
cancers

Review

Beyond the Paclitaxel and Vinca Alkaloids: Next
Generation of Plant-Derived Microtubule-Targeting
Agents with Potential Anticancer Activity

Dangquan Zhang 1,* and Arun Kanakkanthara 2,3,*
1 College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
2 Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic,

Rochester, MN 55905, USA
* Correspondence: zdq76@henau.edu.cn (D.Z.); Kanakkanthara.Arun@mayo.edu (A.K.)

Received: 11 May 2020; Accepted: 23 June 2020; Published: 29 June 2020
����������
�������

Abstract: Plants are an important source of chemically diverse natural products that target
microtubules, one of the most successful targets in cancer therapy. Colchicine, paclitaxel, and vinca
alkaloids are the earliest plant-derived microtubule-targeting agents (MTAs), and paclitaxel and
vinca alkaloids are currently important drugs used in the treatment of cancer. Several additional
plant-derived compounds that act on microtubules with improved anticancer activity are at varying
stages of development. Here, we move beyond the well-discussed paclitaxel and vinca alkaloids to
present other promising plant-derived MTAs with potential for development as anticancer agents.
Various biological and biochemical aspects are discussed. We hope that the review will provide
guidance for further exploration and identification of more effective, novel MTAs derived from
plant sources.

Keywords: microtubule-targeting agents; microtubule stabilizing agents; microtubule destabilizing
agents; tubulin binding site

1. Introduction

Microtubules are the major components of the eukaryotic cytoskeleton. They are composed of
α- and β-tubulin heterodimers that interconvert between phases of rapid growth (polymerization)
and shrinkage (depolymerization) [1]. Microtubules are central to several important cellular activities,
including maintenance of cell shape and cell motility, accurate chromosome segregation during mitosis,
and intracellular trafficking of macromolecules and organelles in the interphase [2–4].

The crucial roles played by microtubules in both mitotic and interphase cellular functions make
them important anticancer drug targets. Accordingly, microtubule-targeting agents (MTAs) inhibit the
proliferation of cancer cells by disrupting interphase cell signaling events and/or preventing the precise
functioning of spindle microtubules, both of which ultimately induce cell death via apoptosis [4].
Notably, additional mechanisms may also contribute to the effects of MTAs against cancer cells, such as
the interplay of MTAs with secondary targets, including microtubule-associated proteins and other
signal transductors [5]. MTAs are, however, broadly classified into two categories: microtubule
stabilizing agents and microtubule destabilizing agents. Microtubule stabilizing agents are a class of
drugs that promote tubulin polymerization and stabilize microtubules against depolymerization [6].
In contrast, microtubule destabilizing agents depolymerize existing microtubules and/or prevent
tubulin heterodimers from forming polymers [6]. Microtubule stabilizing agents are further classified
into two types based on their tubulin binding sites: taxane-site binding agents (e.g., paclitaxel, docetaxel,
discodermolide, epothilones, and zampanolide) [7,8] and peloruside/laulimalide-site binding agents
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(e.g., peloruside A and laulimalide) [9] (Figure 1). Microtubule destabilizing agents are classified into
the vinca domain-binding agents (e.g., vinblastine, vincristine, and halichondrin B) [10], the colchicine
domain-binding agents (e.g., combretastatins and 2-methoxyestradiol) [11], the maytansine site-binding
agents (e.g., maytansine, rhizoxin, and PM60184) [12], and the pironetin site-binding agents (e.g.,
pironetin) [13] (Figure 1). Several new MTAs that occupy these sites and exert remarkable anticancer
activities have been discovered, with plants being one of the major sources.
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lung cancers, and lymphoma [7,15]. Although usually used to treat gout, colchicine, the first 
compound identified as an MTA, was also isolated from a plant [16]. Intriguingly, recent estimates 
indicate that the plant kingdom comprises at least 500,000 species and only less than 10 percent of 
those have been phytochemically investigated for pharmacological applications [17], suggesting that 
many new compounds that may target microtubules remain to be discovered. 
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The best examples of plant-derived MTAs are paclitaxel (Taxol ®) and vinca alkaloids, which are
important treatments for many different cancers, such as ovarian, breast, bladder, prostate, and lung
cancers, and lymphoma [7,15]. Although usually used to treat gout, colchicine, the first compound
identified as an MTA, was also isolated from a plant [16]. Intriguingly, recent estimates indicate that
the plant kingdom comprises at least 500,000 species and only less than 10 percent of those have
been phytochemically investigated for pharmacological applications [17], suggesting that many new
compounds that may target microtubules remain to be discovered.

Understanding the biological and biochemical features of existing plant-derived MTAs is important
for identifying novel, more effective antimicrotubule agents. The advances in paclitaxel and vinca
alkaloids have been discussed multiple times in detail lately [11,18–22]. Accordingly, this review is
focused on other plant-derived MTAs that have the potential for development as anticancer agents.
Only compounds (1) that exhibited bioactivity (termed to cytotoxic activity against cancer cells in
culture and/or in xenografts here onwards) superior to paclitaxel and vinca alkaloids, or (2) that
underwent clinical trials are discussed.

