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A B S T R A C T

Numerous biophysical approaches provide information about residues spatial proximity in proteins.
However, correct assignment of the protein fold from this proximity information is not straightforward if
the spatially close protein residues are not assigned to residues in the primary sequence. Here, we propose
an algorithm to assign such residue numbers by ordering the columns and lines of the raw protein con-
tact matrix directly obtained from proximity information between unassigned amino acids. The ordering
problem is formatted as the search of a trail within a graph connecting protein residues through the nonzero
contact values. The algorithm performs in two steps: (i) finding the longest trail of the graph using an origi-
nal dynamic programming algorithm, (ii) clustering the individual ordered matrices using a self-organizing
map (SOM) approach. The combination of the dynamic programming and self-organizing map approaches
constitutes a quite innovative point of the present work. The algorithm was validated on a set of about 900
proteins, representative of the sizes and proportions of secondary structures observed in the Protein Data
Bank. The algorithm was revealed to be efficient for noise levels up to 40%, obtaining average gaps of about
20% at maximum between ordered and initial matrices. The proposed approach paves the ways toward a
method of fold prediction from noisy proximity information, as TM scores larger than 0.5 have been obtained
for ten randomly chosen proteins, in the case of a noise level of 10%. The methods has been also validated
on two experimental cases, on which it performed satisfactorily.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The application of few high-resolution approaches, such as X-ray
crystallography and Nuclear Magnetic Resonance (NMR), to deter-
mine the structures of monomeric proteins and of small biomolec-
ular complexes, constituted the starting point of structural biology.
Recently, the development of techniques better adapted to the
study of molecular assemblies, induced a transition of structural
biology toward integrative structural biology [1,2], connecting even-
tually to cellular biology. In the frame of structural integrative
biology, a large set of biophysical techniques is used, including: X-ray
crystallography, NMR, cryo-EM, SAXS, FRET, mass-spectrometry cou-
pled to cross-linking or affinity measurements [3,4,5]. Many of these
techniques measure distances or distribution of distances between
biomolecular atoms, residues or molecules.
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In addition to the development of experimental techniques, the
wealth of information accumulated on high-resolution structures as
well as the development of bioinformatics, allows the widespread
use of structure prediction approaches, based on proximity informa-
tion between different parts of the modeled system. Such approaches
include molecular homology modeling [6] to predict the fold of a
protein, the use of approaches of protein structure prediction cou-
pled to experimental measurements [7] and protein-protein docking
methods [8,9] to predict complex structures.

In NMR, the observation of nuclear Overhauser effect between
the observed nuclei in a biomolecule allows to have a quite precise
description of the magnetization transfer between these nuclei. This
measure is related to the spatial proximity of nuclei and vary along
1/r6, where r is the distance between the nuclei. It is indexed on the
spectra by the chemical shifts of the two involved nuclei.

The spectral assignment [10,11,12] allows to realize a mapping of
the NMR chemical shifts to the protein atoms observed by NMR. This
task is realized by recording a varied set of heteronuclear NMR spec-
tra [13]. A simplification of the assignment problem was proposed
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by [14], by regrouping the 15N −1H HSQC-NOESY signals of each pro-
tein residue to get numbers describing proximities between residues.
Each of these residues is indexed by a couple of chemical shifts
of Ca and Ha nuclei. The assignment problem can then be rewrit-
ten as a mapping of these spectral residues to the protein primary
sequence, that we call assignment problem of residues. From the
spectral proximities between unassigned residues, a contact matrix
can be built, indexed by chemical shifts. But, due to the signal super-
position on the spectra, false positive spectral proximities can be
detected, and induce the appearance of spurious proximity elements
in the contact matrix. The present work intends to test a procedure
for ordering such noisy contact matrix in the frame of two additional
hypotheses: (i) it is possible to detect proximities between all con-
secutive residues in the sequence, (ii) the spurious proximities are
located on the matrix in an uncorrelated way. These hypotheses are
strong, but can be expected to be matched in the case of high signal
to noise ratio.

In the present work, we focused on the ordering problem of the
contact matrix and we defined a synthetic contact matrix, indexed
by the protein residues, as a matrix of zeros and ones, one being
entered in the matrix for every elements i and j for which a prox-
imity was measured between the corresponding residues i and j. A
proximity can be also called a contact. From well-known features of
proteins [15], the Ca atoms in residues i and i + 1 are separated by
about 3.8 Å, whereas the Ca atoms in residues i and i + 2 are far apart
at most 6 Å. Thus, using appropriate distance cutoffs, first and sec-
ond sub-diagonals of contact matrices can be supposed to be filled or
almost filled with contacts.

In this context, we have developed an approach capable of
ordering a contact matrix using dynamic programming. As there is
more chance to observed proximities between residues close in the
sequence, we decided to use a dynamic programming base heuristic
to maximize the number of contacts on the first three sub-diagonals
of the matrix. The approach has been validated on a set of about 900
protein contact matrices, representing the full varieties of protein
sizes, folds and secondary structure contents. The proposed approach
displays a good level of robustness and precision.

One should notice that the method proposed here intends to assign
each residue observed in the experiment to its correct relative posi-
tion in the protein sequence. This ordering problem is different from
filtering noise from an already ordered matrix [16] or from predicting
contact matrix from protein sequence [17,18,19,20,21,22,23,24,25].
In particular, in the field of protein fold prediction, the proximities
between consecutive residues are implicitly determined from the
residue number in the sequence, whereas in the present approach,
they have to be extracted from the set of spectral proximities.

The approach could be applied to solution state NMR, using the
processing of rows extracted from a 3D 15N −1H HSQC-NOESY sim-
ilar to the one performed by [14], or to solid state NMR spectra
using a lighter pre-processing of PDSD spectra displaying correla-
tions between a 13C carbons [26]. In both cases, the indexes for input
signal would be: the couples of NMR resonance frequencies of amide
hydrogens and nitrogens for solution NMR, and the NMR resonance
frequencies of a carbons for solid state NMR.

The objectives of the present work are to: (i) formalize the
problem of ordering the contact matrix in such a way that it can
be studied independently from the type of data experimentally
measured, (ii) test the robustness to noise and the efficiency of recon-
structing the fold, depending on various protein parameters: protein
length, type and percentage of secondary structures.

