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Abstract

Aims

A fast, non-invasive and observer-independent method to analyze the homogeneity and

maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE)

cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use.

The aim of this work was to develop and validate methods to create ensembles of state-of-

the-art texture descriptors and to provide a robust classification tool to separate three differ-

ent maturation stages of RPE cells by using phase contrast microscopy images. The same

methods were also validated on a wide variety of biological image classification problems,

such as histological or virus image classification.

Methods

For image classification we used different texture descriptors, descriptor ensembles and

preprocessing techniques. Also, three new methods were tested. The first approach was an

ensemble of preprocessing methods, to create an additional set of images. The second was

the region-based approach, where saliency detection and wavelet decomposition divide

each image in two different regions, from which features were extracted through different

descriptors. The third method was an ensemble of Binarized Statistical Image Features,

based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for

each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the

computer vision tool was verified in classifying the hPSC-RPE cell maturation level.

Dataset and Results

The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final

descriptor ensemble outperformed the most recent stand-alone texture descriptors,
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obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold

cross validation and 91.98% with the leave-one-image-out protocol. The generality of the

three proposed approaches was ascertained with 10 more biological image datasets,

obtaining an average AUC greater than 97%.

Conclusions

Here we showed that the developed ensembles of texture descriptors are able to classify

the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based

decomposition improves many descriptors’ accuracy in biological dataset classification.

Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly avail-

able to the scientific community for classification studies. The proposed tool is available at

https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/

RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f.

Introduction
The retinal pigment epithelial (RPE) cells reside in the back of the eye between the photorecep-
tor cells and choroid. The RPE monolayer is vitally important for the vision as RPE cells com-
pose a diffusion barrier to protect photoreceptor cells from humoral substances, but also
maintain the viability of photoreceptor cells [1]. The RPE cell differentiation and maturation is
a slow process, modulated by culturing environmental trophic factors [2,3]. The morphology
changes during maturation [4]: from the elongated, so called “fusiform morphology”, of imma-
ture RPE; via “epithelioid morphology” i.e. rounder but still without pigmentation (after one to
two weeks of culture); to “cobblestone morphology” (approximately after a month) when the
cells have condensed and become heavily pigmented [4]. This phenomenon can be seen both
in primary RPE [4] and in human pluripotent stem cells (hPSC) derived RPE cell maturation
[5]. Recently, in the first human embryonic stem cells (hESC) RPE transplantations to humans,
it was demonstrated that less pigmented cells integrated better than heavily pigmented cells
[6]. Furthermore, new serial plating methods to expand the hPSC-RPE cell number [7,8] need
a quality and purity evaluation after every plating step [8]. These applications would benefit
from a non-invasive and reliable method to assess the maturity development of hPSC-RPE
cells. The benefits of cell morphology analysis for both RPE tissue [9] and hPSC-RPE cell cul-
tures [10] has already been shown. However, this has been mainly done by manual examina-
tion and therefore is affected by inter- and intra-operator variability, making it less suitable for
clinical application. In particular, Jiang et al. [9] recently published a computer vision approach
for RPE tissue explants, discriminating between age (young,<61days-old vs old,�100 or 180
days-old) and genotype (control vs rd10, considered to be a model for autosomal recessive reti-
nitis pigmentosa). The analysis was based on 21 morphological features of the cells, including
aspect ratio and area, by means of principal component analysis. In [11], three degrees of pig-
mentation were considered as a good maturation marker. A manual approach was chosen,
where two observers subjectively classified the cell pigmentation levels and an objective pig-
mentation measurement was inferred from the Photoshop's Info Palette for a set of manually-
selected points.

In this paper, we focused on the specific problem of the classification of the maturation level
of hPSC-RPE cells by means of a different approach: texture analysis. Together with the
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increasing availability of advanced and accurate image acquisition techniques, texture analysis
has become nowadays a common processing approach for medical and biological images. Its
versatility makes it applicable to images acquired with diverse modalities: from medical imag-
ing to microscopy [12–15].

In spite of the recent progresses in texture analysis, textural information in medical images
is still often assessed by conventional features such as first order statistics (e.g. variance, kurto-
sis and skewness), second order statistics (Haralick features extracted from the grey level co-
occurrence matrix [16]) or wavelet features. In [17], wavelets and a subset of the Haralick fea-
tures were extracted from X-ray images to diagnose presence of osteosarcomas. First order sta-
tistics and features extracted from the grey level co-occurrence matrix and run-length matrix
proved their utility in colorectal polyp identification in colonoscopy [18], classification of intra-
cardiac masses (thrombi, malignant, and benign tumors) for cardiac tumor detection [19] and
breast cancer malignancy classification in histological images [20].

More recent techniques, such as local binary pattern (LBP) [21] or texture descriptors
derived from it (e.g. local ternary pattern (LTP) [22], local quinary pattern (LQP) [13], etc.),
were applied to medical imaging for the examination of Pap test samples [12] or in the inquiry
of endoscopy images of healthy and celiac disease duodenal tissue [14]. Another important
research area, where texture descriptors are commonly used, is cell classification. Due to the
availability of many datasets (2D HeLa dataset (HeLa) [23], chinese hamster ovary cells (CHO)
[24], etc.), this field is very prolific for specific classification tasks and for the development of
more and more accurate texture descriptors. In [13], the multi-threshold approach was applied
to LTP and LQP and tested by classifying six different datasets of cellular and subcellular
organelles. In [15], a new variant of LBP, the rotation invariant co-occurrence among adjacent
LBP (RICLBP), obtained outstanding results in the MIVIA HEp-2 dataset. It suggests also that
clinical tests, such as the antinuclear antibody test, can benefit of improved accuracy texture
descriptors.

In spite of the efforts performed during the latest years to improve the discriminant power
of texture descriptors, preprocessing did not receive the same attention. Recently published
preprocessing approaches exploit the separation of the texture image in two different regions
or maps, e.g. textural information extracted from edge information. In [25], the Difference of
Gaussians (DoG) filter was used to compute from a given image two maps representing the
“positive” and the “negative” sides of the image edges, resulting in a classification accuracy
improvement. A similar approach was exploited by [26] (details in section 2.3) for the extrac-
tion, through Sobel filtering, of an edge and a non-edge region from a texture image to com-
pute LBP, LTP, etc. on the original image masked by each map. The technique is interesting
since it can be combined with many state-of-the-art texture descriptors. In order to differenti-
ate from the canonical preprocessing, we named the descriptors combined with this approach
as region-based descriptors. In addition to them, well-assessed preprocessing algorithms were
tested, e.g. wavelet [27] and Gabor filters [28]. We paid particular attention to preprocessing
techniques in this study, to improve the descriptors classification power.

The main aim of this paper was to develop three simple but effective methods to create
ensembles of texture descriptors: the ensemble of preprocessing, the region-based approach
and the ensemble of Binarized Statistical Image Features (Bsif). We validated them on a wide
range of biological image datasets, with particular focus on the quantification of hPSC-RPE cell
maturation stages, which enables a user-independent method to analyze the cell cultures before
their use in implantation or as in vitro cell models. To find the most suitable ensemble of
descriptors for the classification of the three developmental stages, we tested a combination of
large sets of both preprocessing methods and texture descriptors. In the perspective of using
hPSC-RPE cells for drug tests or transplantation, we used phase-contrast microscopy images,

Classification of RPE Cell Maturation Stages

PLOS ONE | DOI:10.1371/journal.pone.0149399 February 19, 2016 3 / 29

coefficients; WLD, Weber law descriptor; VIR, virus
dataset.



which is a noninvasive assessment method. Our work resulted in a methodological core for a
software tool in order to assess quantitatively the level of development of hPSC-RPE cells. The
same ensembling methods resulted effective also for other classification problems, ranging
from medical diagnostic to virus images.