2. Microtubule Stabilizing Agents

2.1. Taccalonolides

Taccalonolides are the best-studied plant-derived microtubule stabilizing agents after the taxanes.
Taccalonolides were isolated from the plants of the genus Tacca, and about 38 taccalonolides (A-Z,
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AA-AJ, AK-AN, and H2) had been obtained from various Tacca sp. or through semi-synthesis [23]
(Figure 2). Taccalin was the first compound isolated from the Tacca plants (Figure 2). In 2003, a cell-based
study with taccalonolides A and E by Mooberry’s group provided the first evidence that taccalonolides
have a microtubule stabilizing property [24].

2.1.1. Mechanism of Action

Taccalonolides have a unique structure, with some of them exhibiting a distinct microtubule
stabilizing property as compared to other microtubule stabilizing agents. For example, unlike paclitaxel,
the earliest taccalonolides, A and E, failed to induce assembly of purified tubulin in vitro [24]. However,
both the compounds caused paclitaxel-like effects on microtubules inside cells, including induction of
microtubule bundling in interphase cells and multiple asters in mitotic cells [24], suggesting that these
taccalonolides possess a microtubule stabilizing mechanism that is independent of a direct interaction
with microtubules. How exactly taccalonolides A/E stabilize microtubules, without directly interacting
with microtubules in cells is not clear, but one potential explanation might be that the taccalonolides
are prodrugs that are, in cells, modified into taccalonolides that are capable of binding to microtubules.

Identified later, the more potent taccalonolides AF and AJ (Figure 2) showed for the first time a
direct interaction with microtubules [25,26].
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2.1.2. Tubulin Binding Sites

Extensive studies showed that taccalanolides AF and AJ covalently bind to the taxane-site on
β-tubulin [25,27]. Notably, to date, only three other microtubule stabilizing agents, zampanolide,
dactylolide, and cyclostreptin, have been reported to react covalently with tubulin [28,29]. Taccalonolide
AJ covalently interacted with tubulin in a similar manner to cyclostreptin [27]. The 2.05 Å crystal
structure demonstrated that taccalonolide AJ covalently bind to β-tubulin residue D226 using
its C22–C23 epoxide group [25]. The AJ binding induced a closed-to-open and a loop-to-helix
conformational shift of β-tubulin M-loop, both of which have been proposed to facilitate lateral
tubulin interactions and microtubule assembly [25]. Additionally, taccalonolide AJ binding locked the
β-tubulin E-site into a GTP-binding-competent conformation that inhibit GTP hydrolysis [25].

2.1.3. Structure-Activity Relationships

Comprehensive structure-activity relationships of taccalonolides have been described, owing to
the availability of a series of structurally diverse natural and semi-synthetic taccalonolides (Figure 2A,B).
Studies with taccalonolide analogues, AO and AK, that have structural rearrangements at C20-C23
revealed that E-ring constituents at C20-C23 of taccalanolide backbone play an important role in
promoting their microtubule stabilizing and bioactivity [30] (Table 1A). Likewise, epoxidation of the
C22-C23 double bond had a positive effect on taccalonolide bioactivity [31]. This is evident from the
improved bioactivity of taccalonolides AF and AJ relative to their parent compounds taccalonolides A
and B, respectively [26,31] (Table 1A). The presence of a large, steric bulk group at C1 also increases the
bioactivity of taccalonolides. This was first recognized from a ~39-fold increase in the antiproliferative
effect of taccalonolide T compared to taccalonolide R [32] (Table 1A). Taccalonolide R contains an
acetoxy group at C1, while T contains an isovalerate group. Consistently, a 17-fold increase in bioactivity
was observed when the acetoxy group at C1 in taccalonolide AL was replaced with an isovalerate
group in taccalonolide AM [30].

A reduced bioactivity was found for taccalonolide AC that contains an α-hydroperoxyl group at
C20 [30]. Most taccalonolides contain an α-methyl group at C20, suggesting that the α-methyl group
at C20 is critical for the optimal bioactivity of taccalonolides (Table 1A).
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Modification at C5 of the taccalonolide molecule also affects its efficacy. The C5-hydroxy group
is the only structural difference between the taccalonolides N and AL, but this change was enough
to contribute to a 4-fold decrease in efficacy for taccalonolide AL [30] (Table 1A). On the contrary,
the presence of C5 hydroxy group in taccalonolide AZ resulted in a 44-fold increase in bioactivity
compared to taccalonolide A, which lacks the C5 hydroxy group [23,32]. Additionally, although
taccalonolides B and AB have a C5 hydroxy group, it did not markedly affect their efficacy [32]. As such,
the significance of C5 hydroxy group on the bioactivity of taccalonolides seems to be complex, but one
possibility could be that the modifications at C5 alone may not have any effect on bioactivity, but it
may have an effect when it is combined with other modifications.