2. Problem Formulation

In this section, we present our algorithmic approach for the pro-
tein contact matrix ordering problem. After formulating the problem

in terms of graph, a dynamic programming algorithm, searching for
the longest trail in the graph to produce an individual ordered matrix,
will be presented. Then, a clustering step, based on self-organizing
maps (SOM) [27] and used to extract the final ordered matrix from
the set of individual ordered matrices, will be described.

2.1. Problem Formulation

The ordering problem consists in finding an optimal permuta-
tion of the contact matrix in order to bring the maximum of nonzero
components on the three first sub-diagonals (Fig. 1a). Thus, this
problem can be modeled by graph theory tools where the optimal
permutation problem is equivalent to the longest trail problem in the
graph of the disordered contact matrix. A trail is a walk without
repeated edges [28], and its length is the total number of traversed
edges. In graph theory, the longest trail problem is different from the
longest path problem, as the path may display repeated nodes [29],
as illustrated in Fig. 1b. Indeed, in this example, the longest path is
1 − 2 − 3 − 4 − 5 − 6 − 4 − 7 − 8 − 9 with length 9 while
the longest trail is 1 − 2 − 3 − 4 − 7 − 8 − 9 whose length is
6. Following the order of the nodes in the obtained longest trail,
we affect each node consecutively and rebuild the contact matrix.
In order to return a contact matrix with the maximum number
of contacts on the first three sub-diagonals, we choose among the
longest trails of the same length the one with the maximum num-
ber of non-zeros on the second diagonal. If multiple trails have the
same maximum number of non-zeros on the second diagonal, we
then choose the trail with maximum non-zero numbers on the third
diagonal.

The studied problem belongs to the class of Hamiltonian paths,
which in directed or undirected graphs visits each node exactly once.
Hamiltonian path problem is NP-complete in general, for chordal,
split and circle graphs [30,31,32]. Finding a Hamiltonian path in a
given graph with length n − n4 for any 4 < 1, where n is the
number of the nodes of the graph, is a NP-complete problem [33].
There is no approximation polynomial time algorithm for solving
this problem in a n-node Hamiltonian graph. Moreover, there is no
polynomial-time constant-factor approximation algorithm for the
longest path problem unless P=NP [33]. However, the longest path
problem is solvable in polynomial time for interval and bipartite per-
mutation graphs [34,35]. Yet, to our best knowledge, no algorithm
has ever been proposed and analyzed to solve directly the longest
trail problem for arbitrary graphs. In the present work, we propose
an efficient algorithm based on dynamic programming for solving
this problem.

Nevertheless, some results have been already obtained in the lit-
erature concerning the longest trail problem. A lower bound on the
length of the longest trail was proposed in [36] for enough dense
graphs. The author proves that for a connected graph G of n nodes
such that its average degree is at least k ≥ 12.5, there exists a trail

of length at least (�k�+1)k
2 or n ≤ �k� + 2. In [37], a polynomial time

algorithm was proposed to find a longest “properly edge-colored”
trail in a specific class of edge-colored graphs. In [38], a similar
problem, called the spanning trail problem, is first proposed and
studied. The spanning trail is a trail that visits all nodes at least once
while visits some edges at most once. A sufficient condition was
derived for the existence of such a trail, and was further strengthened
in [39]. In [40], it was proved that finding such a trail is NP-complete
in general grid graphs, and, for the first time, an algorithm to find a
spanning trail in a wide subclass of grid graphs was given. In [41,42],
the spanning trails containing given edges in a graph G were studied.
Other related but not equivalent problems (e.g. Eulerian extension
problem [43], Chinese postman problem [44] and traveling sales-
man problem [45]), are considered and studied widely in the graph
theory.
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Fig. 1. (a) Matrix presentation of the ordering problem. (b) A graph with 9 vertices to illustrate the difference between the longest trail and the longest path. (c) Example of
calculating Ltrtt(G[V(SubTv,t ∪ t)]) (Eq. (5)) in dynamic programming with known Ltrtv and Sltrtv .

2.2. Presentation of the Algorithm to Produce Individual Ordered
Contact Matrices

We develop a heuristic that uses Depth First Search (DFS) [46],
a well known graph traversal algorithm (Fig. 2a) to build a dynamic
programming algorithm (Fig. 2c). Let G = (V, E) be an undirected
and connected graph with n nodes and m edges, where V is the set
of nodes and E is the set of edges. In our heuristic, we apply DFS to
construct a rooted tree for each node v ∈ V. During the construction
of each rooted tree, dynamic programming scheme is used to com-
pute the longest trail, and the best longest trail with the maximum
nonzero components on the first three sub-diagonals is stored.

DFS is a traversal algorithm that systematically visits all nodes in
G, starts at a chosen root node and returns a spanning tree with the

edges used during the search. The strategy of DFS is to explore as
deep as possible along the edges [46]. Let Tr be the rooted spanning
tree obtained by running DFS at node r in graph G and Cr be the set
of children nodes of node r in Tr. We denote SubTc,r the sub-tree of Tr

with rooted node c, and G[V(SubTc,r)] the induced sub-graph of G for
nodes in SubTc,r. An induced sub-graph is composed of a subset of the
vertices and of the edges with both endpoints in the subset.

