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Although plenty of evidences from preclinical studies have led to potential treatments for
patients with spinal cord injury (SCI), the failure to translate promising preclinical findings
into clinical advances has long puzzled researchers. Thus, a more reliable combination
of anatomical assessment and behavioral testing is urgently needed to improve the
translational worth of preclinical studies. To address this issue, the present study was
designed to relate magnetic resonance imaging (MRI)-based anatomical assessment
to behavioral outcome in a rat contusion model. Rats underwent contusion with three
different heights to simulate various severities of SCI, and their locomotive functions
were evaluated by the grid-walking test, Louisville swim scale (LSS), especially catwalk
gait analysis system and basic testing, and Basso, Beattie, Bresnahan (BBB) score. The
results showed that the lesion area (LA) is a better indicator for damage assessment
compared with other parameters in sagittal T2-weighted MRI (T2WI). Although two
samples are marked as outliers by the box plot analysis, LA correlated closely with all of
the behavioral testing without ceiling effect and floor effect. Moreover, with a moderate
severity of SCI in a contusion height of 25 mm, the smaller the LA of the spinal cord
measured on sagittal T2WI the better the functional performance, the smaller the cavity
region and glial scar, the more spared the myelin, the higher the volatility, and the thicker
the bladder wall. We found that LA significantly related with behavior outcomes, which
indicated that LA could be a proxy of damage assessment. The combination of sagittal
T2WI and four types of behavioral testing can be used as a reliable scheme to evaluate
the prognosis for preclinical studies of SCI.
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INTRODUCTION

Spinal cord injury (SCI) is a refractory disease of the central
nervous system that not only causes permanent disabilities for
individuals but also represents a huge burden to families and
healthcare systems (Ahuja et al., 2017; Huang et al., 2020).
The most common causes of SCI are traffic accidents and falls;
degenerative cervical myelopathy can also progress to incomplete
SCI if not recognized and treated timely (Zipser et al., 2021).
According to a global investigation of SCI, falls and road injuries
are the most common causes in most countries and regions
(James et al., 2019).

SCI usually leads to irreversible neurodegenerative changes
such as demyelination and axon damage (Seif et al., 2020).
It is generally recognized that underlying pathophysiological
processes of SCI can be divided into two stages, primary and
secondary damage (Fan et al., 2018). Overwhelming cell death
and degeneration promote the cystic cavity formation, which
contains fibrous connective tissue, plenty of extracellular fluid,
and activated microglia/macrophage (Norenberg et al., 2004).
The cystic cavities aggregate to become an impenetrable barrier
that block directed axonal regrowth and cell migration (Rowland
et al., 2008). Reactive astrocytes proliferate and closely arrange
in the perilesional zone around the cystic cavities, called glial
scar, which also potently restricts axon regeneration and plasticity
(Barnabé-Heider et al., 2010; Göritz et al., 2011). Therefore, cystic
cavities along with glial scar act as the anatomical barrier to the
regeneration following SCI.

Besides diagnosis and classification of SCI, neurological
examinations and spinal imaging are also necessary in evaluating
the degree of recovery. Magnetic resonance imaging (MRI) is the
most common radiological tool for investigating damage to the
SCI (Le et al., 2015; Aarabi et al., 2017; Dalkilic et al., 2018). MRI
is sensitive to the intramedullary lesion, and the change of sagittal
T2-weighted MRI (T2WI) can reflect various processes, including
cytotoxic edema, hemorrhage, inflammation, and cyst cavitation
dependent on the timing of assessments. Therefore, MRI has been
utilized to diagnose acute SCI and predict functional recovery in
the chronic phase (Aarabi et al., 2017). Crucially, lesion size and
signal intensity might be sensitive to the change of sensorimotor
function; these quantitative neuroimaging parameters can serve
as both diagnostic and prognostic tools at all stages of SCI. Thus,
parameters of sagittal T2WI could serve as important markers for
clinical trials and preclinical trials to evaluate the recovery after
injury (Huber et al., 2017; Cadotte et al., 2018). In recent animal
studies, T2WI has been used to observe the extent of the lesion for
evaluating the recovery after SCI (Peng et al., 2019; Robac et al.,
2021).