The C5–8 region in the B-ring of the taccalonolide molecule also mediates the effects of the
compound (Figure 2; Table 1A). This is evidenced by the 15-fold decrease in the bioactivity of
taccalonolide I compared to taccalonolide B, where taccalonolide I was derived by a keto-enol
tautomerization between the C6 ketone and C7 hydroxy groups on taccalonolide B [30]. Notably,
when this arrangement together with a double bond at C5-C6 was present, the bioactivity was
increased, which is clear from the difference in potencies of taccalonolides AD and A [23,30]. Moreover,
the presence of a C7-C8 double bond increased the potency to 7-fold. These suggest that the B ring of
the taccalonolide backbone with a ketone at C6 position and double bonds at C5-C6 and/or C7-C8 may
be critical for the efficacy of taccalonolides [23,30].

The substituents at C7 and C15 of the taccalonolide also determines the efficacy of the agent [33]
(Table 1A). Taccalonolide AF, which contains a C15 acetoxy group, exhibited superior bioactivity in
in vivo tumor xenograft models compared to taccalonolide AJ that contain a C15 hydroxy group [33,34]
(Table 1A,B). A thorough analysis of bioactivities of 28 new semisynthetic taccalonolide analogues
with various monosubstitutions at C-7 or C-15 or disubstitutions at C-7 and C-25 demonstrated that
isovalerate modifications at C7 or C15 increase potency and antitumor activity in a drug-resistant
xenograft model [33]. Collectively, these comprehensive structure–activity relationship studies pinpoint
the key determinants of taccalonolide potency, and provide important insights into rational design of
new anticancer leads based on this class of agents.
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Table 1. (A) Half-maximal inhibitory concentrations (IC50) of taccalonolides in HeLa cells. (B) Details of in vivo tumor xenograft studies in mice using taccalonolides
AF and AJ. IC50 of (C) persin and its analogues, and (D) curcumin, maytansine, combretastatin, noscapine, and quercetin in various cancer cell lines.

(A)

Compound IC50 (µM) Compound IC50 (µM) Compound IC50 (µM) Compound IC50 (µM) Compound IC50 Compound IC50 (µM)

References:
[24,26,30–32]

Taccalonolide A 5.32 ± 0.23 Taccalonolide N 8.5 ± 0.40 Taccalonolide
Z 0.12 ± 0.008 Taccalonolide AD 3.4 ± 0.2 Taccalonolide AO >50 Taccalonolide AN 1.5 ±

0.1

Taccalonolide B 3.12 ± 0.18 Taccalonolide I 49.2 ± 2.8 Taccalonolide
AA 0.032 ± 0.002 Taccalonolide AE 5.0 ± 0.2 Taccalonolide AK >50 Paclitaxel 0.0012

± 0.1

Taccalonolide E 39.5 ± 4.70 Taccalonolide R 13.0 ± 1.0 Taccalonolide
AB 2.7 ± 0.1 Taccalonolide AF 0.023 ± 0.003 Taccalonolide AL 34.4 ± 7.5

Taccalonolide H2 0.73 ± 0.02 Taccalonolide T 0.34 ± 0.02 Taccalonolide
AC >50 Taccalonolide AJ 0.0042 ± 0.0003 Taccalonolide AM 2.0 ± 0.1

(B)

Compound Xenograft Models Method of Tumor Cell Administration Treatment Strategy/Dose References

Taccalonolide AF and AJ MDA-MB-231 breast cancer intraperitoneal
1. Taccalonolide AF: 2 mg/kg on Days 1, 4, 8

2. Taccalonolide AF: 2.5 mg/kg on Days 1 and 5
3. Taccalonolide AJ: 0.5 mg/kg on Days 1, 3, 5, and 8

[27]

Taccalonolide AF and AJ SCC-4 oral cancer cells subcutaneous
1. Taccalonolide AF: 80 µg on Days 0 and 3
2. Taccalonolide AJ: 40 µg on Days 0 and 3
3. Taccalonolide AJ: 80 µg on Days 0 and 3

[34]

(C)

Breast Cancer Cell Lines Ovarian Cancer Cell Lines Prostate Cancer Cell Lines
Leukemia

Cell
Lines

References:
[35–37]

Compound
(µM) MCF-7 T-47D MDA-MB-468 MDA-MB-157 SK-BR3 Hs578T MDA-MB-231 MCF-10A OVCAR-3 IGROV-1 1A9 A2780 PC-3 LNCaP HL-60

