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Flexible three-dimensional artificial synapse
networks with correlated learning and trainable
memory capability
Chaoxing Wu 1, Tae Whan Kim1, Hwan Young Choi1, Dmitri B. Strukov2 & J. Joshua Yang 3

If a three-dimensional physical electronic system emulating synapse networks could be built,

that would be a significant step toward neuromorphic computing. However, the fabrication

complexity of complementary metal-oxide-semiconductor architectures impedes the

achievement of three-dimensional interconnectivity, high-device density, or flexibility. Here

we report flexible three-dimensional artificial chemical synapse networks, in which

two-terminal memristive devices, namely, electronic synapses (e-synapses), are connected

by vertically stacking crossbar electrodes. The e-synapses resemble the key features of

biological synapses: unilateral connection, long-term potentiation/depression, a spike-timing-

dependent plasticity learning rule, paired-pulse facilitation, and ultralow-power consumption.

The three-dimensional artificial synapse networks enable a direct emulation of correlated

learning and trainable memory capability with strong tolerances to input faults and variations,

which shows the feasibility of using them in futuristic electronic devices and can provide a

physical platform for the realization of smart memories and machine learning and for

operation of the complex algorithms involving hierarchical neural networks.
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The brain is able to remember, learn, and process multi-
dimensional information through an energy-efficient and
fault-tolerant computation process. As a result, the idea of

building an electronic system that can mimic the function of the
brain is currently attracting significant interest1, 2. Note that as
many as 1014 synapses are present in the human cerebral cortex3,
making the hardware implementation with three-dimensional (3D),
massively-parallel, and compact electronic systems exceptionally
challenging due to the lack of a compact electronic element.
Recently, two-terminal and three-terminal electronic devices with
tunable resistance have been widely demonstrated in the pursuit of
certain synaptic functions, with the device’s conductance repre-
senting the synaptic weight4–9. Especially, synaptic operations,
including long-term potentiation/depression (LTP/LTD), short-
term potentiation/depression, a spike-timing-dependent plasticity
(STDP) learning rule, paired-pulse facilitation (PPF), and
low-power consumption, have been extensively simulated or emu-
lated in a single device10–21. The recent implementation of a flat-
panel array with a partial neuromorphic function is an example of
the exciting progress that is being made22–30. However, the 3D
interconnectivity, which plays a vital role in high-density infor-
mation storage and multi-dimensional information processing in
biological neural networks, has not yet been well realized with
existing electronic devices31. This constitutes an obstacle to the
practical applications of artificial-neural-network devices.

In the semiconductor electronics field, the multilayer stacking
architecture with a crossbar structure is an excellent candidate for
realizing 3D interconnectivity. However, unintentional current
leakage paths can result in a misreading within the cells, namely, the
crosstalk effect32, 33. As a result, the electronic component in the
crossbar structure should be connected to a selector device to
suppress that effect, but that would lead to a decrease in the inte-
gration level of the array and to an increase in the complexity of 3D
interconnectivity. Even though synaptic plasticity has already been
extensively demonstrated, the use of one inherent characteristic of a
chemical synapse, the one-direction transmission of signals, has
rarely been reported. At a chemical synapse, one pre-synaptic cell
releases neurotransmitter molecules into the synaptic cleft that is
adjacent to another cell; then, these molecules bind to receptors on
the side of the post-synaptic cell of the synaptic cleft34. This means
that the chemical synapses pass information directionally from a
pre-synaptic cell to a post-synaptic cell, which is similar to the
rectification behavior of a rectifier diode and provides a potential
solution to suppress the crosstalk effect.

On the other hand, the utilization of inorganic functional layers
is also an impediment to the realization of high-performance
flexibility. For typical organic materials, the lower functional layers
might be partially re-dissolved during the deposition process or
the lithography processes of the upper layers, which makes the
preparation of a multilayered stacking structure very challenging.
It is worth noting that poly(methylsilsesquioxane) (pMSSQ) has
excellent flexibility, as well as good thermal, chemical, and phy-
sical stabilities, for use in flexible electronics (Supplementary
Fig. 1)35, 36. The fully cross-linked structure of pMSSQ allows the
simple 3D stacking structure to be fabricated layer by layer
through a solution processable approach without the problem of
re-dissolving the previously deposited lower layers.