The generally accepted examination of sensorimotor function
is according to the Neurological Classification of Spinal Cord
Injury (ISNCSCI) that has been proven to be reliable for the
evaluation of injury severity (Kirshblum et al., 2011, 2020).
Similar to a clinical study, evaluation of behavioral outcome
is also crucial in preclinical animal experiments for developing
therapy strategies. In addition to the methods that rely entirely
on experienced researchers, like Basso, Beattie, Bresnahan (BBB)
open-field locomotor scale, grid-walking test, and Louisville swim

scale (LSS), the catwalk gait analysis system is also widely used as
an objective behavioral testing to evaluate recovery of locomotive
function in rat models (Behrmann et al., 1992; Basso et al., 1995;
Schucht et al., 2002; Hamers et al., 2006; Smith et al., 2006a;
Walker et al., 2019; Fouad et al., 2020).

Although lesion size has been recognized as the most
accurate marker of the SCI, some researches have shown that
similar lesion sizes may produce different grades of functional
impairment or recovery in both clinical trials and preclinical
trials; when the magnitude of lesion pathology does not the
match function status, neurobiologists called this phenomenon
the “neuroanatomical–functional paradox.” (Marino et al., 1999;
Schucht et al., 2002; Fawcett et al., 2007; Hurd et al., 2013).
This neuroanatomical–functional paradox will also preclude the
translation from basic research to clinical treatment (Fouad
et al., 2021). Thus, the primary objectives of this study
were to (a) explore the association between the parameters
measured on sagittal T2WI and behavioral outcome evaluated
by several experience-dependent and objective methods and
(b) demonstrate whether a similar neuroanatomical–functional
paradox exists in the rat contusion model of SCI.

MATERIALS AND METHODS

Animals and Experimental Groups
A total of 22 adult female Wistar rats weighing 200 ± 10 g
(Charles River Laboratories, Beijing, China) were included in
this study. The rats were maintained in a standard condition
(temperature of 22 ± 1◦C, air humidity of around 55%) with
a 12:12 h light–dark cycle and freely accessed food and water.
All experiments of this study were authorized by the Ethics
Committee of the Institute of Radiation Medicine, Chinese
Academy of Medical Sciences & Peking Union Medical College
(approval number: IRM-DWLL-2021111) and conform to all
guidelines regarding the use of animals of the National Institutes
of Health in research.

At first, a subset of rats (n = 15) was randomly divided into
three groups equally, SCI-mild (SCI-mil) group, SCI-moderate
(SCI-mod) group, and SCI-severe (SCI-sev) group.

In translational SCI studies, the animals of each group
generally underwent the same severity of injury before being
given different interventions, and the moderate injury was used
more frequently. In order to simulate the grouping comparison of
translational studies, extra rats (n= 7) were required in the second
stage, which underwent the same injury with subjects of the SCI-
moderate group. A total of 12 rats were dichotomized into SCI-
moderate-smaller group (SCI-mod-s) and SCI-moderate-larger
group (SCI-mod-l) by the median of the lesion area measured
on sagittal T2WI.

Experimental Design
The timeline of the experiment is illustrated in Figure 1. The
rats underwent contusion injury of the T10 segment with
three different severities depending on the groups. The BBB
open-field locomotor scale was administered at the first day
post-injury and weekly thereafter until 56 days post-injury,
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FIGURE 1 | Schematic diagram of the experimental design.