Persin 15.1 ± 1.3 30.3 ± 2.3 25.0 ± 2.8 12.8 ± 1.2 19.7 ±
1.3 32.1 ± 2.3 >39 >39 27.9 ± 4.5 15.6 ± 3.6 13.7 ± 0.6 8.1 ± 1.1 30.0 ± 3.0 22.0 ± 1.8 1.9 ± 0.1

1 17.1 ± 1.7 20.7 ± 3.2 >39 >39 >39 >39 >39 >39 >39 >39 4.1 ± 0.4 8.1 ± 1.4 >39 >39 0.6 ± 0.03
2 >32 18.9 ± 1.3 13.7 ± 0.9 4.0 ± 0.1
3 27.7 ± 5.5 19.4 ± 2.2 2.6 ± 0.4
4 >27 21.2 ± 1.8 7.5 ± 0.2
5 23.8 ± 2.2 34.1 ± 5.3 5.8 ± 0.1
6 29.0 ± 4.2 47.6 ± 3.5 28.4 ± 0.5
7 >21
8 >24
9 20.1 ± 3.6
10 >65 124 ± 20 22.8 ± 1.0

(D)

Breast Cancer Cell Lines Lung Cancer Cell Lines Squamous Carcinoma
Cell Lines

Lymphoma
Cell Lines

Ovarian Cancer
Cell Line

Cervical
Cancer

Cell Line

Leukemia
Cell Line Prostate Cancer Cell Line References

Compound MCF7 MDA-MB-231 BT-474 SK-BR3 MDA-MB-435 A594 H1299 H292 NCI-H358M Tu212 Tu686 BJAB OVCAR-8 HeLa HL60 LNCap PC3M

Curcumin (µM) 11.2 6.03 11.6 5.5 6.4 25.0 [38–42]

Maytansine (pM) 30 420 44 270 [43–45]
Combretastatin A4

(nM) 2.8 5.3 3.8 8 0.37 0.9 2.1 4.7 [46,47]

Noscapine (µM) 29 69 [48]
Quercetin (µM) 14 1 22 [49]
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2.1.4. Advantages over Paclitaxel

Mutations in the taxoid site on β-tubulin and overexpression of the Pgp drug efflux pump or
βIII-tubulin are common mechanisms of resistance to the taxanes and vinca alkaloids [6]. Notably,
taccalonolides were able to overcome these resistance mechanisms by cancer cells [50]. Moreover,
taccalonolides exhibited excellent in vivo antitumor activity in Pgp-overexpressing, paclitaxel-/
doxorubicin-resistant mouse tumor models [27,34,50]. This improved efficacy of taccalonolides may
be explained by its high degree of cellular retention compared to paclitaxel that could be potentially
stemmed from their covalent interaction with tubulin [51]. Together, taccalanolides represent an
unique class of microtubule stabilizing agents with anticancer properties that are potentially superior
to paclitaxel.

2.2. Persin

Persin ((+)-(R)-persin) is a polyketide long-chain lipid with strong structural homology to linoleic
acid, and is synthesized in idioblast oil cells present in avocado leaves and fruit [52]. Persin contains a
β-hydroxy ketone system, which is flanked on one side by an acetate group and on the other side by a
long, partially unsaturated hydrocarbon chain (Figure 3).Cancers 2020, 12, 10 of 25 
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2.2.1. Mechanism of Action

Although persin was first isolated in 1975 from the leaves of the avocado plant, Persea americana
Mill. (Lauraceae) [53], its microtubule stabilizing property, was identified only in 2006 [35]. In the
subsequent years, a number of studies have confirmed the antiproliferative effects of persin against
various cancer cell types [35–37,54]. Notably, persin increased tubulin polymerization, caused G2/M
arrest, and also synergized with other microtubule stabilizing agents in ovarian cancer cells [36].
Moreover, in lactating Quackenbush mice, dosing of persin caused severe necrosis and/or apoptosis of
the mammary gland, with no visible effects on other tissues [55]. Other MTAs, such as vinca alkaloids
and colchicine, have also affected the lactating mammary gland by an unknown mechanism (reviewed
in a previous study [56]). Thus, given that vinca alkaloids and colchicine are currently in clinical use
for treating cancer and gout, respectively, it seems less likely that the effect of persin on mammary
gland may limit its potential as a clinical lead compound.

2.2.2. Tubulin Binding Sites

The exact binding site of persin on tubulin is not known. However, a cell-based Flutax-1 (a
fluorescent taxol derivative) competitive binding assay showed that persin displaces Flutax-1 from
tubulin, suggesting that persin may occupy a site adjacent to or overlapping with the taxoid-site on
β-tubulin [36]. Although this is apparently contradictory to the observations that taxoid site mutations
had no effect on persin bioactivity and that persin synergized with paclitaxel [36], similar results
have been seen with other taxoid site-binding microtubule stabilizing agents before. For example,
microtubule stabilizing agents, discodermolide and zampanolide, that are known to bind in the taxoid
site have been active in taxoid-site-mutated paclitaxel-resistant cells and, in addition, they have been
shown to synergize with paclitaxel [57,58]. Because the existing studies does not provide direct
evidence for a persin-tubulin interaction [35,36], more binding studies with purified tubulin coupled
with other approaches, such as hydrogen/deuterium exchange mass spectrometry and computational
modeling, are warranted to understand the mode of persin-tubulin interaction.