The pipeline of the process consisted in the following steps. First, we considered many state-
of-the-art stand-alone texture descriptors in order to select the best ones. Second, they were
combined together and with techniques to augment and enhance the features extracted from
each image, to improve the classification performances. Finally, the best performing features
sets resulting from the previous step were combined together, thus resulting in ensembles
which improved significantly the performances of the pre-existing stand-alone descriptors and
of the ensembles based on a single descriptor. For classification, we used Support Vector
Machines (SVM).

In detail, we propose the following novelties. First, an ensemble of preprocessing approaches
(based on wavelet decomposition, Gabor filtering, orientation image and Multi-scale approach
by Gaussian filtering) was applied to create a set of images to be used together with the original
one. A different descriptor was extracted from each processed image and the set of SVMs com-
bined by sum rule. Second, saliency detection and wavelet decomposition were tested for the
region-based descriptors. Each image was divided into two regions from which histograms
were extracted by different texture descriptors. From each histogram, a specific SVM is trained
[29]. Finally, the partial scores obtained by the different SVMs were combined by sum rule.
Third, the original stand-alone versions of the Bsif [30] was improved by combining different
Bsif sets. They were obtained by (i) varying the size of the filter and (ii) introducing a threshold
while building the Bsif image. We constructed a new ensemble, using a set of sizes and thresh-
olds, which greatly outperformed the stand-alone version.

Materials and Methods

2.1 Proposed approaches
In this work, we developed and validated three methods for ensembling texture descriptors and
techniques such as preprocessing or region-based feature extraction, to describe images with
an augmented feature set and eventually improving their classification. The first method was a
combination of preprocessing methods, to create additional images from the original one and
then extract texture information from each of them, enhancing the feature set describing the
original image. The second approach worked differently, obtaining the augmentation of the
feature set by means of the region-based approach. Saliency detection and wavelet decomposi-
tion divide each image in two different regions, from which features were extracted through
different descriptors. Again, the original image is described by an enhanced feature set. Differ-
ent texture descriptors were tested with the first two approaches. The third method augmented
the feature set describing the original image by combining feature vectors extracted by Bsif,
based on different filter sizes and binarization thresholds. The most effective feature sets
extracted according to the aforementioned approaches were ensembled together. To test and
optimize our approaches for the hPSC-RPE classification problem, we built a new RPE image
dataset (Section 2.2): 1862 subwindows were extracted from 195 phase contrast images of
maturing hPSC-RPE cells. Finally, we analyzed how the three approaches performed indepen-
dently on the analyzed datasets: in order to generalize their viability, 10 large datasets of medi-
cal and biological images were used (Section 2.3).

The remainder of this section is organized as follows: the section 2.1.1 briefly explains the
basic texture descriptors used in this paper; the section 2.1.2 is dedicated to preprocessing tech-
niques and their ensemble; the section 2.1.3 presents the region-based approach using, saliency
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maps and wavelet maps; the section 2.1.4 explains the ensemble of Bsif; and, finally, the section
2.1.5 details the new multi-quinary coding tests.

2.1.1 Texture descriptors. The standards texture descriptors used in this work are sum-
marized in Table 1, together with the chosen parameters. As for the LBP-based approaches, we
tested both uniform and rotation invariant uniform bins (see section 3 for details).

2.1.2 Preprocessing. One of the aims was to improve the performance of texture descrip-
tors by using a set of different preprocessing methods before feature extraction. When using a
given preprocessing approach, a new set of images was produced to be then processed by an
ensemble of descriptors. Classification was performed separately for each descriptor using
SVMs, with both linear and radial basis function kernels, as the base classifier. For each dataset,
the best kernel and set of parameters were chosen using a 5-fold cross-validation approach on
the training data. SVMs were implemented using the tool LibSVM (available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm/) and combined by sum rule.

The image preprocessing phase included the testing of the following four methods: decom-
position by wavelets, multi-resolution by Gaussian filters, orientation image and Gabor filters.
Of note, only the training data is used for finding the parameters of the different approaches
while the test set is blind. The flowchart of the preprocessing is reported in Fig 1.

Wavelet transform is frequently used in many computer vision problems related with detec-
tion and recognition of objects of interest. Wavelet transform [27], to be used for 2D decompo-
sition, requires a 2D scaling function, φ(x,y) and three 2-D wavelets functions, ψi(x,y), where i

Table 1. Texture descriptors and their parameter sets.

Acronym Descriptor and parameters Ref

LBP-HF Multi-scale LBP histogram Fourier features with 2 (radius, neighboring points)
configurations: (1,8) and (2,16).

[31]

LPQ Multi-scale local phase quantization with radius 3 and 5. [32]

HOG Histogram of oriented gradients with 30 cells (5 by 6). [33]

LBP Multi-scale uniform LBP with 2 (radius, neighboring points) configurations: (1,8) and
(2,16).

[21]

LTP Multi-scale uniform LTP with 2 (radius, neighboring points) configurations: (1,8) and
(2,16).

[34]

MLQP The multi-quinary coding version of LBP and its parameters as proposed in the original
paper, i.e. the multi-threshold LQP, combined with several loci of points.

[13]

Morph Strandmark morphological features. [35]

LCP Multi-scale linear configuration model 2 (radius, neighboring points) configurations: (1,8)
and (2,16).

[36]

MLCP The multi-quinary coding version of LCP, combined with several loci of points. [13]

NTLBP Multi-scale noise tolerant LBP with 2 (radius, neighboring points) configurations: (1,8)
and (2,16).

[37]

DENSE Multi-scale densely sampled complete LBP histogram with 2 (radius, neighboring points)
configurations: (1,8) and (2,16).

[38]

CLBP Completed LBP with 2 (radius, neighboring points) configurations: (1,8) and (2,16). [39]

CoALBP Multi-scale co-occurrence of adjacent LBP with radius 1, 2 and 4. [40]

RICLBP Multi-scale rotation invariant co-occurrence of adjacent LBP with radius 1, 2, and 4. [15]

WLD Weber law descriptor. [41]

MLPQ Multi-ternary coding version of LPQ, with thresholds {0.2, 0.4, 0.6, 0.8, 1}. [13]

MLPQens Ensemble of MLPQ (with a reduced set of thresholds, i.e. {0.2, 0.5, 0.8}, for reducing the
computation time) obtained varying several parameters of LPQ as the filter size r =
{3, 5}, the scalar frequency a = {0.8, 1.2, 1.6, 2}, and the correlation coefficient
between adjacent pixel values ρ = {0.75, 1.15, 1.55, 1.95}.

[42]

doi:10.1371/journal.pone.0149399.t001
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represents the three possible intensity variations along horizontal, vertical and diagonal edges i
= {H,V,D}.

As both functions are separable, the scaled and translated basis functions are defined as:

φj;m;nðx; yÞ ¼ 2j=2φð2jx �m; 2jy � nÞ;

ci
j;m;nðx; yÞ ¼ 2j=2cið2jx �m; 2jy � nÞ; i ¼ fH;V ;Dg:

For the three discrete wavelet transform functions (WH,WV andWD for horizontal, vertical
and diagonal respectively) of aM x N function f(x,y), the used formulation is:

Wφðj0;m; nÞ ¼ 1ffiffiffiffiffiffiffiffi
MN

p SM�1
x¼0 S

N�1
y¼0 f ðx; yÞφj0 ;m;nðx; yÞ;

Wi
cðj;m; nÞ ¼ 1ffiffiffiffiffiffiffiffi

MN
p SM�1

x¼0 S
N�1
y¼0 f ðx; yÞci

j;m;nðx; yÞ; i ¼ fH;V ;Dg;

where j0 is an arbitrary starting scale and theWφ(j0,m,n) coefficients represent an approxima-
tion (on the initial scale j0) of f(x,y). TheWi

cðj;m; nÞ coefficients represent the three directional
(horizontal, vertical, and diagonal) details for higher scales than j0.

In our experiments, we used the Daubechies wavelet family (Wa) with four vanishing
moments. An example ofWa processing is shown in Fig 2.