FIGURE 2 | MRI acquisition and analysis of lesion region. (A) Sagittal T2-weighted images of rats in three groups. (B) Schematic drawing of the parameters, which
include lesion area (LA), lesion length (LL), lesion width (LW), and signal intensity (SI). LA was calculated as hyperintense region/overall region of T9–T11 vertebral
canal × 100%. (C–F) Comparison among three groups on LA, LL, LW, and SI, respectively. n = 5 per group (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; #p < 0.0001).

and the grid-walking test was performed at 28, 42, and
56 days post-injury. LSS and the catwalk gait analysis system
were conducted at 56 days post-injury. MR images were also
acquired at 56 days post-injury; the lesions were segmented
and calculated from the T2WI datasets. The correlation analysis

between the lesions and behavior was performed by Spearman’s
rank correlation coefficient test. The methods of histology and
electrophysiology were also used to observe the subtle difference
between SCI-mod-l group and SCI-mod-s group at the end
of the experiment.
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Spinal Cord Injury
The thoracic contusion SCI model was established using the
modified Allen method by the MASCIS Impactor Model III (W.
M. Keck Center, Rutgers University, United States). Each animal
was initially weighed and anesthetized with isoflurane inhalation
anesthesia (2.5% for induction and 2.0% for maintenance). Along
the dorsal skin, an 8-mm midline incision was made after local
shaving and sterilization, paraspinal muscles were separated to
expose the T10 laminae. Contusions of the spinal cord were
conducted by dropping the impactor from the heights of 12.5 mm
(mild), 25.0 mm (moderate), and 50.0 mm (severe) after the
laminectomy of T10 was performed. Postoperatively, animals
received cefotaxime (10 mg/kg, i.h.) and 0.9% saline (5 ml/kg,
i.h.) for 3 days to prevent infections and dehydration. Bladders
were expressed manually at least twice per day until spontaneous
voiding was regained.

Magnetic Resonance Imaging
MR images of the spinal cord were acquired on a 3.0 T
spectrometer (Discovery MR750, GE Healthcare, United States).
Animals were anesthetized and placed in the supine position
before MRI scans at 8 weeks post-injury. Fast relaxation
fast spin echo (FRFSE) pulse sequences were used for the
acquisition of T2-weighted images. Specifically, the FRFSE T2-
weighted sequence had the following acquisition parameters:
TR/TE = 3,000/110 ms, image matrix = 320× 224, FOV = 6 mm,
slice thickness = 2 mm, spacing = 0.5 mm, echo train length = 21,
and NEX = 4. The lesions were segmented by the thresholding
method of gray value (≥ 85) from sagittal T2-weighted images
and calculated by ImageJ software (version 1.8.0, National
Institutes of Health, United States). The measurement of lesion
indicators is shown in Figure 2B, where the lesion area (LA)
represents the proportion of the lesion area in the T9–T11 spinal
cord; lesion length (LL) and lesion width (LW) represent the
maximum longitudinal and transverse diameters of the lesion
area, respectively; and signal intensity (SI) represents the signal
strength of the lesion area.

Behavioral Testing
To evaluate impairment and functional recovery of animals
after SCI, several locomotor behavioral assessment methods were
applied in this research. All the tests were performed at the same
time of the day and were graded by two blinded observers with
professional training.

Basso, Beattie, Bresnahan Locomotor Score
The BBB test was performed at the first day after injury and
weekly thereafter until the animals were sacrificed. During the
test, rats were placed into an open field and walked freely during
a 5-min observation period; hindlimb movement was evaluated
using a rating scale ranging from 0 to 21 points. The final score
was the average of the scores obtained from the two observers.

Grid-Walking Test
To further explore the recovery of fine motor coordination, the
grid-walking test was performed biweekly from 4 to 8 weeks post-
injury. Animals were placed and freely walked for at least 5 min

on a mental elevated device with a grid size measuring 3 cm by
3 cm; images were recorded by using a camera placed underneath
the grid. Each hindlimb of the rats that fell into the grid holes were
counted as a stepping error; the proportion of stepping errors was
calculated as stepping errors/total steps× 100%.

Louisville Swim Scale
A 60-cm-long, 33-cm-wide, and 38-cm-deep clear chamber, with
a ramp consisting of an acrylic plate and a chloroprene rubber
that is 5 mm thick on one side, is used as swimming pool. The
pool was filled to a depth of 30 cm with warm tap water (28–
30◦C), and each rat was trained twice to swim from one side to
the other side and reach the ramp to exit the pool before the
final test at 8 weeks post-injury. Forelimb dependency, hindlimb
movement and alternation, trunk stability, and body angle were
analyzed and evaluated on the basis of the LSS scoring sheet
ranging from 0 to 17 points; each rat was tested twice to get
the average score.

