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Abstract: Chronic kidney disease (CKD) usually causes devastating healthy impacts on patients.
However, the causes affecting the decline of kidney function are not fully revealed, especially the
involvement of environmental pollutants. We have revealed that exposure to melamine, a ubiquitous
chemical in daily life, is linked to adverse kidney outcomes. Hyperoxaluria that results from exposure
to excessive oxalate, a potentially nephrotoxic terminal metabolite, is reportedly associated with CKD.
Thus, we explored whether interaction of these two potential nephrotoxicants could enhance kidney
injury. We established a renal proximal tubular HK-2 cell model and a Sprague–Dawley rat model
of coexposure to melamine with sodium oxalate or hydroxy-L-proline to investigate the interacting
adverse effects on kidneys. Melamine and oxalate coexposure enhanced the levels of reactive oxygen
species, lipid peroxidation and oxidative DNA damage in the HK-2 cells and kidney tissues. The
degrees of tubular cell apoptosis, tubular atrophy, and interstitial fibrosis were elevated under the
coexposed condition, which may result from the diminishment of Nrf2 antioxidative capacity. To
conclude, melamine and oxalate coexposure aggravates renal tubular injury via impairment of
antioxidants. Accumulative harmful effects of exposure to multiple environmental nephrotoxicants
should be carefully investigated in the etiology of CKD progression.

Keywords: chronic kidney disease; urolithiasis; hydroxy-L-proline; no-observed-adverse-effect level;
8-oxo-2′-deoxyguanosine; Nrf2; OGG1

1. Introduction

Chronic kidney disease (CKD) is an urgent issue worldwide and usually causes
devastating healthy impacts on patients [1]. However, the causes affecting the decline
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of kidney function are not fully revealed. Urolithiasis and kidney stones are risk factors
for patients to develop CKD and end-stage renal disease (ESRD) [1–3]. Calcium oxalate
is the most common composition (approximately 80%) of kidney stones, while uric acid
is present in only ~9% of kidney stones [2]. Oxalate can be ingested from many foods
and its potentially toxic terminal metabolite is eliminated primarily by the kidney [3–5].
Hyperoxaluria has been reported to be associated with CKD and ESRD [1–5].

Melamine is a widely used chemical found in many daily use products and ubiqui-
tously presents in our environment. The contamination of melamine is more pervasive
than originally thought [6,7]. Environmental melamine exposure can come from daily
contact with melamine-containing products such as melamine tableware. We have reported
that substantial amounts of melamine can migrate out of these products, especially at high
temperatures or high acidity [8,9]. In addition, the contamination by melamine and its
derivatives (cyanuric acid, ammeline, and ammelide) remains prevalent in daily food
products including infant formula, milk, yogurt, cheese, butter, and bread [10]. Several
studies have reported that melamine is detectable in most urine samples from the general
population, indicating it may universally exist in human bodies [11–15].

Kidney is the most susceptible organ to melamine since 90% of melamine is excreted
in the original form in urine after intake [16]. Our previously studies have found that
environmental melamine exposure is linked to the adverse kidney outcomes, such as
urolithiasis and kidney function deterioration in adults [17–20]. Since consuming high-
content oxalate foods has been suggested to be a risk of CKD [1,3,5], we hypothesized that
coexposure to the two common kidney toxicants, melamine, and oxalate, might aggravate
their nephrotoxicity.

Our previous human proximal tubular cell studies have suggested that oxidative
stress could be a key player in kidney injury resulting from melamine exposure [21]. In
the human studies, we also found there were interrelationships among environmental
melamine, oxidative stress, and early kidney injury in workers from melamine tableware
factories and adult patients with calcium urolithiasis [22]. However, these in vitro and
human studies still cannot provide solid mechanistic evidence to answer how chronic
exposure to environmental concentrations of melamine could result in early kidney damage,
and whether oxidative stress is the critical underlying mechanism.

Inflammation is a leading cause of CKD [23]. Nuclear factor kappa B (NF-κB) regulates
the expression of many genes that play key roles in inflammation, apoptosis, and fibrosis
during the progression of CKD [23]. Renal tubulointerstitial fibrosis is a consequence of
excessive accumulation of extracellular matrix proteins that occurs in nearly every type of
CKD [24]. Transforming growth factor beta 1 (TGF-β1) stimulates overexpression of extra-
cellular matrix proteins, such as collagen IV, and is the key regulator of renal fibrosis [24].
Both inflammation and fibrosis can be caused by oxidative stress [25]. The nuclear factor–
erythroid-2–related factor 2 (Nrf2) is a master regulator of many antioxidants and can be
activated under oxidative stress to initiate cell defense via upregulation of antioxidant
enzymes, such as NAD(P)H dehydrogenase quinone 1 (NQO1), catalase, heme oxygenase 1
(HO1), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2) [26–29].

The aims of current study were to clarify whether environmental concentrations of
melamine and oxalate coexposure could aggravate nephrotoxicity and what could be the
roles of oxidative stress and Nrf2 in the kidney injury induced by the coexposure using the
HK-2 cell and murine models. Our results demonstrated that the coexposure resulted in
lethal and sublethal kidney damage, particularly renal tubular injury, by diminishing Nrf2
function and increasing oxidative stress.

2. Materials and Methods
2.1. Cell Culture

Human renal proximal tubular cells (HK-2 cells; BCRC no. 60097; Bioresource Collec-
tion and Research Center, Taiwan) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM; catalog no. (cat.) 12320; Thermo Fisher Scientific, Inc., Waltham, MA, USA)
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supplemented with 10% fetal bovine serum (FBS; cat. 10081148; Thermo Fisher Scientific,
Inc.), 100 U/mL penicillin, and 100 µg/mL streptomycin (cat. 15140122; Thermo Fisher
Scientific, Inc.) in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. When the cells
were reached 70% confluence, they were synchronized overnight in DMEM containing
0.5% FBS before being stimulated. Then, the cells were stimulated with melamine (cat.
108-78-1; Sigma-Aldrich, Inc., Saint Louis, MO, USA) and/or sodium oxalate (SO; cat.
131706; PanReac AppliChem GmbH, Darmstadt, Germany) under the cultural condition in
which DMEM containing 0.5% FBS.