2.2.3. Structure-Activity Relationships

Several analogues of the persin have been synthesized (Figure 3A,B), and analysis of their
bioactivities have revealed structural features important for their antiproliferative effects [36,37].
Upon comparison of the persin analogs, 1 and 10, reduction in the length of side chain is the only
structural difference (Figure 3A,B). In bioactivity studies using breast cancer cells, 1 exhibited significant
antiproliferative effects (with an IC50 of ~17 µM); whilst 10 was devoid of any antiproliferative effects
even at concentration as high as 65 µM [37] (Table 1C), indicating that the length of side chain, but not
the presence of unsaturation, is optimal for persin’s bioactivity. However, intriguingly, the short-chain
α, β- unsaturated β’-hydroxy-, -acetoxy, and -phenoxy-ketone analogs were active against breast,
colon, ovarian, non small-cell lung cancers, and malignant pleural mesothelioma cell lines [59–61].
In addition, the short-chain analogs also potentiated the effects of paclitaxel in pancreatic ductal
adenocarcinoma cells [59,61]. It could thus be possible that, compared to 10, these compounds bind
differently to its tubulin target, which, in turn, might be contributing to their better bioactivity vs. that
of 10.

Comparing the activity of compounds 3 and 5 suggests that there is a lipophilic bulk-tolerance
at the far left end of the molecule [37] (Figure 3A,B). In addition, a slightly greater bioactivity of 5
compared to 3 may suggest that an electronic-deficient aromatic system is favored in the position [37]
(Table 1). The observation that bis-aroylated compounds, 4, 7, and 8, and the enone, 2, were inactive
in cells indicates that the β-hydroxyl moiety is important for persin’s bioactivity [37]. Notably,
the pyridinyl compound, 9, exhibited a similar lipophilicity as persin, and showed comparable activity
to the persin [37] (Figure 3, Table 1C). The solubility of the 9 is seemingly enhanced by the greater
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polarity imparted by the N-atom aromatic ring of the molecule, suggesting that further exploration of
the heteroaryl analogs of persin may be useful.

2.2.4. Persin Activity in MTA-Resistant Cells

Growth inhibitory assays with persin and two of its analogues, 1 and 2, in Pgp overexpressing
multidrug-resistant ovarian cancer cells revealed that the compounds are not substrates for the drug
efflux pump [36]. Additionally, the persins were active in ovarian cancer cells that are resistant to
taxanes, epothilone, and peloruside due to acquired mutations in their β-tubulin binding sites [36].
The ability of persin to bypass the common clinically-relevant mechanisms of resistance to MTAs
suggests that further studies on persin could prove fruitful.

3. Microtubule Destabilizing Agents

3.1. Curcumin

Curcumin is a polyphenolic compound originally isolated from the rhizome of turmeric, Curcuma
longa [62] (Figure 4). Numerous cell culture and animal studies have demonstrated remarkable
antiproliferative effects for curcumin against diverse cancer types [38,39] (Table 1D). Moreover,
curcumin has already completed many cancer clinical trials, and there are several ongoing trials
exploring the efficacy of curcumin as single-agent and in combination with other chemotherapeutic
agents against various cancers [63].

3.1.1. Mechanism of Action

Curcumin directly binds to tubulin, reduces GTPase activity, and inhibits tubulin
polymerization [40–42]. Because curcumin exerts a multitude of biological effects potentially through
regulation of various molecular targets, it is not clear if disruption of microtubules is the sole mechanism
underlying its anticancer properties [40–42].

3.1.2. Tubulin Binding Sites

Initial studies using purified tubulin showed that colchicine-site binding agents modestly prevent
curcumin-tubulin interaction, indicating that curcumin and colchicine may share an overlapping site
on tubulin [64]. However, a more detailed study by Chakraborti et al. [41] later demonstrated that the
tubulin binding site of curcumin is located at the interdimer interface that is about 32 Å away from the
colchicine-site. The curcumin binding site involves β-tubulin residues 96–98 and α-tubulin residues
251–256 [41]. Moreover, the binding pocket contained H3′-helix (residues 105–110), T4 and T5 loops
(residues 130–133 and 163–165), and the H11′ helix (residues 407–411) [41], thus demonstrating that
curcumin occupies a unique site that partly overlap with the colchicine-site on tubulin.
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3.1.3. Structure-Activity Relationships

Several curcumin ferrocenyl derivatives have been synthesized [65,66]. The curcumin ferrocenyl
derivatives were synthesized by covalent anchorage of three different ferrocenyl ligands to organic
curcuminoids substituted with methoxyl and hydroxyl groups on the aromatic rings. In in vitro
tubulin polymerization inhibition assays, the ferrocenyl propenone curcuminoids (compounds 7,
8, 9), ferrocenyl methylene curcuminoids (compounds 10, 11, 12, 13), and the ferrocenyl ethanone
curcuminoids (compounds 14 and 15), showed much better tubulin polymerization inhibition acitivity
than curcumin (Figure 4A–C).