We define the longest trail in the graph G which contains node r
by Ltrcr(G), and the longest trail in the graph G by Ltr(G). For a given
trail tr, we denote by |tr| the length of the trail. It is easy to see that
|Ltr(G)| = maxr∈V {|Ltrcr(G)|}. Notice that Ltrcr(G) has an optimal sub-
structure. Suppose that Ltrcr(G) is composed of the vertices a ∼ c1 ∼
r ∼ c2 ∼ b where c1 	= c2 ∈ V. Since r is the rooted node, there must
exist two nodes c1, c2 belonging to Cr. Moreover, since Tr is obtained
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Fig. 2. Design of algorithm for longest trail problem in graph G. The algorithm begins on (a) which performs a DFS procedure on graph G. During its exploration of edges with
classical recursive implementation, shown in (b), the longest trail algorithm (c) is integrated to compute the longest trail of the induced graph of the nodes that have been visited.
The following notations are used: Adj(v) is the set of neighbors of node v, p(v) represents the parent node of node v, T1[v], T2[v] and d correspond to Ltrtv , Sltrtv and d(u, v) defined
in Eq. (5), lj[v] presents the length of longest trail in Tj[v]. l( • ) returns the length of the path given as input.

by running DFS in the graph G, for any pair of nodes c1, c2 ∈ Cr in
Ltrcr(G), there is no edge between the nodes in V(SubTc1,r) and the
nodes in V(SubTc2,r), where V(SubTc1,r) and V(SubTc2,r) are the sets of
nodes in SubTc1,r and SubTc2,r respectively. This implies that a ∼ c1 ∼
r and b ∼ c2 ∼ r are the longest trails to node r in G[V(SubTc1,r)∪r] and

G[V(SubTc2,r) ∪ r] respectively. We denote Ltrtr(G) the longest trail to
node r in the graph G. Thus, we have

|Ltrtr(G)| = max
c∈Cr

|Ltrtr(G[V(SubTc,r ∪ r)])|. (1)



144 C. Xu et al. / Computational and Structural Biotechnology Journal 16 (2018) 140–156

Table 1
The number of contact matrice, kept after removal of non-connected ones, for the
different types of contact matrices and noise levels.

Contact matrices Noise level (%)

10% 20% 30% 40% 50%

All_avg_9 802 748 720 680 609
All_avg_11 855 855 848 840 839
All_min_5 831 779 712 649 575
All_min_7 560 553 550 535 522
Ca_7 673 471 354 383 328
Ca_9 847 813 781 422 440

And

|Ltrcr(G)| = |Ltrtr(G)| + max
c∈Cr

c/∈V(Ltrtr(G))

|Ltrtr(G[V(SubTc,r ∪ r)])| (2)

= |Ltrtr(G)| + |Sltrtr(G)| (3)

where Sltrtr(G) represents the second longest trail to node r in G.
During the exploration of DFS that starts at node r, there are

three possible states for each node, which are not explored, partially
explored and completely explored. The colors of these three states are
noted by white, gray and black labels respectively in Fig. 2. Partially
explored means that the node has been reached but its children have
not yet been explored. When a node t turns into a completely explored

state (line 8 of Fig. 2b), a rooted sub-tree SubTt,r with nodes in
completely explored states can be obtained. In this case, we are inter-
ested to see how to obtain Ltrtt(G[V(SubTt,r)]) recursively by using
dynamic programming. When node r turns to completely explored
mode, we obtain Ltrtr(G) which leads to Ltrcr(G). For the sake of
simplicity, we use hereafter Ltrti for Ltrti(G[V(SubTi,r)]) and Sltrti for
Sltrti(G[V(SubTi,r)]).

The recursive function for calculating Ltrtt can be written as:

|Ltrtt| = max
v∈Ct

|Ltrtt(G[V(SubTv,t ∪ t)])| (4)

=max
v∈Ct

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|Ltrtv|+1, max
(u,t)∈E
u∈Dv

u/∈V(Ltrtv)

{|Ltrtv|+d(u, v)+1}, max
(u,t)∈E
u∈Dv

u∈V(Ltrtv)

{|Sltrtv|+d(u, v)+1}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

where Dv is the set of children of node v in Tr, V(Ltrtv) is the set of
nodes in Ltrtv and d(u, v) is the length of the longest trail between u
and v.

In Fig. 1c, we give a graphical presentation of Eq. (5) to show the
relationship between Ltrtt(G[V(SubTv,t ∪ t)]) and Ltrtv where v ∈ Ct.
The first sub-figure I shows one candidate trail in G[V(SubTv,t ∪ t)]
which is the trail Ltrtv plus the additional edge (v, t) (line 6 in Fig. 2c).

Fig. 3. Distribution of the Gap values calculated between the noisy and the initial matrices. The distributions have been plotted for the various matrices and noise levels.
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Fig. 4. Procedure for algorithm validation.

In Fig. 2c, the schemes II and III correspond to the second and the
third terms shown in Eq. (5) and calculated in lines 8–12 and lines
13–17 during the algorithm.

2.3. Self-organizing Maps

The Self-Organizing Maps (SOM) [47,48] are unsupervised neural
networks, recently proposed [27,49] for clustering macromolecular
conformations obtained during the sampling of protein conforma-
tional space. Here, this method has been used in a different context
to cluster the contact matrices obtained by the ordering algorithm
described above. Each ordered contact matrix obtained using a given
random noise level, was reshaped as a vector to become the SOM
input.

These vectors were used to train a periodic Euclidean self-
organizing map (SOM), where the map is a three-dimensional
matrix. The first two dimensions, defining the map size, were chosen
as the integer part of

√
N, where N is the number of contact matrices

obtained. The third dimension has the length of the input vectors.
Each vector along the third dimension is called a neuron.

After a random initialization of the SOM map, the training is real-
ized iteratively and each input vector is compared to all neurons. The

Table 2
Determination of the optimal value for the threshold h used to discretize the real val-
ues in range 0–1 in the matrix C to integers 0 or 1. The first column gives the noise
levels used for the tests, whereas the five other columns correspond to the tested val-
ues of h. Each table element contains the number of proteins for which a better Gap is
observed than for all runs at the same noise level. The test of threshold was performed
on a subset of 1951 proteins. Calculations were done using Ca_7 contact matrices.