The second preprocessing technique was a multi-scale approach by means of Gaussian
scale-space representation (MRS). The original image was filtered to obtain two smoothed ver-
sions by using a 2D symmetric Gaussian lowpass filter of size k pixels (here we use k = 3 and
k = 5) with standard deviation 1. Illustrative results ofMRS preprocessing are shown in Fig 3.

The third preprocessing technique was the Orientation image (OR). In the Orientation
image the image gradient is soft quantized [43] using d orientations (here d = 3), thereby

Fig 1. Flowchart of the preprocessing.

doi:10.1371/journal.pone.0149399.g001
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producing d processed images. This method is used to reduce the noise or other forms of
degradation.

In detail, OR computation is organized in 3 steps:

1. for each pixel, the p gradient magnitudem(p) and orientation θ(p) are computed. θ(p) is
then discretized over [0, 2π]. The pixel label is a d-dimensional vector ½bm1ðpÞ; . . . ; bmdðpÞ�
with just one non-null element i which is equal tom(p) if the discretized θ(p) corresponds to
the i-th bin, i.e.bmiðpÞ ¼ mðpÞ. A more refined approach, the soft decomposition of the mag-
nitude, consists in quantizingm(p) in two parts to be assigned to the directions of the p’s
two nearest neighbors. Details about soft decomposition are reported in [43];

2. to include in each pixel the p information also from its neighborhood, a local histogram of
orientations computed all over the pixels contained into a squared-shape image patch (Cell)
centered in p and size w. At pixel p the new feature vector is ½m~1ðpÞ; . . . ;m~dðpÞ�, where
~miðpÞ ¼

X
pj�C

bmiðpjÞ.

3. finally, a self-similarity measurement computed over n cells centered in the cj pixels sur-
rounding p (this topological structure is a circular block of radius L centered in p):

ORi
L;w;nðpÞ ¼ Sn

j¼1f ð~miðpÞ � ~miðcjÞÞ2j, where f ðxÞ ¼ f 1; x � t

0; otherwise
and τ is a threshold

slightly greater than 0 to make the mapping stronger in near-uniform regions.

Fig 2. Preprocessing byWa. Rows represent the three classes fusiform, epithelioid and cobblestone. Left: original image; right: horizontal, vertical and
diagonal details.

doi:10.1371/journal.pone.0149399.g002

Classification of RPE Cell Maturation Stages

PLOS ONE | DOI:10.1371/journal.pone.0149399 February 19, 2016 7 / 29



This produces d = 3 different orientation images (for details refer to [43]); an example of OR
preprocessing is shown in Fig 4.

The final preprocessing technique was Gabor filters. A 2D Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave that is able to detect frequencies in various
scales and directions. Gabor wavelets are derived from the convolution of the input image with
a family of Gabor kernels. This family, or bank, of Gabor filters is created by dilating and rotat-
ing a specific function. Gabor wavelets approximate, to a certain level, the perception in the pri-
mary human visual cortex [28]. In this study four scales {1, 2, 3, 4} and four directions {0°, 45°,
90°, 135°} were implemented, thus 16 images are obtained. Choosing a specific frequency and
direction allows creating a map containing the local frequency and orientation information for
each pixel in an image.

A symmetric Gabor filter has the following general form in the spatial domain:

Gðx; y; n; s; yÞ ¼ exp � x02 þ y02

2s2

� �
� cosð2pnx0Þ

x0 ¼ xsinyþ ycosy

y0 ¼ xcosy� ysiny

Fig 3. Preprocessing byMRS. Rows represent the three classes fusiform, epithelioid and cobblestone. Left: original image; center: image filtered by a
lowpass filter k = 3; right: image filtered by a lowpass filter k = 5.

doi:10.1371/journal.pone.0149399.g003
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where ν is the frequency of the sinusoidal wave, θ is the orientation, and σ is the standard devia-
tion of the Gaussian envelope [44]. An example of Gabor filter and convolved image is shown
in Fig 5.

The various preprocessing techniques, and their ensembles, used in Section 3 are summa-
rized in Table 2.

2.1.3 Region-based descriptors. This idea was mainly inspired by [26], where the edge-
based LBP variant (Edge) is proposed. This bases on the evidence that, when an observer needs
to fixate the attention to a particular image, the most likely perceived locations are the ones
that present the highest spatial frequency edge information [45].

The Edge descriptor is computed as follows:

1. applying LBP to an image to obtain the LBP image (LBPI);

2. detecting the edges in the original image by means of Sobel filter. Two binary maps are cre-
ated from the edge information: the edge map (E, where edge pixels are set to 1 and non-
edge pixels to 0), and the non-edge map (NE, where edge pixels are set to 0 and non-edge
pixels to 1);

3. combining LBPI with the E and NEmasks, to obtain two histograms (HE for edge pixels and
HNE for non-edge pixels), see (Abdesselam, 2013) for details;

Fig 4. Preprocessing byOR. Rows represent the three classes fusiform, epithelioid and cobblestone. Left: original image; right: the three oriented images.

doi:10.1371/journal.pone.0149399.g004
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4. mounting the final histogram (weighted concatenation):

H ¼ ½wE � HE;wNE � HNE�;we > wNE

where wE and wNE represent the empirically determined weight that express the greater rele-
vance of edge regions in capturing the viewer’s visual attention;

Unlike in [26], in this study the two histograms, HE andHNE, were not combined into one
feature vector but they were used separately to train two different SVMs that are then combined
by sum rule.

Fig 5. Preprocessing by Gabor filters. Rows represent the three classes fusiform, epithelioid and cobblestone. Left: original image; right: convolved
images at scale 4.

doi:10.1371/journal.pone.0149399.g005

Table 2. Preprocessing approaches.

Acronym Preprocessing and parameters

O Features extracted only from the original image.

Wa Features extracted from the four images obtained applying the wavelet decomposition to the
original image. The four SVMs are combined by sum rule.

WaH Features extracted from the images obtained applying a two level decomposition to the original
image, as proposed by [14]. The chosen wavelet mother is the same used in Wa.

OR Features extracted from the three orientation images obtained from the original image. This
ensemble is built by 3 SVMs.

Ga The original image is filtered by Gabor filters obtaining 16 images and then features are
extracted. The 16 SVMs are combined by sum rule

X+Y Fusion by sum rule between preprocessings X and Y.

Comb The fusion by sum rule among Wa, OR and Ga, where preprocessing approaches are applied
to the original image and the two images obtained by MRS. The final ensemble includes (4+3
+16)×3 = 69 SVMs.

doi:10.1371/journal.pone.0149399.t002
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Two methods for extracting the two maps were tested: the former based on saliency and the
latter on wavelet decomposition. It should be noted that for both approaches, as in Edge, the
descriptor was extracted initially from the original image and the two regions were used only to
calculate the two histograms. The flowchart of the region-based approach is reported in Fig 6.

In detail:

1. the chosen descriptors (namely LBP, LTP, LPQ, RICLBP andWLD) were applied to the tex-
ture image to get the labeled image DescI;

2. two maps,Map+ andMap-, were computed according to saliency or wavelet (details in the
next sections);

3. two histograms, H+ andH-, were computed by combining DescI withMap+ andMap-,
respectively;

4. H+ and H- were used to train two different SVMs that were then combined by sum rule.

Saliency: We used the method proposed in [46] to extract a saliency map from the image.
Given an image x, the signature is defined as

ImageSignatureðxÞ ¼ signðDCTðxÞÞ;

where sign() represents the sign operator and DCT() is the Discrete Cosine Transform. Hou
et al. [46] demonstrated analytically and experimentally that the support of the foreground of
an image can be approximated by the reconstructed image �x , obtained by transforming back to
the spatial domain the image signature, as follows:

�x ¼ IDCTðImageSignatureðxÞÞ:

Fig 6. Flowchart of the region-based approach.

doi:10.1371/journal.pone.0149399.g006
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For images whose foreground is evident compared to their background, the saliency mapm
is defined as

m ¼ g � ð�x o �xÞ;

where g is a Gaussian kernel aimed to blur the noise induced by the sign quantization and o is
the entrywise matrix product operator. To build the saliency map the standard deviation of the
Gaussian kernel was set to 2.