Catwalk Gait Analysis System
The catwalk gait analysis system (Noldus Information
Technology, the Netherlands) was used as an objective method
to assess the locomotor gait dynamics of the rats in this research.
For the CatWalk XT (version 10.6) analyses, the animals were
trained on the device for at least two times before surgery. On
the premise of the same calibration parameters in each group,
the locomotor activities of rats were recorded at least three
times. Several indicators were assessed in the test, including
swing (the duration in seconds of no contact of a paw with the
glass plate), max contact area (the surface area of the print at
max contact expressed), regularity index (the number of normal
step sequence patterns relative to the total number of paw
placements), and print position (the mean values for the right
paws and the left paws).

Electrophysiological Detection
The rats were anesthetized, and the skin was prepared for
insertion of the probe electrode before the motor evoked
potentials (MEPs) were recorded using an electrophysiological
device at 8 weeks post-injury. For the measurement of the MEP,
each stimulating electrode was inserted under the skin above the
nose, the recording electrodes were placed in the same bundle
of muscle of calf, and the electrode to the ground was linked
with the dorsal skin. The MEPs of each rat were recorded at
least five times.

Histology
Hematoxylin-Eosin Staining
Hematoxylin-Eosin (HE) staining was used to assess the
contusion area and the function of urinary bladder in two SCI-
moderate groups after the animals were sacrificed at 8 weeks
post-injury. Both spinal cord samples and bladder samples were
embedded in paraffin and sliced into sections. Then the sections
were stained with an HE staining kit (Solarbio, Beijing, China)
and were observed under an optical microscope (IX73, Olympus,
Tokyo, Japan). The cavity area of the damaged region and bladder
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wall thickness were measured by ImageJ software for comparison
between the two groups.

Immunofluorescent Staining
For IF staining, anesthetized rats were transracially perfused
with pre-cooled 0.9% saline and 4% paraformaldehyde in turn.
The 6-µm-thick longitudinal frozen sections of the spinal cord
samples were manufactured to be probed with anti-glial fibrillary
acidic protein (GFAP) antibody (1:500, Bs-0199r, Bioss, Beijing,
China) and goat anti-rabbit IgG Alexa 555 (1:500, ab150086,
Abcam, Cambridge, United Kingdom) for observing the area of
the scar tissue, and the staining results were observed by a Leica
fluorescence microscope (DMi8, Leica, Germany).

Myelin Staining
For assessing the integrity of the myelin, the cross sections
were brought to room temperature, then rehydrated in PBST
(PBS solution with 0.2% Triton X-100) for at least 20 min,
and stained with FluoroMyelinTM Green stain solution (1:300,
F34651, Invitrogen, OR, United States) for 20 min. When
staining was complete, sections have been washed three times
for 10 min each with PBS solution. Finally, images of the myelin
staining were captured under a fluorescence microscope (DMi8,
Leica, Germany).

Statistical Analysis
The data were analyzed by using GraphPad Prism, version
8.0.2, software (San Diego, CA, United States) and SPSS,
version 23.0, statistical software package (SPSS Inc., Chicago, IL,
United States). Groups were compared using one-way analysis of
variance (ANOVA) with Tukey’s honestly significant difference
(HSD) post-hoc test. Statistical difference among the SCI-mod-
s group and SCI-mod-l group was evaluated by unpaired
Student’s t-test. The correlation between the LA of the spinal
cord and behavioral data was analyzed using Spearman’s rank
correlation coefficient test, and possible outlying observations
were detected by box plot analysis and marked in the graphs.
Outliers were determined by interquartile range (IQR), more
than upper quartile + 1.5 IQR or less than lower quartile - 1.5
IQR would be identified as outliers. All data were presented as
the means ± SEM, and the P-values < 0.05 were considered to
indicate a statistically significant difference, except for correlation
analysis. In correlation analysis, multiple comparison correction
with Bonferroni control was performed, and the threshold was set
as 0.007 (0.05/7).