Chakraborti et al. also synthesized several curcumin analogues [41] (Figure 4). They include:
(1) pyrazole derivatives of curcumin (compounds 16–19), (2) an isoxazole derivative of curcumin
(compound 20), and (3) a benzylidiene derivative of curcumin (compound 21) [41] (Figure 4).
The pyrazole (compounds 16–19) and isoxazole (compound 20) curcumins docked in to the curcumin
binding site on tubulin and showed a greater increase in stability than curcumin at physiological
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pH and reducing atmosphere [67]. The benzylidiene derivative (compound 21) bound tubulin with
a higher affinity compared to curcumin, and it was associated with increased ability to prevent
microtubule assembly and induce cancer cell death. The 21 has free diketone moieties and a substituted
polyphenol ring in between the dicarbonyl moiety, suggesting that the extra steric hindrance caused by
the substitution of a polyphenol in between the diketones may make the compound conformationally
more favorable to bind with tubulin. Alternatively, substitution of a polyphenol ring in between the
diketones may introduce a tridentate molecule that can bind tubulin with higher affinity.

Curcumin-derived compound C1 (compound 22) is one of most active curcumin derivatives [68]
(Figure 4C). Compound 22 inhibited the microtubule assembly, perturbed the lattice structure of
microtubules, suppressed their GTPase activity, and inhibited cancer cell proliferation much more
effectively than curcumin [68]. Importantly, 22 also showed more stability in aqueous buffer than
curcumin [68], suggesting that the enhanced biological activity of 22 may be partly due to its increased
stability in solution.

More recently, curcumin mimics bearing an additional bridged phenyl ring in conjugation [69],
and a series of curcumin inspired imidazo [1,2-a]pyridine analogues [70] and indole analogues [71]
have been synthesized. Several of these analogues efficiently blocked tubulin polymerization and
exerted improved antiproliferative effects against various cancer cell lines.

3.2. Combretastatins

Combretastatins are a class of natural stilbene that were originally isolated from the bark of
African willow tree Combretum caffrum [72]. Combretastatins A1 and B1, isolated in the late 1980s,
are the first-known combretastatins with microtubule-targeting activity [72]. Since then, several
related molecules and combretastatin derivatives have been synthesized, including compounds
modified on the double bond with various heterocyclic rings such as isoxazole, indole, β-lactam,
trans-methylpyrazoline, pyrazole, pyrazoline, cyclohexenone, and oxadiazoline [46,73,74]. Of those,
combretastatin A-4 (CA-4) has shown to be among the most effective [47] (Figure 5A, Table 1D).
CA-4 also exhibited a lower toxicity profile than paclitaxel and the vinca alkaloids [46]. Although its
poor water solubility hampered its clinical applicability, several water-soluble CA-4 prodrugs have
been generated over the years, the most studied of which is its 4-O-phosphate (CA-4P) [75] (Figure 5A).
CA-4P is rapidly converted into active CA-4 by nonspecific endogenous phosphatases present in
plasma and on endothelial cells.

CA-4P has completed several cancer clinical trials as monotherapy and in combination with other
treatments, including antiangiogenic therapy and chemotherapy [46,76]. In a Phase I clinical trial [77],
CA-4P was delivered to 34 patients by a 10-min weekly infusion for 3 weeks followed by a week
gap, with intrapatient dose escalation. The starting dose was 5 mg/m2 and the dose escalation was
achieved by doubling until grade 2 toxicity was seen. Notably, CA4P was generally well tolerated,
with only mild nausea or vomiting that was easily controlled by antiemetics, and the dose-limiting
toxicity was reversible ataxia. The cardiovascular adverse events were only restricted to changes in
pulse and blood pressure, with no cardiac events. Moreover, in contrast to conventional chemotherapy,
CA-4P showed a different set of toxicity profile with no neutropenia or thrombocytopenia, but a mild
lymphocytopenia at higher doses. Together, these findings highlight that CA-4 is an important clinical
lead compound for cancer therapy.
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3.2.1. Mechanism of Action and the Tubulin Binding Sites

Combrestatins have a structural similarity to colchicine and bind to tubulin at the same domain,
preventing microtubule polymerization [78]. Combrestatins acts primarily on the vascular endothelial
cells of the tumor, which causes tumor vasoconstriction that leads to cancer cell death, due to insufficient
blood supply [79].