For each image two regions were extracted. The first contained the pixels with saliency
higher and the latter contained the pixels with saliency lower than a prefixed threshold. To
build the saliency map two different thresholds were applied: 0.5 and 0.7. Hence, for each
image, two saliency maps and four histograms were extracted.

Wavelet: The wavelet decomposition (see section 2.1.2) used four wavelets, and the horizon-
tal, vertical and diagonal coefficients matrices were considered. These matrices were resized to
the size of the original image and then the mean value of each image was calculated. Each
image was divided in two regions whose pixels were respectively greater and smaller than the
mean value.

The region-based methods, as well as the baselines, are summarized in the following
Table 3.

2.1.4 Binarized Statistical Image Features. The Bsif descriptor assigns an n-bit label to
each pixel of a given image by exploiting a set of n linear filters. Given a neighborhood of l x l
pixels and a set of n linear filters of the same size, the n-bit label to be assigned to the central
pixel of the neighborhood is obtained by binarizing

s ¼ Wx

where x is the l2 x 1 vector notation of the l x l neighborhood andW is a n x l2matrix represent-
ing the stack of the vector notations of the filters. In detail, the i-th digit of s is a function of the
i-th linear filter wi and it is expressed as

si ¼ wT
i x;

thus each bit of the Bsif code can be obtained as

bi ¼
1; if si > 0

0; if si � 0
:

(

The set of filters wi is estimated by maximizing, through independent component analysis,
the statistical independence of the filter responses si on a set of patches from natural images. In

Table 3. Region-basedmethods and baselines (BAS) used for comparison.

Acronym Region-based method

BAS O Standard texture descriptor applied to the original image.

DoG The Difference of Gaussians approach proposed in [25].

Region-
based

Saliency
+ Wavelet

Fusion by sum rule between Saliency and Wavelet;

All The fusion by sum rule among Saliency, Edge and Wavelet;

All + Comb The descriptors of All are extracted from the images obtained using Wa
and OR, where the preprocessing approaches are applied to the original
image and the two images obtained by MRS. Due to computation time Ga
was not tested.

doi:10.1371/journal.pone.0149399.t003
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the original Bsif, the binarized feature bi, was obtained by setting bi = 1 if si > th and bi = 0
where th = 0. We improved the stand-alone version of Bsif by combining different Bsif in two
ensembles, Size_Bsif and Full_Bsif. Size_Bsif was obtained by varying the filter size = {3, 5, 7, 9,
11} (i.e. we use 5 different filters). The second ensemble, Full_Bsif, was derived from Size_Bsif
by varying also the threshold th used to binarize the image. In detail, we used the following
thresholds th = {-9, -6, -3, 0, 3, 6, 9} for each different size of the filter and, the 35 SVMs trained
with these Bsif-based descriptors (for each couple of size and threshold a different SVM is
trained) were combined by sum rule.

2.1.5 Multi-quinary coding. Variants of the original LBP descriptor were proposed, based
on modifications on the binarizing function s(x), originally defined in [21] as:

sðxÞ ¼ 1; x � 0

0; otherwise

(
;

where x = qp −qc, qc represents the central pixel in the neighborhood and qp each of the sur-
rounding pixels.

In [22], LTP was defined by encoding the same difference x with 3 values, by means of the
threshold τ:

sðxÞ ¼
1; x � t

0; �t � x < t

�1; otherwise

8><>:
In [13], this approach was extended to LQP by introducing two thresholds τ1 and τ2 (τ1<τ2),

thus getting the quinary coding:

sðxÞ ¼

2; x � t2
1; t1 � x < t2
0; �t1 � x < t1
�1 t2 � x < �t1
�2 otherwise

8>>>>>>><>>>>>>>:
These variants of the binary coding allow a lower sensitivity to noise, especially in near-uni-

form regions, and a higher level of granularity that allows catching more textural features with
respect to the original version. However, to compensate the increased verbosity of the ternary
and quinary codings, the ternary patterns are split into one positive and one negative binary
patterns, according to the sign of its components, while the quinary patterns are split into four

Table 4. Loci of points defining the different neighborhood topologies. For each geometric locus
defined in [12], its formal definition and parameters are reported.

Locus Definition Parameters

Circle x2 + y2 = r2 r: radius.

Ellipse x2
�
a2
þ y2

�
b2
¼ 1 a: semi-major axis; b: semi-minor axis.

Parabola y ¼ �x2
�
c
þ 2c c: vertex—focus distance.

Hyperbola x2
�
a2
� y2

�
b2
¼ 1 a: semi-major axis; b: semi-minor axis.

Spiral r = a + bθ a: turns the spiral; b: sets the inter-turnings distance; r, θ: polar coordinates.

doi:10.1371/journal.pone.0149399.t004
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binary patterns, according to bc(d):

bcðdÞ ¼
1; d ¼ c

0; otherwise

(

where c∈{-2, -1, 1, 2} and d represents a single digit of the quinary pattern. For instance, the
first binary pattern results from c = 2, the second one from c = 1 and so on for c = -1 and c = -2.

After computing one histogram for each binary pattern, the six partial histograms (two for
LTP and four for LQP) are concatenated into a final histogram.

Moreover, in [13], a multi-threshold version of LQP, namely multi-threshold LQP (MLQP)
was proposed, using a set of 25 couples of thresholds (τ1 = {1,3,5,7,9} and τ2 = {τ1+2, τ1+4,. . .,
τ1+11}) and combining the 25 SVMs trained with the histograms. Usually in LBP, and in its
variants, a circular neighborhood allows obtaining a rotation invariant descriptor. However, in
some problems, anisotropy is an important source of information. To use the anisotropic struc-
tural information, several neighborhood shapes (such as parabola, ellipse and hyperbole) were
used in [12] (Table 4).

InMLQP, the threshold selection is a critical task: in [13], we set the thresholds manually to
get good performance in studied datasets. The proposed thresholds were stable enough also in
the RPE classification problem. The performance ofMLQP was enhanced by building a large
set of LQP coupling the set of thresholds with the geometric loci presented in [12] and summa-
rized in Table 4.

All the loci of points (with the exception of the circle) were rotated by β = {0°, 45°, 90°, 135°}
to catch the anisotropic structural information according to different orientations as in Fig 7.
The flowchart of the quinary coding and the use of the geometric loci is reported in Fig 8.

Afterwards, the Sequential Forward Floating Selection (SFFS) was applied, using the train-
ing data for selecting only a single subset of theMLQP descriptors.

SFFS and its predecessor Sequential Forward Selection (SFS) are top-down searches that
sequentially select a subset of features from the original set of candidates in order find an opti-
mal subset.

Starting from the empty subset S0, SFS sequentially adds the k-th feature, maximizing the
objective function when combined with the subset Sk-1 of the previously selected k-1 features,
thus getting the current subset Sk. However, the main drawback is that the selected features
cannot be reevaluated and discarded after the addition of a new feature.

SFFS [47] improves SFS by carrying out backward steps after the inclusion of a new feature
as long as the objective function rises. For instance, after the k-th step forward, i.e. the selection
of the k-th feature, each feature in Sk is removed from the subset to get a smaller subset S0k�1

whose performance is compared with Sk−1’s. If S0k�1 results in a greater objective function than
Sk−1, then it replaces Sk−1.

We used SFFS as a feature selection method, where each feature was assigned a couple of
thresholds and a geometric locus, to find the most useful (thresholds, locus) sets forMLQP.
Therefore, we selected a set ofMLQP descriptors, where each descriptor was used to train a
given SVM: the objective function of SFFS was the maximization of the area under the ROC
curve (obtained combining by sum rule the set of SVMs) using an internal 10-fold cross valida-
tion in the training data. The same procedures (thresholds, geometric loci and feature selection)
were used also to extend the Local Configuration Pattern (LCP) descriptor to its multi-thresh-
old quinary versionMLCP.