2.2. Exposure Concentrations of Melamine and Oxalate

To mimic the environmental exposure, the concentration of melamine used to stim-
ulate HK-2 cells was according to our previous study that found the urinary melamine
concentrations of melamine manufacturers range from 0.438 to 1.252 µg/mL [30]. Thus, in
this study, we exposed HK-2 cells to 1 µg/mL melamine. We used 0.01 mM SO to stimulate
the cells and the final concentration of oxalate in the culture medium was 0.88 µg/mL. This
concentration is lower than the urinary oxalate concentration that has been reported to
increase the risk of kidney stone formation and CKD [3,31].

2.3. Nrf2 RNA Interference

The functions of Nrf2 were knocked down by a small interfering RNA (siRNA)
method. Nrf2 siRNA (h) (cat. sc-37030; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
was transfected into HK-2 cells with FuGENE HD transfection reagent (cat. E2311; Promega
Corporation, Madison, WI, USA). HK-2 cells were cultured in 24-well or 6-well plates until
they reached approximately 60–70% confluence. To knock down Nrf2, 30 nM Nrf2 siRNA
with transfection reagent was added to cells grown in DMEM containing 10% FBS, and the
cells were incubated for 24 h. Then, the cells were used for the following experiments.

To observe protein expression, cells with or without Nrf2 siRNA treatment were
synchronized in DMEM containing 0.5% FBS overnight. Then, the cells were stimulated
with 1 µg/mL melamine and/or 0.01 mM SO for 6 or 24 h.

2.4. Detection of Oxidative Stress

We applied 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-
H2DCFDA) reagent (cat. C6827; Thermo Fisher Scientific, Inc.) to detect the reactive
oxygen species (ROS) produced from HK-2 cells. Mitochondrial ROS was measured using
MitoTracker Red CMXRos (cat. M7512; Thermo Fisher Scientific, Inc.), a mitochondrial dye
that enters live cells and produces fluorescence after the dye is oxidized by superoxide in
mitochondria. Hoechst 33342 (cat. H1399; Thermo Fisher Scientific, Inc.), a cell membrane-
permeable dye, was used to stain cell nuclei.

HK-2 cells with or without Nrf2 siRNA treatment were cultured in 24-well plates and
synchronized in DMEM containing 0.5% FBS overnight. Then, the cells were stimulated
with 1 µg/mL melamine and/or 0.01 mM SO. After 6 h, CM-H2DCFDA (5 µM), Mito-
Tracker Red CMXRos (0.25 µM), and Hoechst 33342 (2 µM) were added, and the cells were
incubated for 30 min. Then, the cells were washed three times with 1× phosphate-buffered
saline (PBS) and observed under an EVOS M5000 Imaging System fluorescence microscope
(Thermo Fisher Scientific, Inc.).

The intensity and area of CM-H2DCFDA, MitoTracker Red CMXRos, and Hoechst
33342 fluorescence staining were analyzed using ImageJ software (a public domain Java
image processing and analysis program developed at the National Institutes of Health,
USA; https://imagej.nih.gov/ij/, accessed on 28 February 2019). To quantify ROS, the
intensity of CM-H2DCFDA and MitoTracker Red CMXRos fluorescence was calibrated by
dividing it with the area of Hoechst 33342 fluorescence.

https://imagej.nih.gov/ij/
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2.5. Observation of Apoptosis

Hoechst 33342 was used to monitor nuclear morphology and thus to monitor apoptosis.
HK-2 cells with or without Nrf2 siRNA treatment were cultured in 24-well plates and syn-
chronized in DMEM containing 0.5% FBS overnight. Then, the cells were stimulated with
1 µg/mL melamine and/or 0.01 mM SO. After 6 or 24 h, Hoechst 33342 (2 µM) was added,
and the cells were incubated for 30 min. Then, the cells were washed 3 times with PBS
and observed under an EVOS M5000 Imaging System fluorescence microscope (Thermo
Fisher Scientific, Inc., Waltham, MA, USA). Apoptotic cells were identified by chromatin
condensation (presentation of enhanced blue fluorescence) and nuclear fragmentation.

2.6. Animal Experiment

The World Health Organization (WHO) originally recommended human tolerable
daily intake (TDI) of melamine was based on the fact that no substantial renal toxicity
was observed after 13 weeks of exposure to melamine at a dose of 63 mg/kg/day, the
no-observed-adverse-effect level (NOAEL) for bladder calculi [32,33]. Thus, in the in vivo
model, we used the NOEL of melamine as the dosage to test the effect of coexposure with
oxalate. The chemical chosen to be coexposed with melamine was 4-hydroxy-L-proline
(HLP; cat. 51-35-4; Sigma-Aldrich Inc., Saint Louis, MO, USA) that has been applied to
induce kidney stones in several animal models. HLP can be metabolized to oxalate and
induce calcium oxalate nephrolithiasis [34–36]. We coexposed Sprague–Dawley (SD) rats
to either 63 mg/kg/day melamine or 126 mg/kg/day melamine (twice the NOAEL) with
or without 2% HLP. Both chemicals were administered in drinking water.

The SD rats were obtained from BioLASCO Technology (Charles River Taiwan Ltd.,
Taipei, Taiwan) and were caged in an air-conditioned animal facility at 22 ± 1 ◦C and
50–70% humidity with a 12-h light/dark cycle. The rats were maintained with free access
to water and a normal chow diet consisting of 11% fat (as a percentage of total kcal), 65%
carbohydrate, and 24% protein (Maintenance Diet 1320, Altromin Spezialfutter GmbH
& Co., KG, Lage, Germany). The concentrations of melamine in water were adjusted
according the average amount of water that the rats consumed every day.