RESULTS

Of the animals with a highly accurate and controlled impacts
with three heights, all showed no observable hindlimb movement
(BBB score of 0) at the day post-injury; spontaneous voiding
was regained before 7 days post-injury; and there were no
other complications. To investigate the correlation between
the anatomical evaluation and functional recovery, MRI and
behavioral testing were performed (Supplementary Table 1).

Magnetic Resonance Imaging
Morphometry of the Spinal Cord in
Sagittal T2-Weighted Images
Different lesion regions of the spinal cord in three groups were
observed in sagittal T2-weighted images (Figure 2A). As shown
in Figure 2B, LA, LL, LW, and SI of the spinal cord in each rat
were measured and calculated to assess the injury (Figure 2B).
As clearly illustrated by the bar graph, a significant growing
trend of LA from the SCI-mil group and SCI-mod group to
the SCI-sev group has been observed (Figure 2C). Although a
similar trend was observed in the results of LL, there was no
statistical difference between the SCI-mil group and SCI-mod
group (Figure 2D). Besides that, there was little or no difference
in the LW and SI among the groups (Figures 2E,F). The data
suggested that the lesion size increases with the increase of the
height of contusion, and the value of LA may be the best indicator
for damage assessment after SCI.

Correlation Between Magnetic
Resonance Imaging and
Experience-Dependent Behavioral
Testing
The three groups of animals with the contusion of different
heights had shown various levels of spontaneous recovery
in the experience-dependent behavioral testing. As shown in
Figures 3A,B, the average recovery in the BBB open-field
locomotor score during a time frame of 8 weeks and the
ability to cross the grid walk during a time frame of 4 weeks
reveals significant differences among the three groups. Similarly,
swimming performance of the animals had gotten worse as the
contusion height increased (Figures 3C,D). The BBB score, the
grid-walking test, and the LSS at 56 days post-injury all showed a
strong correlation with LA of the spinal cord observed in sagittal
T2-weighted images (R = -0.798, 0.679, and -0.796, respectively;
P < 0.001, P < 0.01, P < 0.001) (Figures 3E–G). However,
two samples are marked as outliers by the box plot analysis
of LA although their behaviors were similar to others in the
same group. The results of the analysis had also shown a strong
correlation after removal of outliers (R= -0.912, 0.786, and -0.928,
respectively; P < 0.0001, P < 0.01, P < 0.0001) (Figures 3H–J).

Correlation Between Magnetic
Resonance Imaging and Catwalk Gait
Analysis System
The acquisition of many important data of catwalk gait analysis
system requires rats to walk with weight supported by plantar (a
BBB score of 11). According to the recovery of rats, the catwalk
gait analysis system was used as an objective behavioral testing
to evaluate the locomotive function only at 8 weeks post-injury.
Similar to the results of experience-dependent behavioral testing,
the data of the catwalk gait analysis system had also shown
various levels of spontaneous recovery (Figure 4A). All of swing,
max contact area, regularity index, and print position reveal
significant differences among the three groups (Figures 4B–E)
and showed a strong correlation with LA of the spinal cord
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FIGURE 3 | Experience-dependent methods of behavioral testing and Spearman’s rank correlation coefficient test. Various levels of spontaneous recovery,
comparison among three groups on (A) BBB score and (B) grid-walking test, were evaluated by experience-dependent methods in rats that underwent contusion of
three different severities. (C,D) Photographs of swimming test and comparison among three groups on LSS scores. n = 5 per group (∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001; #p < 0.0001; ns represents no statistical significance). Spearman’s rank correlation coefficient test. (E–G) Correlation analysis between lesion area
and experience-dependent methods of behavioral testing including outliers. (H–J) Correlation analysis between lesion area and experience-dependent methods of
behavioral testing after removing outliers.

observed in sagittal T2-weighted images (R = 0.796, -0.782, -
0.736, and 0.807, respectively; P < 0.001, P < 0.001, P < 0.001,
P < 0.0001) (Figures 4F–I). Without the max contact area, the
results of the analysis also had shown a stronger correlation after
removal of outliers (R = 0.934, -0.869, and 0.923, respectively;
P < 0.0001, P < 0.001, P < 0.0001) (Figures 4J–M).