3.2.2. Structure–Activity Relationships

Because of its simple structure, hundreds of CA-4 analogs have been synthesized, with some
having activity against paclitaxel-resistant cancer cells and some having different tubulin binding
mechanism from that of CA-4 (e.g., cyclopropylamide analogs) [80]. Structure–activity studies
demonstrated that the double bond in the cis configuration of its stilbene moiety and the presence of
3,4,5-trimethoxy-substituted A-ring as well as 4-methoxy substituted B-ring are an important feature
underlying its tubulin binding and antiproliferative effects [46]. The presence of the hydroxyl group
in the ring B has no notable role in the bioactivity of CA-4 [46], suggesting that it may be a possible
region to explore for CA-4 structural modifications.

3.3. Noscapine

3.3.1. Mechanism of Action

Noscapine is a non-narcotic natural phthalideisoquinoline alkaloid that is originally isolated
from the opium poppy Papaver somniferum [81] (Figure 5B, Table 1D). Noscapine and its derivatives
(together referred to as noscapinoids) have attracted substantial research attention due to their fewer
side effects and minimal toxicity to normal tissues compared to classical chemotherapy drugs [82].
One potential explanation for the specificity of noscapine to cancer cells and its minimal toxicity to
normal tissues is that normal cells may be resistant to noscapine compared to cancer cells, which divide
more rapidly than normal cells and, therefore, frequently pass through a phase of vulnerability to
mitotic spindle poisons. The possible resistance of normal cells to the therapeutic dose of noscapine



Cancers 2020, 12, 1721 13 of 24

may be potentially derived from efficient repair of noscapine-induced mitotic apparatus damage in
normal cells, compared to cancer cells.

Moreover, most noscapinoids are not substrates for the Pgp drug efflux pump and several of
them showed synergistic interaction with other MTAs [48,83]. Noscapine has completed phase I and II
clinical trials in patients with myeloma, lymphoma, or leukemia, however, the trials were terminated
due to the lack of funding (in the case of the lymphoma and leukemia trial, ClinicalTrials.gov Identifier:
NCT00912899) or clinical response (in the case of the myeloma trial, ClinicalTrials.gov Identifier:
NCT00183950).

3.3.2. Tubulin Binding Sites

Noscapine and its derivatives bind tubulin at or near the colchicine site, and inhibit microtubule
dynamics without causing gross depolymerization of microtubules [81,84].

3.3.3. Structure–Activity Relationships

A number of noscapinoids with antiproliferative effects superior to the parental noscapine have
been synthesized recently [43]. One notable derivative is 9–bromonoscapine (Figure 5B), which binds
tubulin with greater affinity than noscapine and have activity against drug-resistant xenograft tumors
without any evident toxicity [83]. Together, noscapinoids represent a unique group of MTAs that could
be used as a promising lead for the development of novel anticancer agents.

3.4. Maytansinoids

Maytansinoids are MTAs derived from maytansine (Figure 5C). Maytansine is a
benzoansamacrolide that was first extracted from the East African Shrub Maytenus Serrata and later
from the bark of Maytenus buchananii [44,85] (Figure 5C, Table 1D). Maytansine exhibited remarkable
cytotoxic activity against diverse cancer cell lines and inhibited tumor growth in vivo [45,85,86].
Although maytansine as single agent failed in human clinical trials, due to lack of tumor specificity
and unacceptable toxicity, it was recently approved by the US Food and Drug Administration as part
of an antibody-drug conjugate (ADC) for the treatment of advanced breast cancer [87].

3.4.1. Mechanism of Action and the Tubulin Binding Sites

Maytanisine and maytansinoids destabilize microtubules, and earlier studies suggested that
the compound occupies the vinca site on tubulin. However, recent X-ray crystallography studies
demonstrated that maytansine occupies a unique site (termed maytanisine site) on β-tubulin that is
different from the vinca domain [12]. The maytansine-tubulin interaction involves hydrogen bonds
between the carbonyl groups at position 7a of maytansine and residues Asn102 and Lys105 of β-tubulin;
hydrogen bonds between the hydroxyl/carbonyl oxygens at position 1 of maytansine and Val181 of
β-tubulin; and hydrophobic interactions between the methyl groups at position 6a of the compound
and residues Asn101, Asn102, Val182, Phe404, and Tyr408 of β-tubulin [12]. Notably, the unrelated
microtubule destabilizing agents, rhizoxin F and PM060184 also occupy the maytansine site [12].