We first conducted a pilot study in which twelve male SD rats were randomly dis-
tributed into four groups: a control group (n = 3), a 2% HLP group (n = 3), a group receiv-
ing 63 mg/kg/day melamine + 2% HLP (n = 3), and a group receiving 126 mg/kg/day
melamine + 2% HLP (n = 3). After obtained some preliminary result that demonstrated
an increased incidence of calcium oxalate in urine of the rats coexposed to melamine with
HLP (Supplementary Table S1), we conducted the second and third batches of experiments.
In these two batches of experiments, a total of 49 male SD rats were randomly distributed
into five groups: Group I (control, n = 10), Group II (126 mg/kg/day melamine, n = 9),
Group III (2% HLP, n = 10), Group IV (63 mg/kg/day melamine + 2% HLP, n = 10), and
Group V (126 mg/kg/day melamine + 2% HLP, n = 10). For Groups II, IV, and V, the
rats were pre-exposed to melamine in drinking water for 2 weeks and then exposed to
melamine only or coexposed to melamine and 2% HLP in drinking water for another
4 weeks. A scheme of the animal study is shown in Supplementary Figure S1.

At the end of the experiment, the rats were individually transferred to metabolic
cages for collecting 24 h urine. The urine was used for analyzing clinical biochemical data,
oxidative stress markers and kidney injury markers. The rats were sacrificed after 6 weeks.
After fasting overnight, the rats were anesthetized by intraperitoneal injection with Zoletil
50 (160 mg/kg) (Virbac, Carros, France). Blood samples were collected from the hearts
at the time of sacrifice and centrifuged at 3000 rpm for 15 min. Then, the supernatant
plasma was stored in a −20 ◦C freezer. Clinical biochemical data of the plasma and urine
were measured by a Roche Cobas Integra 400 Chemistry Analyzer (Roche Diagnostics,
Taipei, Taiwan).
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2.7. Measurement of Oxidative Stress and Kidney Injury Biomarkers

Urinary 8-oxo-2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) levels were
measured with high-sensitivity 8-OHdG ELISA kits (cat. KOG-HS10E; JalCA, Fukuroi,
Shizuoka, Japan) and thiobarbituric acid reactive substances (TBARS) assay kits
(cat. 10009050; Cayman Chemical Inc., Ann Arbor, MI, USA), respectively. Urinary
βeta-2-microglobulin (β2M; cat. SEA260Ra) and N-acetyl-β-D-glucosaminidase (NAG;
cat. SEA069Mu) were measured with ELISA kits (USCN Life Science, Inc., Wuhan,
China). Urinary oxalate was measured with Oxalate colorimetric assay kit (cat. K663;
BioVision Ltd., Milpitas, CA, USA). The protocols were performed according to the kit
suppliers’ instructions.

2.8. Detection of 8-OHdG and MDA in Kidney Tissues

To measure the levels of 8-OHdG and MDA in renal tissues, kidneys were homog-
enized in 1× PBS. Then, genomic DNA was extracted from a portion of the tissue ho-
mogenate with a PureLink™ Genomic DNA Mini Kit (cat. K182002; Thermo Fisher
Scientific, Inc.) for 8-OHdG measurement using a high-sensitivity 8-OHdG ELISA kit.
Another portion of tissue homogenate was lysed in M-PER™ Mammalian Protein Extrac-
tion Reagent (cat. 78501; Thermo Fisher Scientific, Inc.) for MDA measurement using a
TBARS assay kit (Cayman Chemical Inc., Ann Arbor, MI, USA). The protocols followed the
instructions provided by the kit suppliers.

2.9. Analysis of Kidney Morphology, Fibrosis, and Apoptosis

Kidneys were removed immediately after the rats were sacrificed. Formalin-fixed,
paraffin-embedded kidney sections of 5 mm thickness were deparaffinized in xylene and
rehydrated. Periodic acid–Schiff (PAS) staining with a PAS Stain kit (cat. 395B; Sigma-
Aldrich, Inc., Saint Louis, MO, USA) was used to examine the histological morphology of
the kidneys, whereas picrosirius red staining with a Picrosirius Red Stain kit (cat. Ab150681;
Abcam Plc., Cambridge, MA, USA) was used to examine the severity of renal fibrosis. The
protocols followed the instructions provided by the kit suppliers.

Apoptotic renal tubular cells were detected by terminal deoxynucleotidyl transferase
dUTP-mediated nick-end labeling (TUNEL) assay using an In Situ Cell Death Detection
kit, POD (cat. 11684817910; Roche Applied Science, Penzberg, Germany) according to the
instructions provided by the kit supplier.

2.10. Immunohistochemistry for Oxidative Stress and Inflammatory Markers

A series of immunohistochemical (IHC) examinations with appropriate antibodies
were used to examine biomarkers or histological changes in kidneys. An ED-1 antibody
was used for macrophages, and an MDA antibody was used for lipid peroxidation. Nrf2
and DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) were detected with
their specific antibodies. Immunohistochemical staining was performed according to the
standard avidin-biotin-peroxidase complex method with an ABC Peroxidase Standard
Staining Kit (cat. 32020; Thermo Fisher Scientific, Inc.). Oxidative damaged DNA was
detected by an 8-OHdG antibody and immunohistochemical staining was performed with
a VECTASTAIN ABC-AP kit (cat. AK-5002; Vector Laboratories, San Francisco, CA, USA)
and a Vector Red Substrate kit (cat. SK-5100; Vector Laboratories). The information for the
antibodies is listed in Supplementary Table S2.

2.11. Quantification of Tissue Images

Tubular luminal areas, fibrosis areas, macrophages, apoptotic cells, 8-OHdG stain-
ing, MDA staining, and Nrf2-positive nuclei were quantified in renal sections (six ani-
mals/group from the third batch experiment; 5–10 random fields per section). The collected
images were analyzed under a light microscope and quantified using ImageJ software.
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2.12. Protein Extraction and Western Blotting

To analyze the expression of the target proteins, HK-2 cells and the kidneys of rats
from the second and third batch experiments were homogenized and lysed in M-PER
Mammalian Protein Extraction Reagent supplemented with cOmplete™ Protease Inhibitor
Cocktail (cat. 11697498001; Roche Applied Science, Penzberg, Germany). The cell nuclear
proteins were extracted using a Nuclear Protein Extraction kit (cat. NPI-1; Fivephoton
Biochemicals, San Diego, CA, USA). The protein concentrations were measured using a
Pierce™ BCA Protein Assay kit (cat. 23227; Thermo Fisher Scientific, Inc.). For analysis
of target proteins, equal amounts of cell or tissue lysates were loaded and separated on
7.5%, 10%, or 15% sodium dodecyl sulfate (SDS)-polyacrylamide gels. After transfer
to polyvinylidene difluoride (PVDF) membranes, the proteins of interest were detected
using corresponding antibodies. The purchase information for the antibodies is listed in
Supplementary Table S2. The protein expression on the blot images was quantified by
ImageJ software.

