical
parameters such as bias, standard deviation (SD), root mean square error (RMSE), and area under the
curve (AUC). Finally, we calibrated the multi-center competing risks model (MCCRM) by calculating
the ratio of the expected number (E) of strokes in the given time interval and compared it with the
corresponding observed number (O), i.e., E/O.

In the simulation, we chose stroke as the dependent variable. Death from stroke was the
outcome of interest, and death from other causes was the competing risk. Using the Framingham
models [12,13,15,30], we chose five factors as covariates: Total cholesterol (TC), high density lipoprotein
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(HDL), systolic blood pressure (SBP), diabetes, and smoking. Age and gender were used as
stratified variables.

3.1. The Generation of the Dataset

Firstly, we generated the random data of covariates according to the real data used in the study
by Zhenxin Zhu et al. [31]. The real data came from a cohort of all participants who received routine
health check-ups from 2005 to 2010 at the Center for Health Management of Shandong Provincial
QianFoShan Hospital and the Health Examination Center of Shandong Provincial Hospital. For TC,
HDL and SBP were continuous variables, and we calculated the mean vector and covariance matrix
of the three covariates using the real data. Then, random data were generated with a multivariate
normal distribution. Diabetes and smoke were variables with values of 0–1, which were generated by
binomial distribution with the rate of real data from Shouguang City, Shandong Province, China. The
center parameter was calculated using Equation (10).

Secondly, due to the existence of competing risks, we generated random data from the dependent
variables, which were survival time and survival outcome. As we stratified the data by age and gender,
the baseline hazards in Equation (6) could be set as constants, and the covariates could be treated as
approximately time-independent; therefore, the distribution of survival time could be simplified as an
exponential distribution for each person. The true values of coefficients of the selected five covariates
(exposure factors) in Equation (6) were set as β01 = (1,−3, 0.01, 1, 1) according to a rough estimate
by the Cox model with real data. As the influence of covariates for other competing risks is always
regarded as insignificant, the true values of coefficients of covariates for competing risks in Equation (6)
were set as β02 = (0.01,−0.01, 0.0001, 0.01, 0.01).

At this point, we had obtained the survival time T. Next, we generated the survival outcome
X. There were three outcomes, which were indicated by 0, 1, and 2, where 0 referred to a censored
outcome, 1 indicated death from stroke, and 2 indicated death from causes other than stroke. We used
α01(t)/[α01(t) + α02(t)] as the parameter of binomial distribution to generate the outcome (1 or 2) for
each sample. We generated random data C with a uniform distribution [0, b], and then specified 0 for
the sample if C was smaller than T for each person, or 1 otherwise. The right endpoint b was used to
control the censored ratio.

3.2. The Assessment of Models

Then, we were able to establish the CSHM and the MCCRM with the random data generated above.
We used the packages survival, pROC, and MASS in R software [32] to conduct the analysis [33–36].
The total sample sizes of the simulated data were N = 1000 and 5000, with censored ratios of
Q = 0.2 and 0.4. For each combination of N and Q, we set the standard deviation of the center parameter
SDCP to 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, and 2.0, respectively. The cycle time was specified as 1000 for every
combination of N, Q, and SDCP. Then, we calculated the means of the bias, SD, RMSE, and AUC. Here,
we give three examples (Tables 1–3) of combinations of N, Q, and SDCP. The parameter vectors of the
N, Q, and SDCP are 5000, 0.2, and 0.01, respectively, for the values given in Table 1; 5000, 0.2, and 1.0
for the values given in Table 2; and 5000, 0.2, and 2.0 for the values given in Table 3.

Table 1 shows that there was no significant difference between the performance of the MCCRM
and the CSHM when the SDCP was equal to 0.01. However, when the SDCP was equal to 1.0 or 2.0,
the estimate of coefficients of the MCCRM were more precise than those of the CSHM (Tables 2 and 3).
Additionally, the AUC of the MCCRM was significantly greater than that of the CSHM. According to
the simulation results, the estimators of coefficients of MCCRM can be seen as unbiased compared with
the true value β01 = (1,−3, 0.01, 1, 1). Furthermore, through a large number of simulations, we found
that when the SDCP was less than 0.1, there was no significant difference between the two models.
When the SDCP was greater than 0.1, the AUC of the MCCRM was significantly greater than that of
the CSHM, and the difference increased progressively with the increase in the SDCP (Figure 1). When



Int. J. Environ. Res. Public Health 2019, 16, 3435 6 of 12

the SDCP was greater than 0.1, the estimate of coefficients of the MCCRM was more precise than those
of the CSHM, and the difference was highly significant.