Here we report a flexible, 3D stacking, artificial chemical
synapse network (3D-ASN) by utilizing selector-device-free
electronic synapses (e-synapses). The e-synapses based on
Cu-doped pMSSQ resemble the key features of biological
synapses, with LTP/LTD, a STDP learning rule, PPF learning, and
ultralow-power consumption (in the pJ range for one spike). On
the basis of the rectification characteristic of e-synapse, the
crosstalk effect can be suppressed, which makes the selector-
device unnecessary and simplifies the device structure. Moreover,

the 3D-ASN is shown to be able to mimic correlated learning and
exhibit a trainable memory function with a strong tolerance to
input faults; this is accomplished by taking advantage of the
programmable synaptic weights of the e-synapses.

Results
Device structure and electrical behaviors. A conceptual sche-
matic diagram and a photograph of the flexible 3D-ASN based on
copper-ion-doped pMSSQ (Cu-pMSSQ) are presented in Fig. 1a
and Fig. 1b, respectively. Top electrodes and bottom electrodes
cross each other perpendicularly in each layer of the crossbar
structure, and the active neuromorphic memory layer is sand-
wiched between the electrodes, as shown in the cross-sectional
scanning electron microscope (SEM) image in Fig. 1c. The
Cu-pMSSQ composites are used as the neuromorphic medium. A
schematic diagram of an e-synapse formed at each intersection in
the crossbar with a sandwiched structure of Al (bottom
electrode)/lightly doped layer/highly doped layer/Al (top elec-
trode) is shown in Fig. 1d.

The nature of the resistive switching in the memristive device is
still an important subject under active studies. Different models
have been suggested, including the alteration of the bulk
insulator’s resistivity due to the migration of ions or to a
trapping-releasing process of carriers37, 38, the modification of the
metal/insulator interface’s resistivity39, and the formation of
localized metal-atom chains bridging the electrode materials26, 40.
Here, we attribute the conductance changes of our e-synapse to
the migration of ions induced by input impulses. The pMSSQ-
based hybrid polymer can act as a hole-injection material, as was
previously demonstrated36. We further find that the doping of Cu
ions can modulate the electric conductance of pMSSQ, which is
consistent with a previously reported result on Cu-doped
polymer41. The insulating pMSSQ layer can be transformed into
a semiconducting layer by being doped with a high concentration
of copper ions (Supplementary Fig. 2a). Ultraviolet–visible
(UV–Vis) absorption spectra of Cu-doped pMSSQ layers with
different Cu concentrations show that the energy gap decreases
with increasing Cu concentration (Supplementary Fig. 2b). UV
photoemission spectroscopy (UPS) spectra show that doping Cu
ions shifts the highest occupied molecular orbital (HOMO) of
Cu-doped pMSSQ to a lower binding energy, which can reduce
the barrier to hole injection from the electrode to the functional
material (Supplementary Fig. 2c). As a result, when the top
electrode is forward-biased, the current is relatively large because
a large number of carriers can overcome the low barrier between
the Al Fermi level and the HOMO of the Cu-doped layer through
Fowler–Nordheim tunneling (Fig. 1d). However, the electric field
will simultaneously drive copper ions away from the interface
with the top electrode, which increases the barrier height
(Supplementary Fig. 3). This larger barrier height will reduce
the current, resulting in a decrease in the conduction of the
e-synapse. When a negative bias is applied to the top electrode,
thermionic emission dominates carrier transport in the device in
the low-voltage region due to the higher barrier between the Al
and the lightly doped Cu-doped layer (Fig. 1d and Supplementary
Fig. 4). As a result, the reverse current is much smaller than the
forward current, which leads to the rectification characteristic of
our e-synapse. The electric field will also drive copper ions away
from the interface with the bottom electrode and attract copper
ions toward the interface with the top electrode at the same time,
which decreases the barrier height at the interface with the top
electrode (from the dashed line to the solid line). As a result, a
sufficient negative bias drives the copper ions to the interface with
the top electrode, allowing the copper concentration to reach its
initial high level.
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As shown in Fig. 1e, I–V curve of a single e-synapse is
asymmetric with a resumable hysteresis and a remarkable
rectification characteristic. The resumable hysteresis results from
the movement of the copper cations mentioned above. One should
note that the rectification characteristic is rarely considered in
reported artificial synapses. However, when the crossbar memory
array is integrated, the significant advantage of the rectification
characteristic of our e-synapses can be demonstrated, which will
be discussed later. Figure 1f shows the direct-current character-
istics of our e-synapse. The dual I–V sweep (0→ 3→ 0 V) shows
clockwise hysteresis. While the e-synapse under a forward sweep is
in a low-resistance state, under a reverse sweep, it switches into a
relatively high-resistance state. When consecutive positive voltage
sweeps are applied, the conductivity of the e-synapse continuously
decreases. After the positive voltage sweeps, negative voltage
sweeps (0→ −3→ 0 V) are applied, and the results are shown in