2.13. Statistics

The results for all groups are presented as the mean ± standard error (SE) and were
analyzed with GraphPad Prism 9 software (GraphPad Software Inc., San Diego, CA, USA).
One-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test
was used to analyze the differences across groups. All p-values were two-sided with
significance accepted at < 0.05.

3. Results
3.1. Diminishing Nrf2 Enhanced Oxidative Stress Induced by Melamine and Oxalate Coexposure
in Human Proximal Tubular Cells

We first observed whether coexposure of melamine with SO could induce oxidative
stress and influence the expression of Nrf2 and antioxidants in HK-2 cells. As shown in
Figure 1A,B, melamine and SO coexposure induced more ROS production than melamine or
SO single exposure. When Nrf2 was knocked down with a specific siRNA, the overall ROS
production was further increased in the four groups, especially in the coexposure group.

We also investigated whether mitochondria are involved in the ROS generation in-
duced by melamine and SO. As shown in Figure 1A,C, the fluorescence intensity of
MitoTracker Red CMXRos was significantly increased in HK-2 cells exposed to melamine
and/or SO, especially when Nrf2 was simultaneously knocked down. The increased
fluorescence intensity indicated overproduction of mitochondrial superoxide anion since
MitoTracker Red CMXRos is oxidized by superoxide, which results in the emission of red
fluorescence [37].
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Figure 1. Cellular and mitochondrial ROS generation in HK-2 cells. (A) Production of cellular reactive oxygen species (ROS)
in human proximal tubular cells (HK-2 cells) was detected by a CM-H2DCFDA green fluorescence probe (green color).
Mitochondrial ROS was detected by a MitoTracker Red CMXRos fluorescent probe (red color). Cell nuclei were stained
with Hoechst 33342 (blue color). Scale bar = 150 µM. (B) Quantified results of the cellular ROS. (C) Quantified results of the
mitochondrial ROS. The cells were stimulated with 1 µg/mL melamine (M) and/or 0.01 mM sodium oxalate (SO) for 6 h.
Con and C: control cells without treatment; siNrf2: the cells treated with Nrf2 small interference RNA for 24 h. Data are
mean ± SE (n = 3). a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.2. Diminishing Nrf2 Blocked Antioxidative Enzymes Induced by Melamine and Oxalate
Coexposure in Human Proximal Tubular Cells

In the single-exposure and coexposure groups, the protein expression of SOD1, cata-
lase and HO1 was increased, possibly because of the translocation of Nrf2 into cell nuclei
in response to oxidative stress (Figure 2A–G). To prove whether these antioxidant enzymes
were regulated by Nrf2, we blocked Nrf2 with its siRNA. As shown in Figure 2A–C, siNrf2
treatment reduced 50% of Nrf2 total protein level and 30% of Nrf2 protein level in cell nu-
clei of the HK-2 cells. Nrf2 knockdown decreased the degrees of SOD1, catalase, and HO1
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upregulation (Figure 2A–G). In contrast, the expression of the mitochondrial antioxidant
SOD2 did not change in response to the increase in oxidative stress (Figure 2A,E). These
results demonstrated that oxidative stress induced by melamine and/or oxalate exposure
resulted in a complementary increase in antioxidative enzymes via Nrf2. Blockage of
Nrf2 decreased antioxidative defense, which resulted in accumulation of substantial ROS
induced by the exposure of melamine and/or oxalate.

Figure 2. Protein expression of Nrf2 and antioxidants in HK-2 cells. (A) The representative immunoblot images for nuclear
proteins of Nrf2 (nu-Nrf2) and histone 3, and total proteins of Nrf2, SOD1, SOD2, catalase, HO1, and β-actin. These protein
expressions were detected by western blotting. (B–G) The quantified results of the blots. The cells were stimulated with
1 µg/mL melamine (M) and/or 0.01 mM sodium oxalate (SO) for 6 h. C: control cells without treatment; siNrf2: the cells
treated with Nrf2 small interference RNA for 24 h. Data are mean ± SE (n = 3). a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.3. Melamine and SO Coexposure Upregulated Markers of Inflammation, Apoptosis, and Fibrosis
in Human Proximal Tubular Cells

Coexposure to melamine and SO induced significant apoptosis in HK-2 cells
(Figure 3A,B). Nrf2 knockdown further increased HK-2 cell apoptosis in the single-exposure
and coexposure groups, indicating that programmed cell death may, at least in part, be
caused by oxidative stress (Figure 3A,B). As shown in Figure 3C–E, translocation of NF-κB
to HK-2 cell nuclei was significantly increased in coexposure group, and the translocation
was further increased by Nrf2 knockdown in the control, single-exposure, and coexposure
groups. The expression of collagen IV, an extracellular matrix protein, was significantly
increased by Nrf2 knockdown in HK-2 cells coexposed to melamine and SO (Figure 3C,F).
The protein levels of cleaved caspase-3, which is responsible for executing apoptosis, were
found to be significantly elevated in the coexposed HK-2 cells (Figure 3C,G). Taken together,
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our results suggest that coexposure to melamine and oxalate can enhance inflammation,
apoptosis and fibrosis in kidney proximal tubular cells.