Reflecting our data, these results point to a strong correlation
between all of behavioral testing and LA of the spinal cord
observed in sagittal T2-weighted images (Table 1), even though
a similar magnitude of lesion pathology does not the match the
function status also existing in the rat model.

Comparison Between SCI-Mod-s Group
and SCI-Mod-l Group on Behavioral
Testing
Seven rats were added to the SCI-moderate group in the
following experiments.

Because of the narrow range of LA and value of behavioral
recovery, R was not significant in the correlation analysis and
only some correlated trend was observed (Figure 5). Permutation
testing verified that LA was a reliable observation for grouping

the rats of the SCI-mod group. Therefore, a total of 12 rats were
dichotomized into two subgroups (SCI-mod-s group and SCI-
mod-l group) by median of LA (Supplementary Table 2). The
SCI-mod-s group had lower LA of spinal cord than the SCI-
mod-l group (0.14 ± 0.01% and 0.17 ± 0.03%, respectively;
P < 0.05) (Figure 6A).

Consistent with the hypothesis, the SCI-mod-s group had
a lower proportion of stepping errors (0.48 ± 0.08% and
0.66 ± 0.03%, respectively; P < 0.01), higher BBB score
(11.50 ± 0.96 and 9.83 ± 0.69%, respectively; P < 0.05), and
higher LSS scores (8.33 ± 0.75 and 5.67 ± 2.49, respectively;
P < 0.01) than the SCI-mod-l group (Figures 6B–D). Similar to
experience-dependent behavioral testing, swing time (0.28± 0.13
and 0.66 ± 0.31 s, respectively; P < 0.05) and print position
(6.56 ± 0.82 and 9.30 ± 1.33 cm, respectively; P < 0.01) of the
catwalk gait analysis system were also lower in the SCI-mod-
s group (Figures 6E,F), but there was no statistical difference
in maximum contact area and regularity index between two
groups (Figures 6G,H). It seems that the smaller the LA of the
spinal cord, the better the functional performance, but maximum
contact area and regularity index may not be sensitive indicators
to evaluate subtle differences.
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FIGURE 4 | Catwalk test and Spearman’s rank correlation coefficient test. (A) Photographs of catwalk test in three groups. Various levels of spontaneous recovery,
comparison among three groups on (B) swing time, (C) max contact area, (D) regularity index, and (E) print position, were evaluated by the catwalk test in rats that
underwent contusion of three different severities. n = 5 per group (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; #p < 0.0001; ns represents no statistical significance). (F–I)
Correlation analysis between lesion area and indicators of the catwalk including outliers. (H–J) Correlation analysis between lesion area and indicators of catwalk
after removing outliers.

Comparison Between the SCI-Mod-s
Group and SCI-Mod-l Group on Histology
and Electrophysiology Detection
To confirm the concordance between MRI-based anatomical
assessment and histological analysis, we performed HE staining,
myelin staining, and IF staining on the spinal cord sections.

TABLE 1 | Relationships between lesion area and behavior testing.

Lesion area vs. Correlation coefficient, R (p-value)

Include outliers Remove outliers

BBB score -0.7984 (0.0007) -0.9120 (0.0001)

Grid-walking test 0.6786 (0.0068) 0.7857 (0.0022)

LSS scores -0.7961 (0.0006) -0.9282 (0.0001)

Swing time 0.7964 (0.0006) 0.9341 (0.0001)

Max contact area -0.7821 (0.0009) -0.7802 (0.0025)

Regularity index -0.7361 (0.0025) -0.8691 (0.0003)

Print position 0.8071 (0.0005) 0.9231 (0.0001)