Fig. 1h. The conductivity of the e-synapse continuously decreases
to a stable value with increasing number of voltage sweeps.
Interestingly, after a sufficient number of negative biases are
applied, the e-synapse can recover its original highly conducting
state and its original electrical behaviors under positive bias, as
shown in Fig. 1g. Consequently, the e-synapse can be repeatedly
programmed, including the process of going from the low-
resistance to the high-resistance state and the process of going
from the high-resistance to the low-resistance state.

Ultra-low-power LTP/LTD. The realization of variations in the
synaptic weight by using an e-synapse is believed to be the most
important step toward realizing other complex neurological
functions through the use of neuromorphic electronics. Figure 2a
shows the results for an e-synapse programmed by using a series
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Fig. 1 Device structure and electrical behaviors of 3D-ASN. Illustration (a), photograph (b), and cross-sectional SEM image (c) of the flexible 3D-ASN
based on e-synapses. The active neuromorphic memory layer is sandwiched between the top electrode and the bottom electrode, thus forming an
e-synapse. The top and the bottom electrodes correspond to the pre-synaptic and the post-synaptic neurons, respectively. d Schematic diagram and band
structure of the e-synapse consisting of a sandwiched structure of Al (bottom electrode)/lightly doped layer/highly doped layer/Al (top electrode). Under
positive bias, the Fowler–Nordheim tunneling process dominates the carrier conduction, and the electric field attracts copper ions away from the interface
with the top electrode, resulting in an increase in the barrier height at that interface (from the dashed line to the solid line). Under negative bias, the thermal
emission process dominates the carrier conduction of the e-synapse, and the electric field attracts copper ions toward the interface with the top electrode,
resulting in a decrease in the barrier height at that interface (from the dashed line to the solid line). e I–V curves of the e-synapse under dual voltage
sweeping from −3 to 3 V. The I–V curves shows a rectification characteristic with a resumable hysteresis. f I–V curves under consecutive positive voltage
sweeps. g I–V curves under consecutive positive voltage sweeps after the negative voltage sweeps in h. h I–V curves under consecutive negative voltage
sweeps after the positive voltage sweeps in f. The e-synapse can be repeatedly programmed from the low-resistance to the high-resistance states and from
the high-resistance to the low-resistance states
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of 25 identical positive pulses (3 V, 0.1 ms), followed by a series of
25 identical negative voltage pulses (−3 V, 0.1 ms). The con-
ductance (G), namely the synaptic weight, gradually decreases with
increasing number of positive pulses. Interestingly, the change in
the synaptic weight is nonvolatile (Supplementary Fig. 5), which
means that the change in the synaptic weight under positive pulses
exhibits LTD plasticity. It is worth noting that the conductance of
the e-synapse should be measured under a positive bias because of
its remarkable rectification characteristics and negligible con-
ductance under a negative bias. After the application of sufficient
negative pulses, the e-synapse returns to its original high-
conductance state measured under positive pulses. This means
that the application of a negative bias is actually a potentiation
process, in which the conductance increases if measured under a
positive bias, which is analogous to LTP plasticity. Actually, the
variation in the conductance (ΔG) stimulated by a single pulse
depends on the initial conductance of the e-synapse. The ΔG–G
switching statistics during depression are presented in Fig. 2b.
Interestingly, according to the measured ΔG stimulated by a single
pulse or the measured G, we can mine historical information of
the voltage applied across the e-synapse. Especially, the number of
positive pulses applied to the e-synapse can be approximately
calculated based on the measured values of ΔG and G, as shown in
Fig. 2c. For example, for G= 20 nS, the number of applied positive
pulses is between two and three, while for ΔG= −5 nS, the
number of applied positive pulses is between four and six. This
characteristic of our e-synapse is potentially useful for recovering
critical information in the memory system. One should also note

that the width of the applied pulse can be further decreased.
However, the voltage amplitude and the number of pulses need to
be increased accordingly in order to achieve an appreciable change
in the device conductance (Supplementary Fig. 6).