Figure 3. Apoptosis and the expression of proteins related to inflammation, fibrosis, and apoptosis in HK-2 cells.
(A) Apoptotic HK-2 cells were detected by a Hoechst 33342 fluorescent probe. The apoptotic cells were indicated by
white arrowheads. Scale bar = 75 µM. (B) Quantified results of the apoptotic cells. (C) The representative immunoblot
images for nuclear proteins of NF-κB (nu-NFκB) and histone 3, phosphorylated protein of NF-κB (pNFκB), and total proteins
of NF-κB, collagen IV, cleaved-caspase 3 (c-Caspase 3), caspase 3, and β-actin. The protein expressions were detected by
western blotting. (D–G) The quantified results of the blots. The cells were stimulated with 1 µg/mL melamine (M) and/or
0.01 mM sodium oxalate (SO) for 24 h. Con and C: control cells without treatment; siNrf2: the cells treated with Nrf2 small
interference RNA for 24 h. Data are mean ± SE (n = 3). a: p < 0.05; b: p < 0.01; c: p < 0.001.
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3.4. Melamine and Oxalate Coexposure Enhanced Lethal and Sublethal Renal Tubular Damage

Increased 24-h urinary oxalate excretion has been reported to be a risk factor for kidney
stone formation and CKD [3,31]. In the rat model, we observed an elevated frequency
and incidence of calcium oxalate crystals in urinary specimens from the coexposed groups
(Supplementary Table S1). In addition, urinary oxalate excretion was elevated in the HLP
single-exposure group and the coexposure groups (Supplementary Table S3). These results
imply that melamine may accelerate the formation of calcium oxalate crystals or stones in
the kidneys.

To clarify whether the coexposure can cause kidney damage or kidney stones, we
observed the kidney morphology. As shown in Figure 4A,B, tubular luminal areas were
significantly increased in the kidneys of the coexposed rats, suggesting the induction
of renal tubular dilation, an early sign of kidney damage. In some of the dilated renal
tubules, we observed loss of brush borders and shedding of cell nuclei (Figure 4A). The
rats coexposed to the high dose of melamine (126 mg/kg/day) and HLP exhibited the
most pronounced renal tubular damage, such as tubule atrophy and interstitial infiltration
of chronic inflammatory cells (Figure 4A). However, stone formation in the renal tubular
areas was not observed.

Loss of renal tubular cells could be the cause of tubular atrophy. We found that
apoptotic cells were significantly increased in the kidneys of the coexposed rats than in
those of the rats exposed to HLP or melamine alone (Figure 4C,D). It is noteworthy that
apoptosis was present mainly in the renal tubules (Figure 4C). Severe apoptosis leading to
tubular atrophy was observed in some regions of the kidneys in the high-dose melamine
coexposure group (Figure 4C).

To observe the effect of melamine and oxalate coexposure on kidney function, we
measured some clinical biochemical parameters and kidney injury markers in plasma
and urine. The results showed that commonly measured biochemical parameters and
biomarkers, such as blood urea nitrogen (BUN), creatinine, β2M, and NAG, were similar
across all five groups (Supplementary Table S3). Even though these biochemical parameters
did not show a significant decline in kidney function, the morphological changes of kidneys
in the coexposed rats indicated that early signs of kidney injury have occurred.
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Figure 4. Morphological change and cell apoptosis in kidneys of the SD rats. (A) Representative images of periodic
acid–Schiff (PAS) staining in kidneys of the rats. Þ indicates shedding of cell nuclei. ä indicates interstitial infiltration of
inflammatory cells. Scale bar = 100 µM. (B) Quantified results for the renal tubular lumen area from the images of PAS
staining. (C) Apoptotic cells in kidneys of the rats detected by TUNEL assay. The apoptotic cells were stained with DAB
substrate (Brown color). é indicates some representative apoptotic cells in renal tubules. Scale bar = 75 µM. (D) Quantified
results for the apoptotic cells. Cell nuclei were stained with hematoxylin. Stars indicate atrophy of renal tubules. Con:
control; HLP or H: 2% hydroxy-L-proline; M-126: melamine 126 mg/kg/day; M-63: melamine 63 mg/kg/day. Data are
mean ± SE from six rats of each group in the third batch animal experiment. a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.5. Melamine and Oxalate Coexposure Increased Renal Tubulointerstitial Macrophage Infiltration
and Fibrosis

Inflammation is a critical mediator of kidney damage. As shown in Figure 5A,B,
macrophage infiltration in the renal tubular interstitium was significantly increased in the
rats coexposed to melamine and HLP compared to those exposed to melamine or HLP
alone. The results indicate that inflammation may be involved in the early kidney injury
caused by melamine and oxalate coexposure.

Renal fibrosis is the main pathological basis of CKD progression to ESRD. We used
picrosirius red staining to observe fibrosis and found that the accumulation of extracellular
matrix proteins in the renal tubular interstitium was significantly elevated (by approxi-
mately 2–4%) in the coexposed rats (Figure 5C,D). The results indicate that the coexposure
can also cause early kidney fibrosis in rats.
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Figure 5. Inflammation and fibrosis in kidneys of the SD rats. (A) ED-1 IHC staining in kidneys of the rats. Brown color
(DAB substrate) stains indicate macrophages (ED-1 positive stained cells) infiltration to renal tubulointerstitium, suggesting
chronic inflammation occurred in kidneys of the rats coexposed to melamine and HLP. Scale bar = 75 µM. (B) Quantified
results for the ED-1 positive stains. (C) Representative images of Picrosirius Red staining in kidneys of the rats. Red
color stains in the kidneys indicate that positive staining of extracellular matrix proteins accumulate in tubulointerstitium,
suggesting occurrence of renal fibrosis. Scale bar = 150 µM. (D) Quantified results for the fibrosis degree (red color) in the
kidneys. Con: control; HLP or H: 2% hydroxy-L-proline; M-126: melamine 126 mg/kg/day; M-63: melamine 63 mg/kg/day.
Data are mean ± SE from six rats of each group in the third batch animal experiment. a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.6. Melamine and Oxalate Coexposure Upregulated Expression of Proteins Involving Kidney
Injury

We also observed protein levels of several molecules that have been reported as
kidney injury markers or regulators participating in the processes of inflammation, fibrosis
and apoptosis (Figure 6A,B). We found that the ratio of phosphorylated NF-κB to total
NF-κB levels was significantly increased in the kidneys of melamine single exposed and
melamine-oxalate coexposed groups. In addition, the protein expression levels of both
phosphorylated NF-κB and total NF-κB were remarkably increased in the kidneys of the
coexposed rats.