Consistent with LA of the spinal cord observed in sagittal T2-
weighted images, HE staining showed that the cavities of the
damaged region in the SCI-mod-s group were smaller than those
in the SCI-mod-l group at 8 weeks post-SCI (30.54 ± 2.84% and
43.08 ± 2.97%, respectively; P < 0.05) (Figures 7A,B). Similar
results were obtained with regard to myelin staining and IF
staining; compared with the SCI-mod-l group, the SCI-mod-s
group showed more area of spared myelin (59.40 ± 2.27% and
51.12 ± 1.718%, respectively; P < 0.05) and less area of glial
scar (Figures 7C–E). Next, we sought to determine whether the
differences of electrophysiology and urinary bladder function
exist between the two groups; volatility, latent period, and
bladder wall thickness were measured to evaluate the functional
recovery of motor conduction and urinary bladder. Compared
with the SCI-mod-l group, the SCI-mod-s group showed higher
volatility (34.42 ± 8.35 and 17.19 ± 5.58 µV, respectively;
P < 0.01) and thicker bladder wall (548.70 ± 60.50 and
750.68 ± 186.892 µm, respectively; P < 0.05), but no statistical
difference of the latent period was observed (6.77 ± 0.68
and 7.81 ± 1.21 ms, respectively; P > 0.05) (Figures 7F–
J). Together, these data indicated that MRI-based anatomical
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FIGURE 5 | Spearman’s rank correlation coefficient test of the SCI-moderate group after seven additional rats were added. (A–G) Correlation analysis between
lesion area and indicators of behavior (n = 12.)

FIGURE 6 | Comparison between the SCI-mod-s group and SCI-mod-l group on (A) lesion area, (B) BBB score, (C) grid-walking test, (D) LSS scores, (E) swing
time, (F) max contact area, (G) regularity index, (H) print position. n = 6 per group (∗p < 0.05; ∗∗p < 0.01; ns represents no statistical significance).

assessment is consistent with the results of histological analysis
and electrophysiological detection.

DISCUSSION

In order to understand the complex pathological basis of
SCI and to develop treatments for improving the quality of
patients’ life after SCI, numbers of animal models have been
applied in translational studies (Cizkova et al., 2020; Fouad
et al., 2020). Most spinal injuries occur from a ventral point

in patients, with over 60% located at cervical levels, often
caused by indirect traumas resulting in compression injuries
(Reier et al., 2012; Musselman et al., 2018). However, due to
the advantages of operation, animal care, and ethical issues,
dorsal thoracic injury models have been used more widely in
preclinical research (Sharif-Alhoseini et al., 2017). Compared
with compression injuries and transection injuries, contusion
injuries can be graded and produce the cavities that are similar to
those observed in a clinical setting (Bresnahan et al., 1991; Basso
et al., 1996a). Given the genetic similarities, ethical concerns,
and care costs, rodents seem to be the most suitable species for

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 838786

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-838786 April 15, 2022 Time: 9:3 # 9

Xing et al. Correlation Analysis of Spinal Cord Injury

FIGURE 7 | Comparison between the SCI-mod-s group and SCI-mod-l group on (A,B) cavity region; (C) glia scar; (D,E) spared myelin; (F–H) electrophysiological
detection; (I,J) thickness of bladder wall (∗p < 0.05; ∗∗p < 0.01; ns represents no statistical significance).

SCI experiments (Sharif-Alhoseini et al., 2017). Among common
rat inbred strains, Wistar rats recovered moderately after SCI
and could be used as a suitable animal model to observe the
difference between the intervention group and control group
in functional recovery. Easier urinating procedure leads to a
lower occurrence of urinary tract infections and more rapid
recovery of bladder function in female rats. These were the
reasons why female rats have been used more frequently in SCI
studies (Mills et al., 2001; Sedý et al., 2008). In conclusion, as
one of the best options for preliminary SCI experiments, the
thoracic contusion female Wistar rat model has been applied
in this research.