Because of the good flexibility of pMSSQ, the e-synapses
exhibit an excellent operation endurance in the context of pulse
cycling, including potentiation-depression cycling stress tests
before/after bending, as shown in Fig. 2d. The e-synapse in the
flat state shows reliable potentiation–depression functions with
clear current differences between the low-conductance and the
high-conductance states. The potentiation–depression cycling
stress test is conducted after the 3D-ASN has been bent into a
curve with a radius of the surface curvature of 10 mm. The
potentiation–depression cyclic performances are stable and
reproducible, regardless of repeated mechanical bending. Further-
more, the 3D-ASN is bent with a radius of curvature of 10 mm for
500 cycles. Each bending cycle includes one compression and one
extension of the functional film. No noticeable performance
degradation is observed, indicating an outstanding mechanical
deformation endurance of the 3D-ASN (Supplementary Fig. 7).

The energy consumption for one operation can be calculated
by multiplying the pulse amplitude by the current flowing across
the device at each point in time (dE=V × I × dt) and taking an
integral over the operating time. Especially, when a switching
from the high-conductance to the low-conductance state is
considered, the energy consumption is much higher than that
from the low-conductance to the high-conductance state due to
the high resetting current required, particularly, for filament-
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based resistive switching devices. In this work, the highest current
in the high-conductance state is <200 nA; thus, a low energy
consumption is achieved. Figure 2e shows the energy consump-
tion of a single e-synapse in both depression and potentiation
processes. The higher the resistance of the initial state is, the
lower the energy per pulse the device consumes. For the first
pulse stimulation in the depression process, the energy con-
sumption is about 60 pJ. As a result, the energy consumption also
decreases with increasing number of pulse stimulations. The
energy consumption is smaller than 0.5 pJ per pulse due to the
low operating current.

Correlated learning. The synaptic strength in a biological
synapse is modified by the dynamically and temporally correlated
pre-synaptic and post-synaptic spikes via the STDP rule, which is
one of the essential learning/memory laws for emulating synaptic
functions42. LTP in canonical STDP occurs when pre-synaptic
spikes lead post-synaptic spikes, and LTD happens when post-
synaptic spikes lead pre-synaptic spikes43. For our e-synapses, the
observed spike-rate-dependent characteristics are similar to those
for the STDP rule of biological synapses. A pair of pulses (V+/V−

= 2 V, 0.1 ms/−1 V, 0.3 ms) are applied to the top and the bottom
electrodes as pre-synaptic and post-synaptic spikes to implement
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STDP, as illustrated in Fig. 3a, b. The relative timing Δtpre–post is
defined as the interval from the initial time of the
pre-synaptic spike to that of the post-synaptic spike. After the
pre-synaptic and the post-synaptic spikes have been applied, a
reading voltage (Supplementary Fig. 8) is applied to read the
conductance of the e-synapse. The currents as functions of the
number of spikes (spike number) measured in a STDP test with
Δtpre–post= 50 µs and Δtpre–post= −50 µs are presented in Fig. 3c,
respectively. When the pre-synaptic spikes are applied before the
post-synaptic spikes (Δtpre–post= 50 µs), the current through the
device gradually increases with increasing spike number, resulting
in the achievement of LTP. In contrast, when the pre-synaptic
spikes are applied after the post-synaptic spikes (Δtpre–post= −50
µs), LTD appears.

The ΔG of the e-synapse stimulated by a pair of spikes is
measured under different values of Δtpre–post ranging from −500
to 500 µs, and the results are shown in Fig. 3d. When the
pre-synaptic spike is applied shortly before (after) the post-
synaptic spike, the synaptic weight is increased (decreased). In
particular, when pairs of pre-synaptic and post-synaptic spikes
are applied with a |Δtpre–post| >400 µs, which means that the two
input spikes have a low degree of degree of relevancy, the spikes
can be considered as independent stimulations to the device, and
no significant variations in the synaptic strength occur.