The protein level of kidney injury molecule-1 (KIM-1), an early kidney tubular injury
marker [38], was increased in the four exposed groups, especially the high-dose melamine
and oxalate coexposed group. TGF-β1 protein levels in the kidneys were significantly
upregulated in the four exposed groups and the level in the high-dose melamine and
oxalate coexposed group was the highest. Additionally, protein expression of collagen IV
was upregulated in the HLP single exposed and the melamine-oxalate coexposed groups.

Apoptosis can be induced by Bax-dependent caspase-3 activation [39]. Our results
demonstrated that Bax and caspase-3 protein levels were increased in the kidneys of the
four exposed groups. Similarly, these two proteins were expressed the highest levels in
the high-dose melamine and oxalate coexposed group. The ratio of cleaved-caspase-3 to
caspase-3, indicating an activation of caspase-3, was significantly increased only in the
high-dose melamine and oxalate coexposed group.
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Figure 6. Expression of the proteins related to inflammation, fibrosis, and apoptosis in kidneys of the SD rats.
(A) Representative immunoblots of phosphorylated NF-κB (pNFκB), total NF-κB, KIM-1, TGF-β, collagen IV (Col-IV), Bax,
caspase-3 (Casp-3), cleaved-caspase-3 (C-Casp-3) and β-actin, detected by western blotting. (B) Quantified results for
the immunoblots. Con: control; HLP or H: 2% hydroxy-L-proline; M-126: melamine 126 mg/kg/day; M-63: melamine
63 mg/kg/day. Data are mean ± SE from six rats of each group in the third batch animal experiment. a: p < 0.05; b: p < 0.01;
c: p < 0.001.

3.7. Melamine and Oxalate Coexposure Induced Oxidative Stress in the Kidneys

To clarify whether oxidative stress was a key player involving in the early kidney
injury induced by melamine and oxalate coexposure, we observed MDA levels in the
kidneys and urine. As shown by IHC staining, the coexposure groups presented stronger
MDA intensity than the control and single-exposure groups (Figure 7A,B), especially in the
damaged renal tubules (Figure 7A). MDA levels in kidney tissues were significantly higher
in the rats coexposed to melamine and HLP than in those exposed to HLP or melamine
alone (Figure 7C,D). In addition, urinary MDA concentrations were significantly increased
in the coexposure groups (Figure 7E).
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Figure 7. The levels of oxidative stress biomarker MDA in kidney tissues and urine of the SD rats. (A) Representative
images of malondialdehyde (MDA) immunohistochemical (IHC) staining. Brown color indicates positive staining of MDA
detected with 3′,3′-diaminobenzendine (DAB) substrate, suggesting that lipid peroxidation is increased in the kidneys. Red
stars (*) indicate that stronger MDA stains present in the kidney tubules to be destroyed. Cell nuclei were counterstained
with hematoxylin. Scale bar = 75 µM. (B) Quantified results of the MDA stains in the IHC images (n = 6 for each group).
(C) MDA levels in kidney tissues from the second batch animal experiment (n = 3–4 for each group) measured by ELISA.
(D) MDA levels in kidney tissues from the third batch animal experiment (n = 6 for each group) measured by ELISA.
(E) Urinary MDA levels measured by ELISA (n = 9–10 for each group). Con: control; HLP: 2% hydroxy-L-proline; Mel-126:
melamine 126 mg/kg/day; Mel-63: melamine 63 mg/kg/day. Data are mean ± SE. a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.8. Melamine and Oxalate Coexposure Caused DNA Oxidative Damage in the Kidneys

We also observed the oxidative DNA damage marker 8-OHdG. The intensity of
8-OHdG staining was substantially stronger in the kidney sections of the coexposure
groups, especially in the damaged renal tubules, than in those of the control and single-
exposure groups (Figure 8A–C). Specifically, we observed that more 8-OHdG accumulated
in the cell nuclei of the damaged renal tubules in the high-dose melamine coexposure
group than in the other groups (Figure 8A). Consistently, DNA extracted from kidney
tissues of the rats coexposed to both melamine and HLP presented significantly higher
quantities of 8-OHdG than those of the rats exposed to HLP or melamine alone (Figure 8D).
Urinary 8-OHdG concentrations in the coexposure groups were also higher than those in
the control and single-exposure groups (Figure 8E).
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Figure 8. DNA oxidative damage in kidneys and urine of the SD rats. (A) Representative images of 8-OHdG IHC staining.
Pink and red colors indicate positive stains of 8-OHdG detected with Vector® Red substrate, suggesting that oxidative
DNA damage occurred in the kidneys. Cell nuclei were counterstained with hematoxylin. Scale bar = 75 µM. Arrowheads
(ä) indicate that 8-OHdG is accumulated in cell nuclei of the damaged renal tubules. (B) An representative image with
lower magnification power (100×). Stars (*) indicate that damaged renal tubules present stronger positive 8-OHdG stains.
(C) Quantified IHC results of the 8-OHdG positive stains (n = 6 for each group). (D) The levels of 8-OHdG in the kidney
tissues measured by ELISA (n = 9–10 for each group). (E) Urinary 8-OHdG levels measured by ELISA (n = 9–10 for each
group). Con: control; HLP: 2% hydroxy-L-proline; Mel-126: melamine 126 mg/kg/day; Mel-63: melamine 63 mg/kg/day.
Data are mean ± SE. a: p < 0.05; b: p < 0.01; c: p < 0.001.

3.9. Melamine and Oxalate Coexposure Reduced Nrf2 and OGG1 Translocation to Nuclei of
Damaged Renal Tubular Cells

The kidney levels of Nrf2 protein were significantly upregulated in the low-dose
melamine coexposure group and in the HLP and melamine single-exposure groups com-
pared with the control group (Figure 9A,B). In the high-dose melamine coexposure group,
Nrf2 protein level in the kidney was upregulated but did not reach a statistic significance
when compared with the control group (Figure 9A,B). Observed by IHC, Nrf2 was present
at nuclei of renal tubular cells in the normal control rats (Figure 9D). Notably, our results
demonstrated that Nrf2 was not sufficiently translocated into cell nuclei of the damaged re-
nal tubules in both low-dose and high-dose melamine coexposure rats (Figure 9D,E). These
results suggest that increased expression of Nrf2 may not trigger satisfactory antioxidative
defense if it could not be successfully translocated into cell nuclei.