2.1.6 Color descriptors. For the RPE dataset only (Section 2.2) we used an additional set
of descriptors, not based on texture, but on colors (COLORS). COLORS consists in the concat-
enation of statistics computed on the three channels of a color image: mean, homogeneity,
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standard deviation, third, fourth and fifth moments and the marginal histograms (8 bins for
each channel) [48,49].

2.2 The RPE dataset
2.2.1 Cell culture. Two hESC lines (Regea 08/023; 46, XY, Regea 08/017; 46,XX) [50] and

one human induced pluripotent stem cell (hiPSC) line, (UTA.04511.WTS 46, XY) [51] were
used for this study. Cell lines were cultured on top of mitomycin-treated (10 μg/ml,Sigma-
Aldrich) (i.e. mitotically inactivated) human foreskin fibroblasts feeder cells (CRL-2429TM,
ATCC, Manassas, VA, USA). The undifferentiated cells were cultured similarly as in Sorkio
et al. [52] and after one week of culture the differentiation was induced by reducing the KO-SR
concentration to 15%, removing the bFGF and commencing the floating culture as previously
described in Vaajasaari et al. [53]. Floating aggregates were fed thrice a week and grown for
70–195 days. The pigmented areas of floating aggregates were manually dissected, dissociated
with 1x Trypsin-EDTA and replated on collagen IV from human placenta (5 μg/cm2, Sigma-
Aldrich). Adherently cultured cells were imaged for the fusiform morphology after 8 days
(range 6–9 days), for the epithelioid morphology after 9 days (range 8–9) and for the cobble-
stone morphology after 19 days (range 17–24) of culturing.

2.2.2 Ethical issues. The National Authority for Medicolegal Affairs Finland has approved
our research with human embryos (Decision number 1426/32/300/05). We also have a

Fig 7. The different neighborhood topologies. From left to right in line 1: circle, ellipse, parabola, hyperbola and spiral. We represented the central pixel of
the neighborhood (green) and the points forming the neighborhood (red). In line 2, 3 and 4 the different rotation angles β are represented.

doi:10.1371/journal.pone.0149399.g007
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supportive statement from the local ethics committee of the Pirkanmaa hospital district Fin-
land to derive and expand hESC lines for research purposes (R05116). Local ethics committee
of the Pirkanmaa Hospital District has given a supportive statement to generate iPSC lines for
research purposes (R11028), and use them to ophthalmic research (R14023). No new hESC or
hiPSC lines were generated in this study.

Fig 8. Flowchart of the quinary coding and usage of the geometric loci.

doi:10.1371/journal.pone.0149399.g008
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2.2.3 Image acquisition. The cell culture images were acquired for analysis with the same
settings (25–125 ms exposure time, 2560 x 1920 pixels, dynamic contrast and autowhite bal-
ance) from cell cultures using a Nikon Eclipse TE200S phase-contrast microscope (Nikon
Instruments Europe B.V., Amstelveen, Netherlands) with the 20x objective and Ph1 phase con-
trast. Cell imaging parameters are described in Table 5.

2.2.4 Building the RPE dataset. Each acquired image was divided into 16 subwindows
which were manually labeled into 4 classes by two trained operators; samples particularly diffi-
cult to be labeled were inspected by a specialist. Subwindows containing clutters, out-of-focus
elements or just background were discarded. The criteria of inclusion and examples are shown
for each class in Table 6 and in Fig 9.

In Fig 9, the four RPE classes are represented from left to right: the fusiform cell type, the
epithelioid with its characteristic globular shape, the final maturation stage cobblestone and a
mixed class example with an epithelioid cell in the middle of the image and, in the left side, a
cluster of fusiform cells. The final dataset includes a total of 1862 subwindows: the number of
subwindows per class is reported in Table 6. Before using the RPE images, they were converted
to gray scale by means of the standard MATLAB (The MathWorks, Inc., Natick, Massachu-
setts, United States) function rgb2gray.

2.3 Validation in other datasets
For validating some of the proposed variants of texture descriptors and the system for RPE
classification, we ran several comparisons also in other datasets. As testing protocol, we used
the 5-fold cross validation, except for the VIR dataset for which the 10-fold validation protocol
was provided by the original author.

The following datasets were used:

Table 5. Image acquisition parameters.

Acquisition parameter Value

Quality 2560 x 1920 pixels

Mode Manual exposure

Exposure 25–125 ms

AE compensation 0

Gain 1.2 x

Contrast Dynamic

doi:10.1371/journal.pone.0149399.t005

Table 6. Class properties used for building the ground truth.

Class (# subwindows) Features

Fusiform (216) Fuse shaped cell contours and nucleus

Separated cells

Epithelioid (547) Globular shaped cell contours and nucleus

More packed

Cobblestone (949) Well defined cell contours and cell wall

Hexagonal shape

Homogeneous cytoplasm

Tightly packed

Mixed (150) Two or more of aforementioned classes.

doi:10.1371/journal.pone.0149399.t006
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• PAP: this dataset [54] contains 917 images unevenly distributed among 7 classes of cells,
acquired during Pap tests for the diagnosis of cervical cancer. The dataset is available upon
request to Loris Nanni [nanni@dei.unipd.it];

• VIR: this dataset [55] contains 1500 images, evenly divided into 10 classes, of viruses
extracted using negative stain transmission electron microscopy. The 10-fold validation pro-
tocol shared by the authors was used. The mask for background subtraction was not used
and the features were extracted from the whole images. The dataset is available at http://
www.cb.uu.se/~gustaf/virustexture/;

• HI: this Histopathology dataset [56] is composed of 2828 images from different organs,
unevenly distributed among 4 classes, representative of the four fundamental tissues (con-
nective, epithelial, muscular, and nervous). The dataset is available upon request to Loris
Nanni [nanni@dei.unipd.it];

• BR: this dataset [57] is a subset of the digital database for screening mammography [58] and
contains 1394 images of breast tissue, 810 control, 273 malignant and 311 benign breast can-
cers. The dataset is available upon request to Geraldo Braz Junior [ge.braz@gmail.com];

• PR: this dataset, reported in [59] contains 329 proteins, divided into DNA-binding (118 sam-
ples) and non-DNA-binding (231 samples). From the 3D tertiary structure of each protein,
its 2D distance matrix was computed (considering only atoms that belong to the protein
backbone) and used to extract texture features. The dataset is available upon request to Loris
Nanni [nanni@dei.unipd.it];

• CHO: this cell dataset [24] contains 327 fluorescent microscopy images of Chinese Hamster
Ovary cells and distributed into 5 classes. The dataset is available at http://ome.grc.nia.nih.
gov/iicbu2008/hela/index.html#cho;

• HeLa: the 2D HeLa dataset [23] consists in 862 single cell images, divided into 10 staining
classes, from fluorescence microscope acquisitions on HeLa cells. The dataset is available at
http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html;

• LE: the LOCATE ENDOGENOUS mouse sub-cellular organelles dataset [60] contains 502
images, unevenly distributed among 10 classes, of endogenous proteins or features of specific
organelles. The dataset is available at http://locate.imb.uq.edu.au/;

• LT: the LOCATE TRANSFECTEDmouse sub-cellular organelles dataset [60] contains 553
images, unevenly distributed in 11 classes, of fluorescence- or epitope-tagged protein tran-
siently expressed in specific organelles. The dataset is available at http://locate.imb.uq.edu.au/;

Fig 9. Illustrative images of the RPEmaturation stages (classes). From left to right: fusiform, epithelioid, cobblestone and mixed (Fusiform and
Epithelioid).

doi:10.1371/journal.pone.0149399.g009
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• RNAi: this dataset contains 200 fluorescence microscopy images, evenly distributed among
10 classes, of fly cells subjected to a set of gene-knockdowns using RNAi and stained with
DAPI to visualize their nuclei. The dataset is available at http://ome.grc.nia.nih.gov/
iicbu2008/rnai/index.html.