A more interesting phenomenon, similar to the learning-
experience behavior of human beings, is also observed in our
e-synapses. Pre-synaptic spikes from different neurons are well
known to be able to trigger a post-synaptic current through
synapses in a post-synaptic neuron to establish dynamic logic in a
neural network44. PPF among the basic dynamic logic functions
is demonstrated in our e-synapse by applying two successive

pre-synaptic spikes with an amplitude of 3 V, a width of 30 µs,
and different inter-spike intervals (Δt), as shown in Fig. 4a. The
signal generators emulate the production of pre-synaptic spikes
from different pre-synaptic neurons. The correlated learning
behavior could be explained on the basis of the equivalent circuit
model and the electrical behavior of the e-synapse, with the
e-synapse being equivalent to a resistor in parallel with a
capacitor, as shown in Fig. 4a. The real spike applied to the
e-synapse is different from the square pulse generated from the
signal generator due to a charge–discharge process in the
resistor–capacitor loop, as shown in the top panel of Fig. 4b.
Furthermore, when the width of the generated square pulse is
reduced sufficiently, the peak voltage applied to the e-synapse is
smaller than 3 V, which could not effectively modulate the
conductance of the e-synapse (Supplementary Fig. 9). For the
paired spikes with Δt larger than ~50 µs, which means that the
two input spikes have a low degree of relevancy, the spikes could
be considered as independent stimulations to the device, and no
significant change in the synaptic strength occurs, as shown in the
middle panel of Fig. 4b. However, when Δt is decreased
sufficiently so that it is smaller than the fully-discharged time,
the second pulse is able to keep charging the resistor-capacitor
loop. Thus, the peak voltage applied to the
e-synapse is able to reach 3 V, and the width of the applied
spike also increases, as shown in the bottom panel of Fig. 4b.
Physically, the overlap of the two pulses with a small Δt
accelerates ion migration, leading to a larger change in the
conductivity.

For the demonstration of one of the dynamic logic functions,
we define the degree of relevancy of the two signals as Δt. Thus, a
smaller Δt corresponds to a higher degree of relevancy. Because
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we are interested in the variation of the weight of the e-synapse,
we record the variation of the current following the paired spike.
A clear dependence of the current variation on the degree of
relevancy and the paired-spike number can be observed in Fig. 4c,
with a high degree of relevancy being the most effective and a low
degree of relevancy being the least effective. When two spikes (3
V, 30 µs) with a Δt of 100 µs are applied, the conductance does
not decrease, not even after 150 paired spikes have been applied.
In other words, two signals with a low degree of relevancy are
unable to change the synaptic weight, so our e-synapse is unable
to learn the input signals. However, a downward trend in the
current becomes manifest as the number of paired spikes is
increased due to an increase in the degree of relevancy. This
means that two signals with a high degree of degree of relevancy
could be learned gradually and be remembered by our e-synapse.
Moreover, a higher degree of relevancy should decrease the
number of paired spikes necessary for achieving a target synaptic
weight and speed up the correlated learning process.

Trainable 3D-memory function. The 3D-ASN employing our
e-synapse exhibits a trainable memory function, as shown in
Fig. 5. Typically, the parasitic paths (the red dashed line in Fig. 5a)
for traditional crossbar memory devices without selector devices
exist in parallel with the low-conductance (defined as “0” state)
cell through the neighboring high-conductance (defined as “1”
state) cells. As mentioned in the previous section, the crosstalk
effect can be mitigated by combining the memory device with
another functional device, usually called a selector. However,
there has been no mature selector available at the moment. A
proper utilization of our e-synapses can directly suppress the
crosstalk without the need of any selector because the reverse
current path (highlighted by the dashed line circle in Fig. 5a) can
be blocked due to the rectification characteristic of our e-synapse.
Current-addressing test measurements are executed in order to
understand this effect. Initially, one synapse is set to the “0” state
and its neighboring synapses are set to “1” states. The device
shows precise addressing (the blue solid line in Fig. 5a) due to the
rectification characteristic of the e-synapse. As a result, the
information stored in the “0” state with a readout current of 8.7
nA could be perfectly detected (the bottom panel of Fig. 5a).
Figure 5b shows the statistical distributions of the readout
currents for all of the operative e-synapses in the “0” and the “1”
states. The e-synapses in each layer of the 3D memory show a
high uniformity in spite of its variation, which allows the storage
of information in the 3D space.

Unlike the traditional digital memory devices, in which the
data are stored by a single trigger of a setting or a resetting pulse,
our 3D-ASN memorizes events and exercises cognition through
repeated training processes. The memory of the human brain has
strong tolerance for and robustness against input faults and
variations. Thus, the realization of human-brain-like memoriza-
tion plays an important role in artificial intelligence technology.