OGG1 is a DNA repair enzyme that is present in cell nuclei and mitochondria. As
shown in Figure 9A,C, OGG1 proteins were significantly upregulated in the kidneys of
low-dose melamine coexposure group and HLP and melamine single-exposure groups
compared with the control group. In contrast, OGG1 protein level was not changed in the
kidneys of high-dose melamine coexposure group (Figure 9A,C). According to the IHC
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results (Figure 9F), OGG1 was present at cell nuclei of the renal tubules in normal control
rats. Similar to Nrf2, OGG1 could not be sufficiently transported into cell nuclei of the
damaged renal tubules in the melamine and oxalate coexposed rats (Figure 9F), which may
have impeded the repair of oxidative DNA damage. Thus, accumulation of 8-OHdG in cell
nuclei of the damaged renal tubules perhaps caused by the OGG1 enzyme that was not
sufficiently produced or successfully delivered into cell nuclei to remove 8-OHdG.

Figure 9. Protein expression of Nrf2 and OGG1 in kidneys of the SD rats. (A) Representative images of the immunoblots.
The protein levels of Nrf2, OGG1 and β-actin were detected by western blotting. (B,C) Quantified results for the western
blotting (n = 9–10 for each group). (D) Representative images of Nrf2 IHC staining. (E) Quantified results of Nrf2 presented
in the cell nuclei of renal tubules (n = 6 for each group). (F) Representative images of OGG1 IHC staining. Brown color
indicates positive stains of Nrf2 or OGG1 proteins detected with DAB substrate. Red arrowheads indicate that Nrf2 or
OGG1 are present in cell nuclei of the renal tubules. Blue arrowheads indicate that Nrf2 or OGG1 are not able to translocate
in cell nuclei of the damaged renal tubules. Con: control; HLP: 2% hydroxy-L-proline; Mel-126: melamine 126 mg/kg/day;
Mel-63: melamine 63 mg/kg/day. Data are mean ± SE. a: p < 0.05; b: p < 0.01; c: p < 0.001.
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3.10. Melamine and Oxalate Coexposure Influenced Expression of Antioxidative Enzymes

The protein levels of several antioxidants in the kidneys were also measured
(Figure 10A,B). The protein levels of NQO1, SOD1, and HO1 showed no difference among
the five groups. Kelch-like ECH-associated protein 1 (Keap1), SOD2, and catalase protein
levels were significantly upregulated in the low-dose melamine coexposure group and
in the HLP and melamine single-exposure groups compared with the control group. In
contrast, the kidney levels of these proteins were decreased or were not sufficiently upregu-
lated in the high-dose melamine coexposure group. These results indicate that coexposure
to high-dose melamine and HLP may lead to insufficient upregulation of stress-defense
regulators and antioxidants, resulting in further renal tubular injury.

Figure 10. Protein expression of stress-defense regulators and antioxidants in kidneys of the SD rats. (A) Representative
images of the immunoblots. The protein levels of Keap1, NQO1, SOD1, SOD2, catalase, HO1, and β-actin were detected by
western blotting. (B) The bar charts are quantified results for the immunoblots of the target proteins. Con: control; HLP or
H: 2% hydroxy-L-proline; M-126: melamine 126 mg/kg/day; M-63: melamine 63 mg/kg/day. Data are mean ± SE from
9–10 rats of each group from the second and third batch experiments. a: p < 0.05; b: p < 0.01; c: p < 0.001.

4. Discussion

Humans are commonly exposed to mixtures of numerous trace chemicals in their daily
environments. It still needs more efforts to investigate the context of complex chemical
interactions in the pathology of CKD and ESRD. Oxalate abundantly exists in many food
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products and can be easily ingested into human bodies. Melamine is considered a relatively
safe chemical and is widely present in many materials used in daily life. In this study, we
explored whether the NOAEL of melamine remains harmless when oxalate is also present.
Our results suggest that coexposure to NOAEL of melamine with oxalate can cause greater
oxidative stress in the kidneys, particularly in the renal tubular region, than melamine
or oxalate single exposure. The morphological observations indicate that the degree of
renal tubular injury is associated with oxidative stress intensity and repair ability. Thus,
carefully avoiding the nephrotoxicity induced by the interaction of these two common
environmental chemicals should be advised.

We have reported that increased urinary melamine levels are positively associated with
renal tubular injury and kidney function decline [20,30,40], but the underlying mechanism
by which environmental exposure of melamine can cause kidney injury remains unclear.
The formation of calcium oxalate kidney stones, the most common type of kidney stones in
the population, is also a cause of CKD progression [3,5]. Hyperoxaluria has been considered
one of the major risk factors for developing calcium oxalate kidney stones [4,34,41]. In
this study, we established a coexposure scenario where the two environmental potential
nephrotoxicants were examined for their synergistic effects on kidney injury. Particularly,
in the in vitro study, we used a melamine concentration within the range detected in the
urine of melamine manufacturers [30]. The concentration of oxalate used to treat the cells
in this study is also lower than the urinary oxalate concentration that has been reported
to increase the risk of kidney stone formation and CKD [3,31]. Our results demonstrate
that at these low concentrations of melamine and oxalate, only the coexposure could
stimulate human kidney proximal tubular cells to significantly increase production of ROS,
translocation of the inflammatory transcriptional factor NF-κB to cell nuclei, and apoptosis.
We also observed similar results in the in vivo study. Exposure to high-dose melamine
(twice the NOAEL) alone did not cause substantial kidney damage. Although HLP single
exposure caused significant renal tubular dilation, the degree of inflammation and kidney
injury remained relatively low. In contrast, compared to melamine or HLP single exposure,
combined exposure to the NOAEL of melamine and HLP resulted in markedly more severe
kidney damage, including greater inflammation, oxidative DNA damage, tubular cell
apoptosis, tubular atrophy, and interstitial fibrosis. Together, both in vitro and in vivo
studies demonstrate that melamine and oxalate have a synergistic effect of nephrotoxicity.