Noise level(%) Threshold h

0.3 0.4 0.5 0.6 0.7

10% 388 1531 1399 1097 243
20% 110 1341 928 806 129
40% 92 918 646 666 140

neuron with the smallest Euclidean distance to the input vector, the
so-called Best Matching Unit (BMU) is detected. The BMU as well as
the neighbors of the BMU in the map are then modified toward the
input vector. Indeed, SOM distributes data on the map so that points
which are close or far in the descriptor space are also close or far,

Fig. 5. Distribution of a) protein sizes and b) secondary structure percentages in the
protein data-set. In b), the plain (respectively dashed) line represents the percentage
of residues assigned to a helices (respectively b strands) in a protein. The secondary
structure assignment, realized with DSSP [60], was downloaded from the PDB Web
site: www.rcsb.org.

http://www.rcsb.org
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respectively, on the map. To obtain this result, the neurons neigh-
boring the BMU are scaled by the learning rate a through the use of
a neighborhood function, a 2D Gaussian, centered on the BMU, and
with radius equal to 1

8

√
N. The learning rate a decreases from 0.5 to

0.0 with the number of iterations to force convergence.
The conventional Unified distance-matrix (U-matrix) [49] was

used to delineate clusters on the SOMs. For each neuron m on the
map, a corresponding U-matrix element is calculated as the average
Euclidean distance between the neuron m and its eight immediate
neighbors:

U-height(m) =
1
8

∑
l∈N(m)

d(m, l) (6)

where N(m) is the set of neighbors, and d(m, l) is the Euclidean
distance between vectors m and l. In that way, the points of the
U-matrix displaying the smallest values correspond to the most
homogeneous clusters of neurons.

From the resulting U-matrix, the 3 SOM neurons displaying the 3
lowest minima in the U-matrix were selected and averaged to give
the final result for the ordered contact matrix.

The SOM clustering procedure was repeated ten times, and the
consensus gap value the most often observed consensus gap value,
among these ten experiences, has been taken as the final gap value.

3. Materials and Methods

3.1. Generation of Synthetic Contact Matrices From PDB Structures

The proposed method was validated on a set of original con-
tact matrices obtained from the 3111 protein folds present in the
file recent.pdb_select25.nsigma3.0 from the PDBselect database [50].
PDBselect (homepages.thm.de/~hg12640/pdbselect.html) is a list of
representative protein chains displaying mutual sequence similarity
smaller than 25%. Eight proteins, for which side-chains coordinates
are not available in the PDB structure, were removed from the set.
Then a smaller subset of 897 proteins was randomly selected from
the proteins smaller than 200 residues in order to respect the same
distribution of size as in the full set.

Two types of original contact matrices were calculated from the
PDB coordinates. The first type was based on the measurement of
distances between a carbons of the protein residues, with differ-
ent cutoffs. Each distance smaller than the cutoff corresponds to a
contact. The calculations performed using such contact matrices are
called “Ca” in the following: Ca_7 and Ca_9 were performed using
distance cutoffs equal to 7 and 9 Å, respectively.

In the second type of contact matrix, the distance between two
residues was obtained from the set of all distances between all pos-
sible pairs of atoms belonging to these two residues. Between two
given residues, the average distance value or the minimum distance
value was then compared to the given cutoff in order to detect a

Table 3
Coverage of the CATHv4.2 classification by PDBSelect 2009. Entries from the PDBSelect dataset cover 33 out 41 CATH Architectures. The 8 non-covered CATH Architectures (bold
lines) contains only a limited number of CATH Topologies/Fold (11 out of 1391).

CATH class CATH architecture # in PDB select # CATH topologies # CATH superfamilies # CATH domains

Mainly
alpha

Orthogonal bundle 449 291 582 60,694
Up-down bundle 222 104 208 25,152
Alpha horseshoe 22 6 12 3466
Alpha solenoid 0 2 4 13
Alpha/alpha barrel 5 2 4 977

Mainly alpha Ribbon 83 26 52 4097
Single sheet 43 21 42 2426
Roll 138 40 80 9827
Beta barrel 147 48 96 28,939
Clam 1 2 4 84
Sandwich 266 44 88 51,931
Distorted sandwich 15 18 36 4037
Trefoil 11 2 4 1388
Orthogonal prism 1 2 4 151
Aligned prism 1 1 2 326
3-Layer sandwich 3 3 6 439
3 propeller 0 1 2 1
4 propeller 1 1 2 55
5 propeller 1 1 2 432
6 propeller 6 1 2 1084
7 propeller 2 1 2 1353
8 propeller 0 1 2 399
2 solenoid 0 1 2 88
3 solenoid 6 3 6 1097
Beta complex 12 26 52 2105
Shell 0 1 2 1

Alpha beta Roll 182 60 120 16,507
Super roll 0 3 6 56
Alpha-beta barrel 43 18 36 16,668
2-Layer sandwich 495 224 448 66,583
3-Layer(aba) sandwich 365 126 252 86,984
3-Layer(bba) sandwich 12 11 22 4298
3-Layer(bab) sandwich 1 6 12 90
4-Layer sandwich 14 16 32 10,672
Alpha-beta prism 2 1 2 458
Box 0 1 2 272
5-Stranded propeller 2 1 2 185
Alpha-beta horseshoe 1 3 6 757
Alpha-beta complex 84 163 326 25,780
Ribosomal protein L15 0 1 2 466

Few secondary structures Irregular 60 108 216 4519

http://homepages.thm.de/~hg12640/pdbselect.html
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possible contact. The two distances give rise to two types of con-
tact matrices: All_min and All_avg. Cutoff values of 5 and 7 Å were
used for the matrices All_min, whereas larger cutoff values of 9 and
11 Å were used for the matrices All_avg. Indeed, averaging induces a
tendency to increase the obtained distance, and larger cutoff values
are thus necessary to store sufficient three-dimensional information
into the matrix. Overall, for each protein, six different contact matri-
ces were prepared (Ca_7, Ca_9, All_min_5, All_min_7, All_avg_9,
All_avg_11).

The Euclidean distance measured between atoms Ca, used in the
matrices Ca, corresponds to what could be measured on a Carbon-
Carbon dipolar correlation solid-state NMR spectrum (PDSD) [26]
recorded in the absence of spin. The second type of distance,
making use of all distances between all possible pairs of atoms
belonging to these two residues, is related to the comparison
of columns extracted for each residue from a 3D 1H-15N HSQC-
NOESY spectrum performed by [14]. Indeed, these authors were
estimating the differences between the columns by calculating
their dot-product. Qualitatively, the averaging used in the matri-
ces All_avg would correspond to the dot product averaged by the
number of peaks whereas the minimum value used in the matri-
ces All_min would correspond to the dot-product limited to spectral
regions where the intensity is simultaneously maximum in the two
columns.