Results and Discussion

3.1 Experimental results for the RPE dataset
The chosen performance indicator was the area under the ROC curve (AUC) as it is more reli-
able than accuracy. AUC allows summarizing in one scalar value the ROC curve. In multi-class
problems the one-versus-all approach was used: each of them classes was considered as “posi-
tive” and the remainingm-1 classes as “negative”, thus obtainingm partial AUCs. Finally, the
global AUC was computed as an average of the partial AUCs.

As testing protocol a 10-fold cross validation was used. Of note, the 10-fold was applied at
image level, so all the sub-windows of a given image belonged or to the training set or to the
test set.

Of note, when referring to a texture descriptor combined with preprocessing/region-based
approaches, we use the notation preprocessing(descriptor). For example, Comb(RICLBP)means
RICLBP combined with the various preprocessingWa, OR and Ga applied to the original
image and the two images obtained byMRS (see Table 2).

In the first test, reported in Table 7 several texture descriptors and five different ensembles
(the last five rows) were compared. The methods named A+B are the fusions by sum rule
between the methods A and B. The LBP-based approaches use uniform bins, except in presence
of the suffix -ri, representing the rotation invariant bins. From the results reported in Table 7,
it is clear that the best performances were obtained using descriptor ensembles. The best per-
formance was reached by the ensemble RICLBP+MLPQens+MLCP, while the best stand-alone
approach was RICLBP. We used an already published method [61] for assessing the difference
between two approaches in the same dataset. MLCP, i.e. the multi-threshold quinary ensemble
of LCP built according to [13] (see section 2.1.5), outperforms RICLBP with a probability of
80% using a one sided test of significance with p = 0.05. However, the proposed ensembles
RICLBP +MLPQens +MLCP and Comb(RICLBP) + Full_Bsif +MLPQens +MLCP outper-
form each stand-alone approach with a probability of 95%, using a one sided test of significance
with p-value of 0.05.

We tested also the effectiveness of COLORS, obtaining an AUC of 89.10%.
In Table 8 different approaches based on Bsif were compared. The method named Baseline

represents the standard stand-alone Bsif with size = 7. Moreover, Full_Bsif was coupled with
the best previous ensemble (i.e. RICLBP+MLPQens+MLCP) increasing slightly the
performance.

The performance of the best descriptors was presented in Table 9, coupled with the prepro-
cessing approaches detailed in section 2.2 and Table 2.

Notice that all the preprocessing approaches are coupled with only stand-alone texture
descriptors due to the high computation time. The performances of all the descriptors were
improved when the features were extracted from Comb, comparing with the performance
obtained by O.

The region-based methods, proposed in section 2.3 and Table 3, were compared in
Table 10.

It is clear that a descriptor applied to a set of processed images drastically outperformed the
same descriptor obtained using only the original image. However, only some methods’
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performances benefited from the different preprocessing methods. The baseline multi-quinary
approach (i.e. all the descriptors extracted from the circle neighborhood) and the effect of SFFS
are reported in Table 11. SFFS supervised selection improvedMLQP but had no positive effect
onMLCP.

The final ensemble was created by sum rule among Comb(RICLBP), Full_Bsif,MLPQens
andMLCP. It obtained an AUC of 86.49%. As shown in Table 6, the RPE dataset was unbal-
anced towards the cobblestone class, consequently a single 10-fold cross validation risks to cre-
ate a training set not representative of the classes with fewer subwindows. Therefore we ran a
higher-performance but more computationally demanding protocol: the leave-one-image-out,
consisting in leaving out one full image (i.e. the image divided into the 16 subwindows) for

Table 7. Performance (AUC) comparison among different texture descriptors.

Descriptor AUC

LBP-HF 76.72

LPQ 77.89

HoG 75.53

LBP 77.89

LBPri 74.27

LTP 79.70

LTPri 75.91

LCP 76.87

LCPri 78.11

NTLBP 74.79

DENSE 80.33

DENSEri 77.02

Morph 79.04

CLBP 78.50

CoALBP 78.37

RICLBP 80.34

WLD 79.08

MLPQ 81.82

MLPQens 82.66

MLQP 81.22

MLCP 83.03

RICLBP+WLD 83.02

RICLBP+WLD+MLQP 83.63

RICLBP+WLD+MLCP 84.34

RICLBP+MLQP+MLCP 84.16

RICLBP+MLPQens+MLCP 84.60

doi:10.1371/journal.pone.0149399.t007

Table 8. Performance (AUC) comparison among differentBsif-based approaches.

Descriptor AUC

Baseline 78.50

Size_Bsif 79.44

Full_Bsif 82.79

RICLBP+MLPQens+MLCP 84.60

RICLBP+MLPQens+MLCP+Full_Bsif 85.03

doi:10.1371/journal.pone.0149399.t008
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each round. We tested such protocol on our best ensemble Comb(RICLBP) +MLPQens +
MLCP + Full_Bsif, whose performance increased from 86.49% to 91.98%. A further improve-
ment was obtained by the fusion by sum rule between such ensemble and COLORS, obtaining
an AUC of 95.00%.

3.2 Results with other datasets
Afterwards, the proposed ensemble of Bsif, the preprocessing applied before feature extraction
and the region-based descriptors were validated with the other datasets.

Other tests, e.g. couplingMLCP with the selection of the geometric loci, were not performed
due to their huge computational time.

As in the previous tests, the performance indicator was the AUC. Moreover, the experiments
were statistically validated with the Wilcoxon signed rank test and the Bonferroni-Holm
method.

The performances of Bsif and of standard texture descriptors, as baseline, were compared
in Table 12. The three best baseline methods were CLBP, RICLBP and LTP. LTP outper-
formed all the other baseline approaches (except RICLBP and CLBP) with a p-value of 0.05.
Furthermore, there was no difference between the performance of RICLBP and LTP.

Table 9. Performance (AUC) obtained coupling the best texture descriptors with different preprocessing methods.

Preprocessing

Descriptor O Wa OR Ga WaH Wa+OR Wa+OR+Ga Comb

LBP 77.89 77.05 79.16 77.89 76.84 78.85 79.99 81.00

LTP 79.70 77.47 76.03 79.13 78.90 78.17 80.82 82.08

LCP 76.87 77.87 78.57 75.39 77.69 79.31 79.38 80.77

LPQ 77.89 78.31 80.09 76.67 78.61 80.32 80.45 80.88

RICLBP 80.34 78.30 79.79 80.11 78.28 80.60 81.77 82.62

WLD 79.08 79.17 80.30 78.16 78.76 80.92 81.56 81.29

doi:10.1371/journal.pone.0149399.t009

Table 10. Performances (AUC) of the region-based approaches.

Region-based method

Descriptor O Edge DoG Saliency Wavelet Saliency+Wavelet All All+Comb

LBP 77.89 79.95 79.23 79.21 80.36 80.63 80.78 80.08

LTP 79.70 80.01 79.48 79.93 80.78 81.24 81.34 80.85

LPQ 77.89 78.74 79.80 79.07 79.44 79.71 79.74 80.12

RICLBP 80.34 81.01 81.29 81.66 81.83 82.33 82.27 81.90

WLD 79.08 79.98 79.67 78.01 79.97 79.70 80.09 81.33

doi:10.1371/journal.pone.0149399.t010

Table 11. Performance (AUC) of the multi-quinary approaches.

Supervision

Descriptor no SFFS SFFS

MLQP 81.22 81.71

MLCP 83.03 81.15

doi:10.1371/journal.pone.0149399.t011
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Moreover, Full_Bsif outperformed both Bsif, Size_Bsif and all the baseline approaches,
including LTP with a p-value of 0.05.

In order to avoid reporting a massive amount of results, in the following we summarized
only the results from the best performing baseline descriptors, i.e. RICLBP, LPQ and LTP.