The memorization of an image by an e-synapse array is carried
out to demonstrate the trainable-memory behaviors, as well as the
strong tolerance and robustness, of the 3D-ASN, as shown in
Fig. 5c–f. The synapse readout-current map is slightly modified
toward the depression direction according to the learning
algorithm used to mimic the input pattern. Initially, all of the
e-synapses are set to the high-conductance state (Fig. 5c). The
image of “H” is then programmed into the array to train the
e-synapse array to remember the image. For each training session,
a training pulse (3 V, 10 ms) is applied to the selected e-synapse,
as indicated by the blue arrows. Note that only the selected layer
is addressed and that the electrodes in other layers are floating in
this programming process. After the first training process, the

resistance of the e-synapse begins to diverge, the conductance of
the selected e-synapses is slightly suppressed, and the image of
“H” starts to emerge on the readout-current map. To demonstrate
the tolerance for and the robustness against incorrect input
signals that can be introduced by electronic noises or timing
errors, we artificially introduce an incorrect input signal in the
second training process, as shown by the arrows in Fig. 5d. After
the second training process, the conductance of the selected e-
synapses are further decreased, indicative of a deeper memory of
the “H” image. Note that the conductance of one undesired
e-synapse is also decreased due to the incorrect input signal in the
second training process (Fig. 5e). We randomly introduce some
incorrect input signals into the ensuing training processes. The
system is found to be insensitive to incorrect input signals, and
many unintentional mistakes in the input signal can be
accommodated by increasing the number of training processes.
After the training with 15 “H” images and some random incorrect
inputs, as shown in Fig. 5f, the final conductance of the selected
e-synapse tends toward stability and easy identification of the
learning target, and the input image of the “H” is strongly
remembered, despite the existence of several interference
e-synapses, as indicated by the green arrows in Fig. 5f. However,
when such incorrect setting signals are input into a traditional
digital memory device, the correct stored information is very
difficult to recognize. Images of “Y” and “U” could be stored in
the second and the third layers to realize 3D storage by using a
similar training process, as shown in Fig. 5g.

Discussion
The conductance change of our e-synapse is attributed to the
migration of Cu ions induced by an external electric field. Worth
noting is that the Cu ions can diffuse along both the lateral and the
longitudinal directions due to the difference in the doping con-
centration of the Cu ions, and such diffusions could affect the long-
term stability of the device. As shown in the stability measurements
(Supplementary Fig. 5), the e-synapse exhibits LTP/LTD char-
acteristics, indicating that neither the lateral nor the longitudinal
diffusion has substantially affected the long-term stability of the e-
synapse. However, when the thickness of the active layer and the
lateral distance between cells are aggressively reduced further to
obtain an ultra-high density integration, the effects of lateral and
longitudinal diffusions of the Cu ions on the long-term stability
may not be negligible. The ultra-low working current of our e-
synapses is important for decreasing the energy consumption of the
prospective high-density 3D synapse network. The working current
of a single e-synapse partially depends on the active lateral size of
the device. Therefore, scaling the lateral size down to submicrons or
nanometers can decrease the working current of a single e-synapse,
making an exact measurement of the working current difficult.
Nevertheless, this issue can be addressed by thinning down the
thickness of the active layer. In addition, the doping concentration
and the type of doped ions can be engineered to maintain a rea-
sonable working current in the range of nanoamperes.

Even though trainable memory behaviors were demonstrated
by directly inputting images in this work, the presented high-
performance memory effect of our 3D memory system is
important for further diverse neural-network applications because
the memory effect obtained by changing the connection strength
between neurons is a building block for advanced neural activity.
The related algorithm and circuit45, 46, the perceptron25, 30, the
visual system23, the video-processing system, and the auditory
processing system13 can be further developed by combining the
3D-ASN with the existing artificial-neural-network model.
Furthermore, by addressing two or three neighboring layers, the
measured output currents are the arithmetic sum of all the
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currents across the addressed e-synapses distributed in the
addressed 3D space. In other words, various e-synapses can be
regarded as having different weights corresponding to their
conductances. Thus, the output signals are the arithmetic sum of
all the weighted input signals47. In this case, our 3D-ASN pro-
vides a new physical platform for operating a complex algorithm
for hierarchical neural networks47.