3.2. Noise Introduction

The algorithm was tested on the prepared contact matrices using
five different levels of artificial noise (10%, 20%, 30%, 40%, 50%). Intro-
duction of noise to an original contact matrix A is realized in two
steps, by addition and deletion of edges. For each iteration of noise
introduction, one node v1 is chosen randomly to run the addition
and deletion of edges belonging to E(v1), which is the set of edges
directly connected to node v1. During the addition process, one node
v2 whose (v1, v2) /∈ E(v1) is randomly selected, and the E(v1) is
updated to E′(v1) ← E(v1) ∪ (v1, v2). On the other hand, during the
deletion process, one edge e ∈ E(v1) is chosen randomly and the E(v1)
is updated to E′′(v1) ← E(v1)\e. At the end of an iteration, the set
E(v1) is replaced by E′(v1)∪E′′(v1). The number of iterations for noise
introduction is chosen as qn, where n is the size of contact matrix,
Ir. the number of its rows or columns and q the percentage of noise
level. The obtained noisy contact matrix is called A′ (Fig. 4).

As the proposed algorithm for ordering the contact matrices
searches the longest possible trail, it is mandatory that the corre-
sponding graph is connected. But, depending on the protein topology
and on the distance cutoff used to define the contact matrix, some
contact matrices may be not connected at some noise levels and are
removed from the processing. Table 1 displays the number of con-
tact matrices kept along the type of contact matrices and the noise

Fig. 6. Difference of values between the largest peak of the Gap distribution along the 500 noise realizations and the consensus Gap extracted from the repetitions of SOM
clustering. The distributions of these differences have been plotted for the various matrices and noise levels and are mostly located in the domain of negative values, which proves
that the SOM consensus decreases the gap value.
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level. As expected, the number of kept matrices decreases with the
noise level. Within a given noise level (a column of Table 1), the
contact matrix Ca_7 displays the smallest data-set for all noise lev-
els larger than 10%, and the contact matrix Ca_9 displays the second
smallest data-set for noise levels of 40 and 50%. Beside, All_avg_11
retains the maximum number of matrices, rejecting at most 50
matrices.

To estimate the modifications introduced in the contact matrices
by the noise addition, Fig. 3 displays the distribution of Gap values
for each noise level and each type of contact matrix. The peaks of
Gap values are between one third and one half of the nominal noise
level.

3.3. Random Permutation

The input to our ordering problem is obtained by random permu-
tation of the noisy contact matrix A′. The procedure of permutation
is the following. One pair of residues is randomly chosen using a
pseudo-random generator and their order numbers are exchanged.
We repeat this process n times and obtain a disordered contact
matrix A′′ (line 5 in Fig. 4).

From the point of view of graph theory, permutation does not
change the structure of the graph, it changes only the assignment
of each node. The node assignment will be ordered using the

algorithm described in section Theory (subsection “Presentation of
the Algorithm to Produce Individual Ordered Contact Matrices”).

3.4. Implementation

The longest trail algorithm was implemented in C++, the code
is available at gitlri.lri.fr/chuan/LongestTrailAlgo. The random choice
of node was completed using the pseudo-random generator rand()
from the library cstlib (www.cplusplus.com/reference/cstdlib/rand/).
The SOM clustering was implemented in python and is freely avail-
able at: github.com/bougui505/SOM.

3.5. Validation Procedure

The validation on the set of protein matrices was realized on a
computer cluster in the following way (Fig. 4). For a given contact
matrix A and a given noise level, we generate 500 different noisy
and permuted contact matrices A′′ (line 5), and run the longest trail
algorithm on each of these matrices (line 6). The results are stored
in a list of matrices B_list (line 7). We then analyze B_list using
SOM which returns a matrix C filled with real numbers between 0
and 1 (line 9). In order to evaluate the result obtained by SOM, C
is discretized to an integer matrix containing only 0 and 1 values
(lines 10–19), using a threshold h. The similarity between C and A

Fig. 7. Box plot of the distribution of consensus Gap values (%) for the different amounts of noise levels introduced in the original matrix. The contact matrices have been calculated
by the methods: (A) All_avg_9, (B) All_avg_11, (C) All_min_5, (D) All_min_7, (E) Ca_7, (F) Ca_9, defined in section “Generation of Synthetic Contact Matrices From PDB Structures”.
The average Gap value is indicated with a black bar.

http://gitlri.lri.fr/chuan/LongestTrailAlgo
http://www.cplusplus.com/reference/cstdlib/rand/
http://github.com/bougui505/SOM
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is evaluated using a metric Gap calculated as the percentage of dif-
ferent elements between C and A from the total number of nonzero
elements of A (line 20):

Gap =
∑

(|C − A|)∑
(|A|) − n

, (7)

where n is the size of matrices A and C, |X| returns a matrix with the
absolute values of matrix X and S(X) returns the sum of all values in
matrix X.

The optimal threshold h was determined by running the
algorithm on Ca_7 contact matrices with various noise levels. The
Gap values were calculated for a series of threshold values and all
noise levels on a subset of proteins (Table 2). For each h, the number
of proteins which display a Gap better than for the other tested
cutoffs, is computed. As this number is maximum for h = 0.4 for
all noise levels, h = 0.4 was considered as the optimal thresh-
old and used in the following. The self-organizing map clustering
was repeated ten times and the most often observed Gap value was
considered as the consensus Gap and further analyzed.