The effect of preprocessing on the additional datasets was reported in Table 13. We also
tested the ensemble of preprocessing O+Wa+OR, i.e. the sum rule among the preprocessing
approaches O,Wa and OR applied to the original image and to the two images obtained by
MRS. We can conclude that, among the stand-alone preprocessing, O is the best one and that
the best approach is the ensemble O+Wa+OR, which outperformed the baseline approach O
with a p-value of 0.05.

The results reported in Table 14 showed that the region-based approaches outperformed,
with a p-value of 0.05, the standard application of texture descriptors. Especially, compared to
the baseline O, All+O improved AUC (or did not perform worse) for all the datasets and for the
three tested descriptors with a p-value = 0.05.

Finally, to summarize the best techniques presented in this section, we created a further
ensemble F where we combine Full_Bsif, O+Wa+OR(LTP), O+Wa+OR(RICLBP), O+Wa+OR
(LPQ), All+O(LTP), All+O(RICLBP) and All+O(LPQ). F was compared in Table 15 to Full_Bsif:
F performed better than Full_Bsif, or at least equally, on all the additional datasets with a p-
value of 0.05.

Conclusions
In this work, we assembled and tested many state-of-art texture descriptors and a large set of
preprocessing methods for demanding image classification tasks and their application in a new
and very specific biological problem, i.e. the automatic assessment of the maturation level of
hPSC-RPE cells. This is a very well warranted problem as RPE cells are planned to be used for
implantation and for in vitro cell models for drug and disease modeling. In all these applica-
tions the perquisite for the maturation assessment is the non-invasiveness and consequently
there is the need for label-free methods. Thus, analysis methods based on just phase contrast
microscopy images are welcomed.

Table 12. Comparison of the performance (AUC) of standard texture descriptors andBsif coding.

Descriptor

Dataset LPQ LBP LCP MLCP CLBP RICLBP WLD LTP1 Bsif Size_Bsif Full_Bsif

PAP 90.2 90.0 77.7 81.2 92.5 91.8 80.2 91.4 87.1 90.1 91.4

VIR 94.9 92.0 87.4 89.2 94.8 97.6 86.3 93.5 91.2 96.3 97.0

CHO 99.2 99.4 98.8 99.1 99.9 99.2 99.9 99.9 99.3 99.6 99.9

HI 92.0 90.6 83.5 86.2 91.8 92.8 88.7 91.6 91.0 93.1 94.0

BR 95.7 93.6 93.1 95.2 95.8 92.8 92.5 96.9 94.8 95.4 96.7

PR 86.2 81.0 18.3 20.2 86.6 88.6 86.5 89.7 89.2 93.2 91.9

HeLa 97.2 98.0 84.4 88.2 98.1 97.3 94.1 98.6 97.2 98.3 99.2

LE 97.6 98.6 86.8 87.6 98.5 99.0 97.9 99.5 98.7 99.5 99.8

LT 97.7 98.5 96.7 97.2 98.5 98.7 98.8 99.3 98.6 99.2 99.8

RNAi 95.2 94.7 94.5 95.3 95.0 96.6 97.4 97.0 93.5 96.1 98.2

Average 94.6 93.6 82.2 83.9 95.1 95.4 92.2 95.7 94.1 96.1 96.8

1in this work we used the normalized histograms, while in [13] the non-normalized histograms. Therefore, for the same dataset, and for the same testing

protocol, different results were reported.

doi:10.1371/journal.pone.0149399.t012
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The first aim of this work consisted in applying three new methods to create ensembles of
texture descriptors (based on combinations of preprocessing techniques, region-based
approaches and Bsif with different filter sizes and binarization thresholds) to find the most suit-
able descriptors for the texture-based classification of the considered datasets, in particular of
the RPE dataset. A combination of different preprocessing techniques (i.e.Wa, OR and Ga
applied at three different scale of representation obtained byMRS) allowed to boost all the best
performing descriptors (see Table 9, with the exception ofWLD, for whichMRS was not neces-
sary). It is interesting to note that while each descriptor obtained the best performance with a
different preprocessing, the fusionsWa+OR+Ga and Comb, improved the single best prepro-
cessing for all the descriptors. Similar improvements were obtained by the region-based meth-
ods, in particular by combining the region selection by Edge,Wavelet and Saliency (see

Table 13. AUC obtained using the preprocessing approaches and LTP, RICLBP and LPQ.

Preprocessing

Descriptor Dataset O Wa OR Ga Comb O+Wa+OR

LTP PAP 91.4 88.4 88.8 76.3 87.0 90.1

VIR 93.5 91.1 93.6 85.8 95.8 96.0

CHO 99.9 99.3 99.9 99.7 99.9 99.9

HI 91.6 90.9 92.5 92.5 94.6 93.9

BR 96.9 97.2 98.2 83.6 95.8 96.9

PR 89.7 79.1 90.6 88.3 91.4 92.5

HeLa 98.6 96.1 97.2 96.1 98.2 98.8

LE 99.5 99.1 99.7 98.3 99.8 99.8

LT 99.3 98.8 99.3 98.4 99.8 99.8

RNAi 97.0 93.2 96.1 93.3 96.9 97.7

Average 95.7 93.3 95.6 91.2 95.9 96.5

RICLBP PAP 91.8 84.1 84.8 76.1 87.5 91.5

VIR 97.6 93.2 92.8 87.0 95.7 97.9

CHO 99.2 97.1 97.8 98.9 99.3 99.3

HI 92.8 91.8 90.9 92.3 94.5 94.5

BR 92.8 95.4 95.1 79.7 95.7 96.8

PR 88.6 85.5 88.9 89.6 90.8 90.5

HeLa 97.3 92.2 95.2 94.8 97.7 98.1

LE 99.0 97.3 98.1 97.6 98.8 99.2

LT 98.7 97.1 98.1 98.0 99.0 99.1

RNAi 96.6 94.1 92.8 90.4 95.7 96.6

Average 95.4 92.8 93.5 90.4 95.5 96.4

LPQ PAP 90.2 90.1 88.1 74.6 87.4 90.9

VIR 94.9 93.7 91.7 87.0 94.8 96.2

CHO 99.2 97.6 98.4 98.9 99.4 99.2

HI 92.0 93.0 92.0 92.0 94.7 93.9

BR 95.7 96.4 96.9 81.5 95.9 96.8

PR 86.2 86.7 90.6 87.2 91.7 91.2

HeLa 97.2 94.9 96.0 92.9 97.6 97.9

LE 97.6 97.1 97.2 96.0 98.6 98.7

LT 97.7 97.5 98.0 98.3 98.9 98.7

RNAi 95.2 91.4 94.7 91.5 95.8 95.6

Average 94.6 93.8 94.4 90.0 95.5 95.9

doi:10.1371/journal.pone.0149399.t013
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Table 10). However, it is interesting to note that a global combination of preprocessing and
region-based feature extraction did not provide significant improvements compared to using
the two approaches individually (see Table 10, last column). Therefore, we chose to exploit
only preprocessing, hence obtaining the new ensemble Comb(RICLBP) + Full_Bsif +MLPQens
+MLCP. This approach performance was AUC = 86.49%, which is the best result observed on
the RPE dataset.

The second aim of this work was to provide the methodological core for a software tool in
order to assess quantitatively the level of development of hPSC-RPE cells, compared to the clas-
sification provided in [4,62]. Our study primarily shows that a computer vision system is able
to classify the RPE cell maturation stage and, secondly, it enables a correct and repeatable esti-
mation of the maturation level on new images, a necessary step before using these specific cells

Table 14. AUC obtained using the region-based approaches and LTP, RICLBP and LQP.