The most suitable tool to estimate structural changes of the
spinal cord in clinical study, not possible in the histological
approach, is the quantification of changes in non-invasive T2-
weighted MRI scans (Huber et al., 2017; Martínez-Pérez et al.,
2017; Farhadi et al., 2018; Freund et al., 2019). To facilitate
meaningful translation, it is necessary to use MRI as an important
method in the experimental design in a preclinical study (Guo
et al., 2021). The intramedullary lesion size, measured on sagittal
T2-weighted scans, might be a good clinical predictor of recovery,
but further studies are required to prove the reliability of that in
a rat model (Aarabi et al., 2017). Although the importance of T2-
weighted signal changes after injury and its crucial relationship
to the neurological outcomes in clinical recovery are well-
known, its exact correlation with behavioral outcomes in rat
model is not known.

The present study relates MRI-based anatomical evaluation
to functional outcome in rats with SCI. To assess a range
of injury and adequately cover ceiling effect and floor
effect, rats underwent contusion of three different severities
followed by MRI, behavioral testing, histological evaluations, and
electrophysiological detection. The most commonly used lesion

parameters in MRI include LA, LL, LW, and SI. Compared
to other parameters in this study, the value of LA might be
the best indicators to reflect the severity of injury. Current
behavioral testing predominantly relies on the BBB open-field
locomotor scale, but a single test scheme is unlikely to be
sufficient to evaluate functional recovery after SCI because each
testing method has its particular advantages and disadvantages.
The deficits not apparent during open-field tests can be revealed
by relatively complex tasks or movements of unloaded limbs
(Basso et al., 1996b; Metz et al., 2000; Smith et al., 2006b;
Sedý et al., 2008). So in this study, the functional outcome was
evaluated experimentally by a number of behavioral tests, with
BBB score, grid walking, and LSS as the experience-dependent
behavioral testing and catwalk gait analysis as the objective
behavioral testing. All of them showed strong correlations with
the LA measured on sagittal T2-weighted scan behavior at
8 weeks after SCI. In agreement with prior investigations, two
rats showed exaggerated changes in MRI but performed similar
behavior to others in the same group (Goldstein et al., 1998;
Curt, 2012; Dreizin et al., 2015). But this is not enough to
mean that the “neuroanatomical–functional” paradox also exists
in the thoracic contusion rat model. In addition, LA also can
be used as a sensitive indicator to detect subtle differences at
a moderate injury level; the results of most behavioral testing,
histological evaluations, and electrophysiological detection bear
this out. Structural changes of the spinal cord observed in MRI
do not correspond to the max contact area and regularity index
of the catwalk gait analysis system in moderate injury, which
indicated that much better parameters may exist to evaluate the
subtle differences of behavioral outcome. Correlation analysis was
initially used in this part of the study, but positive results were
not obtained possibly because the range of LA and the value
of behavioral recovery were narrow. After the permutation test,
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continuous variables of LA were used to dichotomize the SCI-
moderate group into two subgroups by the median. Although
the results of group comparison have significant differences, the
result of dichotomy has many objective limitations, including
massive loss of information, and increases the risk of a positive
result being a false positive.

Although radiological and histological assessments presented
different results, these two methods have the same efficacy of
evaluating the lesion size. Previous studies have shown that
lesion size from histological evaluations is well-correlated with
outcomes at chronic-phase SCI in rats (Schucht et al., 2002; Hurd
et al., 2013). Several studies have also confirmed that lesion size
evaluated by T2WI correlated with behavior in SCI rats. However,
only one method was applied to evaluate behavior outcomes
in these studies (Chitturi et al., 2020; Wilkins et al., 2020; Wu
et al., 2020). Taken together, this is the first study to have applied
sagittal T2WI parameters along with the combination of multiple
different behavioral and histological assessments for exploring
the association between spinal morphometry and behavior in a
thoracic contusion rat model. The experimental design of three
grades of injury severity also can strip out ceiling effects and
floor effects. While the advances in SCI imaging techniques are
rapid, conventional T2WI parameters are much more accessible
to preclinical and clinical research applications, relative to the
quantitative MRI technique (Cadotte et al., 2018; Novikov et al.,
2018; Vallotton et al., 2019; O’Dell et al., 2020). One of the
limitations of this study was the lower sample numbers; besides
that, the correlation analysis between MRI-based anatomical
assessment and behavioral outcome was only performed on
the chronic phase.
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