4. Results

4.1. Properties of the Processed Proteins

The processed proteins display a quite uniform distribution of
sizes in the range of 50–150 residues, corresponding to small or
medium folded proteins (Fig. 5a). The distributions of a helix and b

strand percentages was compared to the global set of Protein Data
Bank (PDB) entries to check whether the subset of protein struc-
tures used here is representative of the general knowledge on folded
proteins. The processed proteins displaying more than 80% of a helix
are relatively less numerous, similarly to the PDB entries in which,
among the 15,633 entries corresponding to monomeric proteins with
number of residues in the range 10–150, only 1434 (9.2%) contain
more than 80% of a secondary structures. The processed proteins
display a peak of structures containing no b strand, and the sub-
set of structures with more than 50% of b strand is smaller than the
subset of structures displaying less than 50% of b strands. Similarly,
among the 15,633 PDB entries, 5514 entries (35.2%) contain less than
10% of b secondary structure, and 1372 entries (8.8%) contain more
than 50% of b secondary structure. The set of proteins used here for

Fig. 8. Examples of calculations performed on contact matrices All_avg_9 with a noise level of 10%. Each line corresponds to the processing of a given protein, illustrated by:
(A) cartoon representation of the protein structure with a helices colored in magenta, b strands colored in yellow and loops colored in green, (B) the original contact matrix A,
(C) an example of noisy contact matrix A′ , where the original data are drawn in green, the added spurious contacts are in blue and the removed contacts are in red, (D) the
distribution of Gap values obtained for the 500 noise realizations, with the value obtained from SOM consensus marked using a magenta star, (E) the ordered matrix, result
from the proposed algorithm, combining DFS and dynamic programming using 500 instances of noise level, followed by a SOM clustering and Gap consensus calculation. The
corresponding gap value is written in magenta and corresponds to the star mark in the Gap distribution.
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validation purposes thus displays secondary structure distributions
similar to the ones of the whole PDB.

To get a deeper insight into the database quality, the PDBse-
lect folds have been compared to the CATH architectures. Only 8
CATH architectures are not represented in PDB select (Table 3).
These 8 architectures correspond only to 11 topologies over the 1391
topologies of CATH. Thus, the PDB select list corresponds to the
majority of CATH folds.

4.2. Effect of the Consensus of SOM Results

For each processed contact matrix, the consensus Gap value
obtained from the ten repetitions of SOM clustering, described in
the Materials and Methods, was compared to the most frequent Gap
value observed among the 500 noise realizations (Fig. 6). The dis-
tributions of these differences, calculated for each type of contact
matrix, and each noise level, are mostly located in the range of neg-
ative values, which proves that the use of the consensus observed
among the SOM repetition decreases the Gap value between the
result and the initial contact matrices.

4.3. Effect of the Noise Level

In order to test the robustness of the proposed algorithm in
the presence of spurious contacts, the distribution of obtained Gap

values is plotted (Fig. 7) for the different noise levels and for the dif-
ferent types of contact matrices defined in Materials and Methods
(subsection “Generation of Synthetic Contact Matrices From PDB
Structures”). In each case, the Gap is smaller than the percent-
age of noise level. and of the same order of value than the Gap
between the initial noisy matrix and the initial matrix. (Fig. 3). This
shows that the proposed procedure attained the best possible Gap
value.

Distance cutoff values of 5, 7, 9 and 11 Å used for calculating the
original contact matrices Ca, All_avg and All_min have an impor-
tant effect (Fig. 7) on the Gap distribution, in the case of noise
levels larger than 30%. Indeed, within a given set of contact matri-
ces (Ca, All_avg or All_min), shorter distance cutoffs (Fig. 7A, C,
E) produce larger Gap values than longer distance cutoffs (Fig. 7B,
D, F), as the average Gap values are more than doubled. By con-
trast, the number of outliers is smaller for shorter cutoffs. Thus,
for large noise levels, the approach proposed here is very sensi-
tive to the quality of initial input information, and contact matri-
ces with larger cutoff values (7, 9, 11 Å) are more robust to noise
introduction.

Among the different types of tested contact matrices, within
a given range of distance cutoff values, the algorithm robustness
decreases from All_avg (Fig. 7A, B) to All_min (Fig. 7C, D) and then
to Ca (Fig. 7E, F). The increased robustness observed for All_avg with
respect to All_min has the following origin: a minimum distance

Fig. 9. Box plot of the distribution of consensus Gap values (%) according to the size of the processed protein (0–50, 50–100, 100–150, 150–200 residues). The plots (A) to (E) are
given for the five levels of noise added to the original contact matrices (from 10% to 50%). For each noise level, the gap distributions are displayed along four ranges of protein
size: 0–50, 50–100, 100–150 and 150–200 residues. For each range of protein size, the Gap distribution for six types of contact matrices described in subsection “Generation of
Synthetic Contact Matrices From PDB Structures”, are given. The average Gap value is indicated with a black bar.
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value is more sensitive to outliers positions of atoms than an average
distance value. Similarly, All_min matrices are more robust than
Ca matrices, because All_min depends on the position of a larger
number of atoms than Ca.

Examples of runs for five proteins, prepared with All_avg_9 and
with a noise level of 10% are shown in Fig. 8. Consensus Gap val-
ues in the range of 4 to 60% are obtained between the initial and the
final ordered contact matrices. It is remarkable that patterns of sec-
ondary structures and most of the tertiary structures are correctly
detected for this whole range of Gap values. The distribution of Gap
values along the 500 noise realizations (Fig. 8C) reveals that the SOM
consensus Gap value, marked with a magenta star, is located close
to the lower limit of all Gap values. In most of the displayed cases,
this consensus values is not located at the maximum peak of the Gap
distribution.

A closer examination of the cases where large Gap values have
been obtained, reveals that these values arise from a shift of the
ordered matrix by 1 or 2 residues with respect to the true contact
matrix. This shift appears in protein structures, in which the N and
the C terminal extremities are close in the 3D space, thus inducing
the appearance of cyclic paths within the graphs. In the frame of the
algorithm presented here, we do not have a way to overcome this
problem.

4.4. Effect of the Protein Size and the Secondary Structure Content

The Gap values increase uniformly (Fig. 9) over all ranges of
protein sizes except for small proteins (<50 residues), for which
somehow larger average Gap values are observed than in other size
ranges, except for the noise level of 10%. This increase of Gap val-
ues may arise from the small size n of the contact matrix, which is at
the denominator in the calculation of the Gap (Eq. (7)). The range of
50–100 residues is the one resisting the best to the increase of noise
level: this is a good point for the proposed approach as the proteins
with 50–100 residues constitute a large proportion of the tested set
of proteins (Fig. 5a).

The average Gap values and the Gap distribution increase for the
small percentage of a helices, specially for noise levels larger than
40%. Increasing the percentage of a helices thus improves the robust-
ness of ordering approach: this agrees with the general knowledge
that NMR protein assignment is easier for a than for b strand struc-
tures. Within a given range of a percentage and for given types of
matrices and noise levels, smaller Gap values are obtained for larger
distance cutoffs.