Table 1. Comparison of the coefficients of the two models.

Covariate True
Value

CSHM (AUC = 0.755) MCCRM (AUC = 0.755)

Bias SD RMSE Bias SD RMSE

TC 0.0001 0.0201 0.0200 0.0002 0.0201 0.0201
HDL −3 0.0003 0.0771 0.0771 0.0000 0.0771 0.0771
SBP 0.01 0.0000 0.0008 0.0008 0.0000 0.0008 0.0008

Diabetes 1 0.0008 0.0527 0.0527 0.0009 0.0527 0.0527
Smoking 1 −0.0001 0.0303 0.0303 0.0000 0.0303 0.0303

Note: Sample size: 5000; censor ratio: 0.2; standard deviation of the center parameter: 0.01. CSHM: cause-specific
hazard model, HDL: high-density lipoprotein; MCCRM: multi-center competing risks model; SBP: systolic blood
pressure; TC: total cholesterol; SD: standard deviation.

Table 2. Comparisons of the coefficients of the two models.

Covariate True
Value

CSHM (AUC = 0.7388) MCCRM (AUC = 0.7817)

Bias SD RMSE Bias SD RMSE

TC 1 −0.2392 0.0196 0.2400 0.0015 0.0201 0.0201
HDL −3 0.7181 0.0776 0.7223 −0.0060 0.0767 0.0769
SBP 0.01 −0.0024 0.0008 0.0025 0.0000 0.0007 0.0007

Diabetes 1 −0.2365 0.0576 0.2434 0.0039 0.0557 0.0559
Smoking 1 −0.2400 0.0309 0.2420 0.0005 0.0317 0.0317

Note: Sample size: 5000; censor ratio: 0.2; standard deviation of the center parameter: 1.0.

Table 3. Comparisons of coefficients of the two models.

Covariate True
Value

CSHM (AUC = 0.6762) MCCRM (AUC = 0.8495)

Bias SD RMSE Bias SD RMSE

TC 1 −0.5444 0.0192 0.5447 0.0004 0.0202 0.0202
HDL −3 1.6292 0.0739 1.6309 −0.0022 0.0776 0.0776
SBP 0.01 −0.0054 0.0008 0.0055 0.0000 0.0008 0.0008

Diabetes 1 −0.5568 0.0643 0.5605 −0.0015 0.0573 0.0573
Smoking 1 −0.5339 0.0296 0.5347 0.0010 0.0301 0.0301

Note: Sample size: 5000; censor ratio: 0.2; standard deviation of the center parameter: 2.0.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 7 of 12 
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No obvious difference in performance was shown between censor ratios of Q = 0.4 and Q = 0.2.
Further the performance was similar with sample sizes of N = 1000 and N = 5000. The robustness of
the estimators (bias, SD, RMSE, AUC, E/O, etc.) was not good when N was less than 1000, and the
performance of the statistics was robust when N was sufficient.

3.3. The Calibration of Models

Table 4 presents the calibration of the MCCRM. The field name t-i expresses the time interval
[0, i], i = 1, 2, · · · , 5. SDCP is the standard deviation of the center parameter, and only the simulation
results of SDCPs equal to 0.5 or 1.0 are listed. The value of the first cell, 1.0510, represents the E/O at
the given time interval [0,1]. E is the expected number, which is the sum of the absolute risk of every
sample generated in Section 3.1. O is the observed number, which is the number of samples whose
observed time was less than or equal to 1, and the observed cause was 1 (the outcome of interest).

Table 4. The E/O (expected number/observed number) of the MCCRM.

SDCP t-1 t-2 t-3 t-4 t-5

0.5 1.0510 1.0476 0.9630 1.0980 1.0688
1.0 1.0191 1.0566 1.1277 1.3810 1.9183

Table 4 shows that the E/O was acceptable when the SDCP was equal to 0.5. However, when the
SDCP was equal to 1.0 and the time length was greater than 3, the E/O was unsatisfactory. Through
many simulations, we found that the E/O was acceptable when the SDCP was less than or equal to 0.5
and the time length was less than or equal to 5. Additionally, the precision of E/O decreased linearly
with an increase in SDCP.