Oxidative damage is clinically important and has been reported to play a significant
pathological role in many diseases, including malignancy, atherosclerosis, hypertension,
ischemic heart disease, and CKDs. Kidneys are highly susceptible to oxidative stress,
which is regarded as a critical pathogenic step in the initiation, development, and/or
progression of most types of CKDs [25,29,42–45]. Oxidative stress occurs when the ROS
generation exceeds the endogenous antioxidant capacity. Our previous in vitro study
demonstrated that exposure to melamine alone can induce inflammation and oxidative
stress, which can further result in inflammatory and fibrogenic protein production and renal
proximal tubular cell apoptosis [21]. Recently, we further revealed the interrelationships of
environmental melamine, oxidative stress, and early kidney injury in human studies [22].
However, the detailed mechanisms by which mediate the renal tubular injury caused by
environmental concentrations of melamine through oxidative stress remain elusive. Some
studies have found that in response to oxidative stress, the transcription factor Nrf2 can be
activated and induce structural changes in Keap1, which allows nuclear translocation of
Nrf2 and upregulates the expression of antioxidant enzymes, such as NQO1, catalase, HO1,
SOD1, and SOD2 [26–29,45]. Nrf2 was reported to be downregulated or inactivated in
several CKD animal models, including the indoxyl sulfate (a uremic toxin) treated rats [46],
adenine-diet induced CKD rats [47], and db/db diabetic mice [48]. Thus, Nrf2 has been
suggested as a therapeutic target for CKD [45]. As we shown in this study, after HK-2
cells were stimulated with melamine and/or SO, translocation of Nrf2 into cell nuclei was
increased; this increase at least partly influenced upregulation of catalase, HO1, and SOD1,
which prevented the cells from producing large quantities of ROS and protected the cells
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from injury. When Nrf2 was knocked down in HK-2 cells, ROS levels were dramatically
increased by exposure to melamine and/or SO, which might have resulted in massive
translocation of NF-κB into nuclei, production of collagen IV, cleavage of caspase 3, and
apoptosis. The results indicate that Nrf2 may play a critical role in defense against injury
induced by melamine and oxalate.

The current animal study also demonstrated that the protein levels of Nrf2, Keap1,
SOD2, catalase, and OGG1 were significantly increased in the melamine or HLP single-
exposure groups as well as in the coexposure groups treated with the NOAEL of melamine.
In contrast, the protein levels of Nrf2, Keap1, SOD2, catalase and OGG1 in the coexposure
group treated with double the NOAEL dose of melamine were not sufficiently increased
or were even decreased. These results indicate that the defense against oxidative stress
remained satisfactory in the single-exposure and the NOAEL of melamine coexposure
conditions. However, when the NOAEL dose of melamine was doubled or the exposure
period was extended, the defense system was exhausted and unable to respond to the
harm caused by these toxicants, which eventually led to severe renal tubular damage. The
mechanism may have involved a lack of catalase to convert hydrogen peroxide into oxygen
and water after SODs converted superoxide radicals into hydrogen peroxide. Furthermore,
oxidative DNA damage is a major cause of cell death. The most common product of DNA
oxidation is the base lesion 8-OHdG, which is repaired by OGG1 to initiate the base excision
repair pathway [49]. Our results demonstrated that 8-OHdG levels in renal tubules were
significantly increased in the coexposure groups. In addition, decreases in OGG1 protein
levels resulted in accumulation of 8-OHdG in cell nuclei and caused severe renal tubular
damage in the coexposure group treated with double the NOAEL of melamine.

It is noteworthy that insufficient antioxidant defense may also cause by inadequate
transportation of Nrf2 and OGG1 into cell nuclei to mediate the transcription of antioxidant
genes and to excise the base lesion 8-OHdG, respectively. We observed that Nrf2 nuclear
translocation was increased in HK-2 cells, which is in contrast to the animal study. This
phenomenon may be due to the limitation between these two models in which the final
concentrations of melamine and oxalate exposed to kidney cells and the time periods of
exposure were different. These differences may explain why Nrf2 nuclear translocation
was increased in HK-2 cells but decreased in renal tubules of the rats. Nezu and Suzuki
reported that Nrf2 level was shortly increased in response to the oxidative stress induced
by renal ischemia-reperfusion injury but returned to basal level within 24 h, indicating
the Nrf2 activation was insufficient to eliminate long-term cytotoxic stress [50,51]. In our
HK-2 cell model, the cells were only treated with melamine and oxalate for 6 h. This
time period probably remained at the self-defense stage in response to oxidative stress, so
increased Nrf2 nuclear translocation was observed in the HK-2 cells. The mechanism by
which coexposure to melamine and oxalate impaired oxidative stress defense still needs
further investigation.

One limitation of this study is that the clinical biochemical parameters related to
kidney function did not show significant changes in the animal experiments. However,
in this 6-week short term melamine/oxalate coexposure model, we still demonstrated
significant kidney tubular cell injury that was not observed in a single-exposure model in
which the rats were exposed to melamine at a dose of 63 mg/kg/day for 13 weeks [32,33].
In addition, extra groups of coexposed rats treated with Nrf2 activators or antioxidants
could be added to further clarify the role of Nrf2 and oxidative stress. Particularly, it needs
more investigation to explain how melamine and oxalate coexposure can prohibit Nrf2 and
OGG1 to be transported into the cell nuclei of renal tubular cells.

5. Conclusions

Our study provides evidence that exposure to the NOAEL of melamine with other
potential nephrotoxicants, such as oxalate from oxalate-rich foods, can lead to early kidney
injury via oxidative stress. Diminishment of Nrf2 biological function results in lessened
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capacity of antioxidative defense, by which augments ROS generation and aggravates renal
tubular cell damage caused by the melamine and oxalate coexposure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10091464/s1, Figure S1: Scheme of the animal study, Table S1: Analysis of urinary
sediments in the rats, Table S2: Purchase information for antibodies, Table S3: Clinical biochemical
parameters from the rats.
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