Conversely, the distributions of Gap values along the percentage
of b strand (Fig. 11) show that, for most of the contact matrix types,
the average Gap value increases along the percentage of b strand,

Fig. 10. Box plot of the distribution of consensus Gap values (%) along the percentage of a helices in the processed protein. The plots (A) to (E) are given for the five levels of noise
added to the original contact matrices (from 10% to 50%). For each noise level, the Gap distributions are displayed for four ranges of a helix percentages: 0–25%, 25–50%, 50–75%,
75–100%. For each range, the Gap distribution of the six types of contact matrices described in Section “Generation of Synthetic Contact Matrices From PDB Structures”, are given.
The average Gap value is indicated with a black bar.
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Fig. 11. Box plot of the distribution of consensus Gap values (%) along the percentage of b strand. The plot is similar to the one shown for percentage of a helices in Fig. 10.

particularly in the case Ca_9 and All_avg_11, for noise levels up to
40%. Matrices with larger cutoffs display average Gap smaller than or
around 20%, for noise levels up to 40%. Matrices with shorter distance
cutoffs constantly display Gap values smaller than 20%, for noise lev-
els up to 20%. Most of the average Gap values eventually increase up
to 50 % for noise levels between 30 and 50%. The reduced robustness
of the proposed algorithm in the case of shorter cutoffs was already
observed in Fig. 7. Overall, the average Gap values are the sign of a
good robustness of the algorithm for percentages of b strands smaller
than 75%.

For large percentages of b strands (75–100 %), the average Gap
values are much worse. This difficulty might certainly stem from the
starting hypothesis for the ordering. In this hypothesis, one searches
for permutations that maximize the numbers of contacts in the first,
second and third sub-diagonals of the contact matrix. However, long-
range contacts in b sheets produce bands orthogonal to the diagonal
of the contact matrix. For proteins displaying more than 75% of
b strands, the presence of many such bands makes the algorithm
heuristic irrelevant. By contrast, in Fig. 10, much better Gap values
are obtained for proteins having more than 75% of a helix, which
illustrates the better fit of algorithm heuristics to the pattern of a

helices in contact matrices.

4.5. Reconstructing Protein Folds

The algorithm proposed here for ordering and filtering noisy con-
tact matrices could find important applications in the field of protein

structure determination, in particular using distance restraints. In
order to test the efficiency of result contact matrices to produce
reliable protein conformations, the following procedure was applied
on 20 entries: 10 of them were taken from the run All_avg_9 with
10% of noise (Fig. 12A–B), and 10 from the run Ca_7 with 40% of
noise (Fig. 12C–D), and all representative of different Gap values
obtained.

For each entry, original and result contact matrices were con-
verted into distance restraints with upper-bound of 9 Å (All_avg_9)
or 7 Å (Ca_7). Using these distance restraints, 100 all-atoms conform-
ers were generated with CNS [51] using the simulated annealing
protocol [52] implemented in ARIA [53]. Force-field included terms
for bond length, bond angles and improper angles, and non-bonded
interactions were treated with a simple repulsive term. A conforma-
tional database potential was also used [54]. Reconstructed conform-
ers were compared with the original PDB structure by computing
the TM-scores [55] on the full PDB sequence. A TM-score larger than
0.5 means that the reconstructed conformers and the original PDB
structure have the same fold.

In Fig. 12A, C, for each selected protein, TM-scores obtained
for the original and result contact matrices are compared. In
the case of the contact matrices defined with All_avg_9 and 10%
noise, 6 proteins over 10 display a TM-score larger than 0.5 (Fig. 12A).
TM-scores larger than 0.5 are obtained up to 60 % Gap and the
TM-score decreases linearly with increasing Gap values (Fig. 12B).
The situation is less favorable for contact matrices defined obtained
with Ca_7 and 40% of noise, as only one selected protein displays
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Fig. 12. TM-scores of reconstructed conformations from original and result contact matrices for 20 representative entries using All_avg_9 matrices and 10% noise (A–B) or Ca_7
matrices and 40% noise (C–D). (A, C) Best TM-score of the reconstructed conformations from the original contact matrix (filled black) or result matrix (white) for 10 entries ordered
by Gap in the result matrix. (B, D) Best TM-score as a function of Gap in the result matrix. The linear (B) and exponential (D) fits are plotted in gray. The TM-score value of 0.5,
corresponding to situation for which the reconstructed structures have globally the same fold as the initial PDB entry, is shown in all plots with a dashed line. (E) Plot of the
percentage of secondary structure versus the TM-score. The original PDB structures and the reconstructed structures are displayed respectively as filled and empty bullets.

a TM-score larger than 0.5 (Fig. 12C). In that case, the TM-score
decreases exponentially with the Gap (Fig. 12D).

As expected, the noise introduced in the original contact matrices
as well as the distance cutoff have a striking influence on the effi-
ciency of result contact matrices to reconstruct 3D conformations of
proteins. But, it is encouraging to see that the use of All_avg_9 along
with a noise level of 10%, allows to correctly predict protein folds for
more than half of the selected proteins.

Overall, the TM-score improves with the increase in the overall
percentage of residues belonging to any a or b secondary structure
(Fig. 12E). But, the a or b secondary structure does not seem to play a
specific role: indeed, 2IP6A and 3G1JA which are respectively rather
a and b proteins, display quite similar results. For Ca_7 matrices
and 40% noise, the situation is more complicated, but the proteins
containing a percentages larger than 30% and b percentages smaller
than 20% (2P5KA, 1BHPA, 1BHIA, 1ABAA) display the best TM-scores.
The difference of behavior between All_avg_9 with 10% noise and
Ca_7 with 40% noise can be put in parallel with the differences of
average Gap observed for these two types of data-sets (Fig. 7A, E).