4. Illustration

We obtained data from the Shandong Center for Disease Control and Prevention study from
patients with four diseases (stroke, coronary heart disease (CHD), lung cancer, and stomach cancer)
from 17 cities in Shandong Province, China in 2015. For every disease, we had data on the incidence
number and population size of the 17 cities, which were stratified by age (five years for each interval).
Furthermore, lung cancer and stomach cancer were stratified by gender. We calculated the incidence
for each city and then calculated the SDCP after the transformation of incidence using Equation (10).
Table 5 shows SDCP for the four diseases of patients whose age was equal or greater than 40. According
to the results in Section 3, when the SDCP is greater than 0.1, the heterogeneity across different centers
cannot be ignored. From Table 5, we can see that all of the numbers were significantly greater than 0.1;
thus, it is necessary to emphasize the importance of the MCCRM during the practical application of
multi-center data.

Table 5. The SDs of the center parameter of four diseases.

40~ 45~ 50~ 55~ 60~ 65~ 70~ 75~ 80~ 85~

Stroke 1.047 1.017 1.047 0.983 0.869 0.972 0.867 0.849 0.730 0.756
CHD 0.882 NA 0.624 0.731 0.716 0.822 0.726 0.696 0.663 0.750
Lung
cancer

F 0.452 0.368 0.476 0.541 0.464 0.561 0.495 0.515 0.608 0.654
M 0.410 0.430 0.547 0.510 0.499 0.526 0.520 0.563 0.550 0.582

Stomach
cancer

F 0.481 0.433 0.512 0.556 0.365 0.457 0.589 0.482 0.631 0.825
M 0.532 0.489 0.549 0.462 0.532 0.546 0.483 0.606 0.582 0.635

Note: F: female; M: male; Data came from 17 cities in Shandong Province, China. CHD: coronary heart disease.

We chose stroke to illustrate the performance of the MCCRM. The results of other diseases were
analogous. Table 6 presents the comparisons of the regression coefficients and the AUC of the two
models with stroke. We used the stroke incidence of the 17 cities to generate the center parameter
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with Equation (10), and the age interval was equal or greater than 50 and less than 55. The covariates
survival time and survival outcome were generated by the same method introduced in detail in
Section 3. The sample size was 5000, and the censored ratio was 0.2. The SDCP 1.047 of ages 50 to 55,
which according to Table 5, is obviously greater than 0.1.

Table 6. Comparisons of the two models of stroke.

Covariate True
Value

CSHM (AUC = 0.7205) MCCRM (AUC = 0.7994)

Bias SD RMSE Bias SD RMSE

TC 1 −0.2835 0.0251 0.2846 0.0032 0.0192 0.0195
HDL −3 0.8531 0.0916 0.8580 −0.0094 0.0785 0.0790
SBP 0.01 −0.0028 0.0009 0.0030 0.0001 0.0008 0.0008

Diabetes 1 −0.2984 0.0792 0.3087 0.0043 0.0548 0.0549
Smoking 1 −0.2765 0.0321 0.2784 0.0016 0.0316 0.0317

Note: Sample size: 5000; censor ratio: 0.2; standard deviation of the center parameter: 1.047.

As the results of the simulation in Section 3, Table 6 shows that all of the estimators (bias, SD,
RMSE) of the MCCRM were more precise and superior to the corresponding estimators of the CSHM.
For example, the maximum of RMSE of the CSHM was 0.8580, while the RMSE of the same covariate
(HDL) in the MCCRM was 0. 079. The AUC of the MCCRM was 0.7994, while the AUC of the CSHM
was only 0.7205.

5. Discussion

A common question arising in multi-center random clinical trials and multi-center cohort studies
where competing risks exist is whether any heterogeneity in outcomes exists, and whether the
heterogeneity has an obvious influence on the research target. Therefore, it is necessary to choose
the appropriate model and determine whether statistical adjustment is required while estimating the
effect of risk factors or calculating the absolute risk of a certain disease. When analyzing multi-center
survival data, frailty survival models have been shown being useful, notably with regard to the usual
large number of centers and low number of patients in each center [37,38]. Nevertheless, frailty
survival models do not provide any detailed differences of the CSHM and frailty models. Through
the simulation in Section 3, we have provided a precise analysis of the CSHM and the MCCRM by
changing the sample size, censored ratio, the standard deviation of the center parameter, and the
number of centers, among other factors. Theoretical studies will be presented in follow-up work.