Region-based approach

Descriptor Dataset O Edge Saliency Wavelet DoG Saliency+Wavelet All All+O

LTP PAP 91.4 87.8 89.3 87.7 86.6 88.9 89.0 91.7

VIR 93.5 94.0 93.4 93.5 94.9 94.3 94.4 94.1

CHO 99.9 99.9 100 99.9 99.9 99.9 99.9 99.9

HI 91.6 92.7 90.6 92.4 92.6 92.7 92.8 92.3

BR 96.9 96.4 96.1 96.2 95.9 96.5 96.6 97.6

PR 89.7 87.0 90.3 87.8 85.1 89.7 90.0 93.2

HeLa 98.6 98.6 98.6 98.5 98.6 98.8 98.9 98.7

LE 99.5 99.5 99.7 99.6 99.3 99.7 99.7 99.6

LT 99.3 99.3 99.6 99.4 99.4 99.6 99.6 99.5

RNAi 97.0 97.0 97.4 97.0 96.6 97.3 97.2 97.3

Average 95.7 95.2 95.5 95.2 94.9 95.7 95.8 96.4

RICLBP PAP 91.8 92.0 92.5 91.9 93.3 92.7 92.7 92.4

VIR 97.6 97.7 97.4 97.5 97.8 97.7 97.7 97.8

CHO 99.2 99.8 99.9 99.7 99.8 99.8 99.8 99.7

HI 92.8 93.7 93.4 93.6 93.8 93.9 94.0 93.5

BR 92.8 93.8 94.0 94.6 93.9 95.0 95.0 93.9

PR 88.6 89.3 89.2 88.5 88.0 89.6 89.6 89.4

HeLa 97.3 98.4 98.7 98.2 98.8 98.6 98.6 98.2

LE 99.0 99.5 99.6 99.3 99.6 99.5 99.5 99.4

LT 98.7 99.1 99.4 98.5 99.3 99.2 99.2 99.0

RNAi 96.6 96.8 97.4 96.8 97.2 97.2 97.1 96.9

Average 95.4 96.0 96.2 95.9 96.2 96.3 96.3 96.0

LPQ PAP 90.2 89.3 90.8 90.4 90.3 90.9 90.9 90.7

VIR 94.9 94.4 94.5 94.7 94.1 95.2 95.2 95.2

CHO 99.2 99.6 99.8 99.6 99.6 99.8 99.8 99.6

HI 92.0 92.9 92.7 92.8 92.5 93.2 93.2 92.7

BR 95.7 97.3 96.5 96.2 96.1 96.5 96.8 96.3

PR 86.2 88.7 90.5 88.9 86.6 90.3 90.2 88.7

HeLa 97.2 98.0 98.5 98.0 98.2 98.4 98.4 98.0

LE 97.6 98.2 99.4 98.1 98.7 98.8 98.7 98.2

LT 97.7 98.4 99.2 97.6 98.8 98.6 98.8 98.3

RNAi 95.2 94.9 95.7 94.5 95.5 95.1 95.2 95.3

Average 94.6 95.2 95.8 95.1 95.0 95.7 95.7 95.3

doi:10.1371/journal.pone.0149399.t014
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and tissues, e.g. for drug testing. The most accurate ensemble, Comb(RICLBP) + Full_Bsif +
MLPQens +MLCP, got an AUC of 86.49%, confirming that image processing methods can be
employed to classify the maturity of RPE in microscopy images. Moreover, we proved that
using the higher-performance, but slower to be validated, leave-one-image-out classification
protocol we obtained for the best method Comb(RICLBP) + Full_Bsif +MLPQens +MLCP
AUC over 91%.

The only related studies are [9] and [11]. Jiang et al. [9] reported a correlation between two
specific morphological features, cell area and aspect ratio, two maturation stages (young,
<61days-old vs old,�100 or 180 days-old) and two genotypes (control vs rd10). However, the
cell source was different, mouse eyes vs RPE cells derived from hPSCs, as well as the maturation
stages, since their focus was only in the cobblestone stage. In Kamao et al. [11], the degree of
pigmentation (objective dPG, in the original publication) was assessed as the main marker on
hPSC-RPE maturation, by means of a manual assessment of the RGB values from the Photo-
shop's Info Palette, for single cells (obtained by manual segmentation) and cell-groups. In spite
of the findings, in particular that the objective dPG correlated with the RPE function, the tech-
nique of Kamao et al. [11] required user interaction, which might not be objective and is not
suitable for huge number of images.

To prove the feasibility of the proposed methods not only on RPE images, but also for a
wider range of biological applications, additional tests were performed on a selection of 10
datasets, spacing from diagnostic to microscopy images (electronic transmission as well as fluo-
rescence imaging). We observed that the best-performing configurations of the three new pro-
posed approaches (namely region-based descriptors, the ensemble of preprocessing algorithms
and the improved Bsif) provided good classification results, obtaining an average AUC greater
than 95%. In particular, we compared all the tested/proposed ensemble approaches and the
best method resulted to be Full_Bsif that outperformed all the other approaches with a p-value
of 0.05. This result highlights the key role of these methods in improving many texture descrip-
tors’ accuracy in the classification of different kind of biological images. Of note, the effective-
ness of Full_Bsif has to be seen all over the tested datasets (see Table 12). By changing the filter
size and the binarization threshold we can obtain Size_Bsif and Full_Bsif which work better
than the baseline Bsif on all the tested datasets (see Tables 8 and 12). On the RPE dataset, Full_-
Bsif by itself obtains results lower than RICLBP+MLPQens+MLCP (82.79% vs 84.60%), never-
theless Full_Bsif obtains statistically higher performances on the additional datasets, thus
resulting the best ensemble based on a single descriptor. Finally, we tested on the additional

Table 15. Comparison of Full_Bsif and the ensemble F of the best methods investigate in this section
(AUC is reported).

Full_Bsif F

PAP 91.4 93.6

VIR 97.0 98.1

CHO 99.9 99.9

HI 94.0 94.8

BR 96.7 97.5

PR 91.9 94.5

HeLa 99.2 99.2

LE 99.8 99.9

LT 99.8 99.8

RNAi 98.2 98.2

Average 96.8 97.6

doi:10.1371/journal.pone.0149399.t015
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datasets, a last ensemble F built by gathering the best techniques of the aforementioned three
new approaches: Full_Bsif, O+Wa+OR(LTP), O+Wa+OR(RICLBP), O+Wa+OR(LPQ), All+O
(LTP), All+O(RICLBP) and All+O(LPQ). F outperformed Full_Bsif in six datasets and obtained
equal AUC in the other four. Due to the variety of the additional datasets, F represents our pro-
posed ensemble to process a generic dataset as well as a suggestion to other researchers for fur-
ther studies on this topic.

Of note, the approaches investigated in section 3.2 showed better performances on the addi-
tional datasets than in the RPE dataset. This is due to the nature of each dataset, e.g. staining,
microscopy technique, etc. The RPE dataset was acquired directly imaging the cell cultures
through a phase-contrast microscope. On the other hand, among the additional datasets we
had more complex imaging techniques such as electronic transmission (VIR) or fluorescence
imaging (CHO, HeLa, LE, LT, RNai). Such techniques involve sample treatment (e.g. ultra-
thin samples for electron transmission, staining with antibodies for immunofluorescence or
other stains for histology images). In spite of the better image quality which then affects the
classification performance, such processing necessarily alters the samples and it is time-con-
suming. Moreover, many datasets provided pre-segmented images, thus excluding the textural
information from the background.

The main limitation in the RPE study is the strict standards we had to define and fulfill for
the image acquisition, necessary to build a reliable dataset, but demanding to be implemented
in the laboratory practice.

As future work, we will build new methods to build region-based approaches for the classifi-
cation of biological image datasets. Furthermore, we aim to use a heterogeneous ensemble of
classifiers, instead of a stand-alone SVM, to improve the performance. Finally, to remove
potentially confounding patterns, we plan to design an automatic method to remove the back-
ground from samples such as fusiform and epithelioid images.

In conclusion, in this paper we presented three methods to developed ensembles of texture
descriptors, proving that specific preprocessing and ensembling techniques improve the per-
formance of many state-of-art texture descriptors. Moreover, we automated the classification
of the maturation stages of RPE cells by means of an ensemble of texture descriptors. Such
methods were finally validated on a wide set of general biological image analysis problems.
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