4.6. Application to NMR Experimental Data

The general workflow for applying of our approach to experi-
mental NMR data is depicted in Fig. 13A. NMR experiments provide
correlations between atoms that are close in space. However corre-
lations are recorded in the frequency space, meaning that one has
to assign each frequency (i.e. chemical shift) to the corresponding
atoms. To alleviate this step, we propose to label chemical shifts
arbitrarily (Xn) and construct an NMR correlation matrix from the
peaks observed in the NMR correlation spectrum using the chemical
shifts labels as indexes. Once re-ordered, the NMR correlation matrix
allows to assign chemical shifts Xn to amino-acids of the protein
sequence. Using these assignments, it becomes feasible to recon-
struct 3D protein structures from the re-ordered NMR correlation
matrix.

To assess the efficiency of this approach, we applied it to matri-
ces obtained from solid-state NMR data on two proteins: MAVS [56]
and YadA [57]. Conveniently, solid-state NMR can detect correlations
between Carbon atoms which provide correlation matrices similar
to contact matrices but that are incomplete and noisy owing to the
experimental resolution. Using experimental NMR restraints from
the Protein Data Bank (PDB entries 2MS7 for MAVS and 2LME for
YadA), NMR correlation matrices were constructed using random
labels (Xn) for assigned amino acids (Fig. 13B, E). The re-ordering step
yielded matrices with Gap values of 39.3% and 0% for MAVS and YadA,
respectively (Fig. 13D, F). For YadA, all amino-acids could be assigned
correctly, while for MAVS only 10.9% could be correctly assigned but
75.0% were assigned to amino-acids next to the correct ones in the
sequence. Yet, a trained NMR expert could easily correct these arte-
facts by checking NMR chemical shift signatures of given amino-acid
types. Finally, using a single distance restraint per NMR correlation
and a upper-bound of 7 Å, we were able to reconstruct 3D struc-
tures of MAVS and YadA with acceptable TM-scores when compared
to the structures from the PDB (Fig. 13D, G). It is worth noting that
the proteins analyzed here belong to larger assemblies (YadA trimer
and MAVS filament) and that one should not exclude the possibility
that inter-protein NMR correlations, incompatible with the 3D struc-
ture of an isolated protein, may be present in the data. Additionally,
we anticipate that higher-accuracy 3D structures could be generated
using a more quantitative restraint upper-bound derived from the
intensity of NMR signals (so far not used here) and a more com-
plete restraint set using assigned NMR chemical shifts (e.g. backbone
dihedral angle restraints).

5. Discussion

In the present work, an efficient algorithm has been proposed to
order protein contact matrices, and reconstruct their corresponding
protein fold, given a set of spatial proximities between amino acids.
The proposed approach is based on the successive application of two
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Fig. 13. (A) Workflow for application to NMR data. A NMR correlation spectrum is converted to a NMR correlation matrix by arbitrary labeling of chemical shifts. Re-ordering
of the NMR correlation matrix yields assignments to amino-acids and allows 3D structure reconstruction. (B, E) Initial correlation matrices from solid-state NMR data for MAVS
and YadA, respectively. (C, F) Re-ordered NMR correlation matrices for MAVS and YadA, respectively. (D, G) 3D structures of the PDB (blue) and reconstructed structures (red) for
MAVS and YadA using the re-ordered NMR correlation matrices. Protein sizes, Gap values and TM-scores are also indicated.

algorithms: (i) ordering of the contact matrix by the concomitant
use of DFS and dynamic programming algorithm, (ii) clustering of
the obtained solutions by the self-organizing map (SOM) approach
[27,49].

The assignment problem was formalized in the present work as
the resolution of the longest trail problem [36,42]. To the best of
our knowledge, this is the first time in the field of structural biol-
ogy that this problem is formalized in a such way. The combined
use of dynamic programming and self-organizing map approaches is
one of the innovative aspects of the work and makes the proposed
algorithm an original approach for the ordering of contact matrices
of proteins.

The robustness of the approach has been extensively tested by
randomly adding and removing contacts into the contact matrix, up
to 50% of the matrix size. The repeated analysis of the noisy matri-
ces allows to determine average Gap values on a set of about 900

proteins with sizes spanning the range of 20–200 residues and being
a representative subset of the existing protein folds. Average Gap
values smaller than 30% have been obtained for all protein sizes,
when the distances between two residues are calculated using all
atom positions from these two residues (contact matrices All_min
and All_avg).

The proposed algorithm produces mostly similar Gap values along
the percentages of a and b secondary structures. Nevertheless, a
better robustness is overall observed for large percentages of a

secondary structures than for large percentages of b secondary
structures. This is due to the heuristics used to order the matrix,
which fits better a secondary structure elements.

These results are quite encouraging, as the visual observation of
calculation examples shows that a Gap value of 20% produces result
contact matrices (Fig. 8E) close to the original ones (Fig. 8A). Also,
the reconstruction of protein folds from result contact matrices and
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the computation of TM-scores [55] confirm that correct protein folds
can be predicted for the majority of proteins if the contact matrices
All_avg_9 and a 10% noise level are used (Fig. 12).

The 3D reconstruction of the protein folds has been quickly
evaluated, as the 3D fold reconstruction is not the main purpose of
the present work, but rather a determination of the correct contact
matrices. Nevertheless, reasonable 3D folds could be reconstructed
from ordered matrices obtained from synthetic (Fig. 12) and experi-
mental (Fig. 13) data.

An important aspect of the approach presented here concerns
its applicability to real-life problems encountered in structural
bioinformatics. Distance-based techniques in structural biology
could benefit from the approach proposed here. Indeed, in quite dif-
ferent domains, an application example would be the metagenomics
data for assembling DNA fragments [58] or photo-activated cross-
linking detected by mass spectrometry [59] for assembling peptide
fragments. For the second example, the peptides would be indexed
by the mass-to-charge ratio. In both cases, the measurement of
proximities does not give direct access to the position of observed
residues in the protein or DNA sequence. The method proposed for
processing contact matrices would provide such assignment, which
would ease the subsequent approaches used for reconstructing 3D
structures.

6. Conclusion

The algorithm proposed here represents an original approach
to the problem of ordering protein contact matrices. It displays
robust behavior with respect to random noise level introduced in
the contact matrix, and with respect to the protein size and to the
percentages of a and b secondary structures. The ordered contact
matrices contain enough information to allow the correct prediction
of protein fold for a low level of noise.
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