With existing competing risks, Bayesian statistics have been reported to be more useful and efficient
for assessing prior information, variable selection, and absolute risk [39–42]. Moreover, Bayesian
models are more flexible than empirical models. However, in this paper, in order to emphasize the
importance of heterogeneity, we have only mentioned the multi-center data, and did not take prior
information into account. The limitation of this paper is that only baseline data are used for prediction,
and the situation of multiple follow-up observations is not fully considered. This will inevitably affect
the accuracy of predicting absolute risk and the stability of the model. In our follow-up work, we will
consider combining the multiple follow-up observations, the prior information and multi-center data
under a competing risks scenario.

6. Conclusions

Through Equation (10), we calculated the SDCP, which helped us select the most appropriate
model according to the physical truth. When the SDCP was less than 0.1, the MCCRM and CSHM
performed analogously, so either could be selected randomly for the practical application. When the
SDCP was equal to or greater than 0.1, the performance of the MCCRM was significantly superior to the
CSHM according to estimators such as bias, SD, RMSE, AUC, and E/O. Furthermore, when the SDCP
was too big, the CSHM became inefficient, then the MCCRM should be selected as the appropriate
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model. Therefore, MCCRM can help us make full use of multi-center data and give accurate estimates
of covariate coefficients. Moreover, the covariate coefficients of the MCCRM are consistent for different
centers or areas, so the explanation of covariate coefficients has become more simple and reasonable.

Using Equation (11) and the MCCRM, the absolute risk of stroke occurring for a certain person
was calculated. The approach of calculating absolute risk was excellent when the time interval was not
too large, according to the calibration in Section 3. That is, short time intervals were predicted more
precisely than long time intervals. However, only having the baseline value of covariates in a cohort
study may cause inaccuracy in long time interval prediction.
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Abbreviations

CSHM Cause-specific hazard model
MCCRM Multi-center competing risks model
AUC Area under the curve
SDCP Standard deviation of the center-parameter
E/O Expected number/corresponding observed number
SD Standard deviation
RMSE Root mean square error
TC Total cholesterol
HDL High density lipoprotein
SBP Systolic blood pressure
CHD Coronary heart disease

Appendix A

Let Zki(k = 1, 2, · · · , K; i = 1, 2, · · · , nk) denote the covariates vector, where K is the number of centers and
nk is the number of individuals in the kth center. α01;0(t) and α02;0(t) are the baseline hazard functions. The
coefficients vector β0 j is consistent for every center. Then, the distribution function of survival time T is as follows,

F(k)(t|Zki) = P(T ≤ t|Zki) = 1− exp
{
−A(k)

0 (t|Zki)
}

= 1− exp
{
−

∫ t
0 α

(k)
0 (u|Zki)du

}
= 1− exp

{
−

∫ t
0 [α

(k)
01 (u|Zki) + α

(k)
02 (u|Zki)]du

}
= 1− exp

{
−

∫ t
0 [α01;0(u) exp(βT

01Zki + ηk) + α02;0(u) exp(βT
02Zki + ηk)]du

}
If the baseline hazard functions are set as constant, then

F(k)(t|Zki) = 1− e−λt

where,λ = α01;0(u) exp(βT
01Zki + ηk) + α02;0(u) exp(βT

02Zki + ηk)

= eηk
[
α01;0(u) exp(βT

01Zki) + α02;0(u) exp(βT
02Zki)

]
Analogously, the distribution function of survival time t for cause 1 is as follows,

F(k)01 (t|Zki) = 1− e−λ01t

here,λ01 = α01;0(u) exp(βT
01Zki + ηk)

= eηk
[
α01;0(u) exp(βT

01Zki)
]
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Thus,
ln(1− F(k)01 (t|Zki)) = −λ01t

λ01 = − 1
t ln(1− F(k)01 (t|Zki)),

α01;0(u) exp(βT
01Zki + ηk) = −

1
t ln(1− F(k)01 (t|Zki))

α01;0(u) =
− ln(1−F(k)

01 (t|Zki))

t·exp(βT
01Zki+ηk)

Under the baseline level, the covariates vector is not significant, so the formula is ηk = ln(− ln(1− Pk)) −
ln(− ln(1− P)).
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