In conclusion, we demonstrate a flexible 3D-ASN using
e-synapses acted as memory units connected by 3D stacking
crossbar electrodes. The 3D-ASN can successfully suppress the
crosstalk without the need for any additional selector devices,
which should decrease the complexity of the device structure and
the fabrication process. Our e-synapse behaves as a biological
synapse and exhibits the characteristics of unilateral connection,
LTP/LTD, the STDP learning rule, PPF, and ultralow-power
consumption (pJ range). The 3D-ASN exhibits the biological
features, with the experimental evidence supporting correlated
learning, a trainable memory, 3D storage, and strong fault-
tolerant properties. The present observations provide good
motivation for further study to envision a large-scale electronic
system that could feasibly lead to rapid progress in manufacturing
technology and artificial intelligence technology.

Methods
Preparation of Cu-doped pMSSQ. pMSSQ was used as the matrix material. The
pMSSQ was prepared by using methyltrimethoxysilane as a precursor as follows: A
mixture of trimethoxymethylsilane (98%, Aldrich), n-butanol (99.8%, Sigma-
Aldrich), and deionized water in a weight ratio of 4:10:1 was stirred at 60 °C for
24 h. Then, the mixture was aged for a week to increase its viscosity for achieving
better film deposition coverage by using spin-coating. CuCl2 powder (99.9999%,
Sigma-Aldrich) was dissolved in deionized water to obtain a concentration of
50 mg/mL. For fabrication of the active layer of the e-synapse, we used a composite
solution consisting of the methyltrimethoxysilane precursor, the copper-chloride
aqueous solution, and methanol. Two kinds of Cu-doped methyltrimethoxysilane
precursors were prepared. For the heavily Cu-doped methyltrimethoxysilane pre-
cursor, the methyltrimethoxysilane precursor, the CuCl2 aqueous solution,
methanol, and deionized water were mixed in a volume ratio of 50:10:5:10. For the
lightly Cu-doped methyltrimethoxysilane precursor, the methyltrimethoxysilane
precursor, CuCl2 aqueous solution, methanol, and deionized water were mixed in a
volume ratio of 50:1:5:19. Both mixtures were stirred at 60 °C for 24 h.

Fabrication of 3D-ASN. To fabricate the flexible 3D stacking devices, we initially
cleaned polyethylene glycol terephthalate (PET) substrates in an ultrasonic bath with
acetone, methanol, and deionized water in sequence for 30min each. The bottom Al
electrodes with six lines with widths of 1.5 mm each were deposited by using thermal
evaporation with a shadow mask. The lightly Cu-doped methyltrimethoxysilane
precursor was spin-coated onto the PET/Al substrate at 300 r.p.m. for 10 s and
subsequently at 6000 r.p.m. for 30 s. The coated film was annealed on a hot plate at
90 °C for 10min. After the baking, the heavily Cu-doped methyltrimethoxysilane
precursor was spin-coated onto the PET/Al/Cu-PMSSQ sample at 300 r.p.m. for 10 s
and subsequently at 6000 r.p.m. for 30 s. The coated film was baked at 90 °C for 10
min. Then, the contact pads of the bottom electrodes were exposed for the electrical
measurements, and after that, the sample was hard-baked at 160 °C for 1 h to achieve
complete cross-linking of the pMSSQ. The thickness of the Cu-pMSSQ layer was
about 80 nm. The formation of the first active layer was followed by the deposition
of other Al electrodes, whose directions were perpendicular to those of the bottom
Al electrodes. The top Al electrodes of the first active layer were simultaneously the
bottom electrodes of the second active layer. To form the second and the third active
layers, we repeated the processes described above. The finished 3D stacking memory
array consisted of three layers of memory, each containing a crossbar-type array.

Characterization. The electrical measurements were performed using a semi-
conductor analyzer system (4200, Keithley), an oscilloscope (TDS 2024 C, Tek-
tronix) and a waveform generator (33220 A, Agilent) in an atmospheric
environment at room temperature. In the electrical measurements, all of the bias
voltages were applied to the top Al electrodes while keeping the bottom Al elec-
trodes grounded. SEM image was obtained by using Nova Nano SEM 230 system.
The absorption spectra of the films were characterized by using an UV–Vis
spectrophotometer (Lambda 650 S, Perkin Elmer). The UPS measurements were
performed in an analysis chamber using a He discharge lamp (XPS-Theta Probe,
Thermo Fisher Scientific). The resolution of the measurements was 50 meV.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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