ClinicalTrials.gov
ClinicalTrials.gov
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3.4.2. Structure–Activity Relationships

Through a semi-synthesis strategy, a number of maytansine analogs (DM1, DM3, and DM4)
that have disulfide or thiol groups that favor covalent linkage with monoclonal antibodies have
been obtained [88–90]. Multiple structure–activity relationship studies on maytansine have shown
that the C4–C5 epoxide moiety, the carbinolamide at C9, and double bonds at C11 and C13 are
essential for optimal bioactivity. Moreover, the ester side chain (N-acyl-N-methyl-L-alanyl) at C3 is also
important for bioactivity and its corresponding L-epimers are ~100-fold more active than the unnatural
N-methyl-D-alanyl moiety. Notably, the side chain can be modified to generate maytansinoids bearing
disulfide or thiol groups without losing bioactivity [44,85,88,90].

3.5. Chalcones and Quercetin

Additional plant-derived microtubule destabilizing agents that exhibited bioactivity in in vivo
tumor xenograft models or that have undergone clinical trials include chalcones and quercetin [91,92].
Chalcones and quercetin are among the most important classes of flavonoids and are ubiquitously
found across the plant kingdom.

Mechanism of Action and Tubulin Binding Sites

They occupy the colchicine site on tubulin and prevent microtubule polymerization [49,91].
Besides tubulin, these agents also target several other cellular proteins and have myriads of biological
effects, including anti-oxidant and anti-inflammatory activity, in addition to their antitumor activity.
Accordingly, these compounds may also have the potential for the treatment of chemotherapy-induced
oral mucositis [93].

4. Concluding Remarks and Future Perspectives

Microtubule cytoskeleton is one of the most succesful targets in cancer therapy, and MTAs,
especially paclitaxel and vinca alkaloids, play a dominant role in the treatment of diverse cancer
types. However, the development of resistance by cancer cells, the reduced pharmacokinetic profile,
and the severe side effects associated with their formulations often present challenges to the clinical
applicability of the MTAs. Several techniques have been recently developed to avoid these issues,
including nanoparticle delivery, covalent linkage to the fatty acid docosahexanoic acid, encapsulation
in lipid complexes, and conjugation to antibodies. While these techniques are possibly a good approach
for older generation MTAs, the future of MTAs probably lies with newer agents that more effectively
evade these serious problems.

Plants are a major source of MTAs. The search for novel MTAs from plants is necessary, as it will
provide a greater range of lead compounds. Notably, the production of biologically active secondary
metabolites in plants are less affected by both abiotic (salinity, pollutants, light, and temperature) and
biotic (space competition, predation, fouling, and presence/absence of bacterial symbionts) factors,
compared to marine organisms and microorganisms [94]. Moreover, plants are characterized by the
production and storage of a large number of diverse, complex mixtures of secondary metabolites [95],
thus suggesting that plants are a unique source for a more consistent supply of novel, pharmacologically
active MTAs.
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To date, only a small portion of the world’s plant biodiversity has been exploited for the search for
MTAs, thus indicating that there exists a huge opportunity for the discovery of novel MTAs from plants.
Although major challenges, such as access and supply, complications in high-throughput screening due
to the complexities of plant extracts, and the high cost of creating plant collections limit the interest in
the search for MTAs from plants, recent advances in synthetic methodologies, fractionation and analytic
methods, and genetic engineering provide hope to effectively overcome some of these challenges,
including the supply issues and the screening difficulties from crude and pre-fractionated extracts.
It seems that the future of plant-derived MTAs likely depend on the key features that include robust
anticancer activity, low toxicity to normal tissues, and the ability to overcome resistance to existing
MTAs. Identification of MTAs with these ideal features from plants would undoubtedly benefit the
development of potential MTAs for cancer therapy.

As described herein, the plant-derived MTAs, taccalonolides, persin, curcumin, combretastatins,
noscapine, maytansine, chalcones, and quercetin, have exhibited improved anticancer properties
when compared with the taxanes and vinca alkaloids. Of note, curcumin, combretastatins, noscapine,
maytansine, and quercetin have already undergone clinical trials evaluating their efficacy against
various cancers [43,46,63,87,93] (Table 2). Because targeted delivery of cytotoxic agents to cancer cells
increases the percentage of drug molecules that reach the tumor, and thereby lowers the minimum
effective dose and increases the maximum tolerated dose, maytansine ADCs may possibly have a
promising future as a clinically succesful MTA among these compounds. A complete understanding
of determinants of toxicities of the maytansine ADCs and steps to increase therapeutic index are
among the key areas for further improvement. To increase the therapeutic index of maytansine ADCs,
improvements can be made either in the efficacy of the maytansine to reduce the minimum effective
dose or in tumor specificity to enhance the maximum tolerated dose. Moreover, many maytansine
ADCs are substrate for P-gp. Accordingly, more maytansine ADCs with hydrophilic linkers are needed
to effectively evade P-gp-mediated drug resistance by cancer cells. Among MTAs that are in pre-clinical
studies, taccalonolides are promising candidates for clinical development. Taccalonolides have shown
excellent antitumor activity against xenograft models, including tumor models that are resistant to
taxanes [34,50]. Although persin has shown improved anticancer properties, relative to paclitaxel,
in cell-based studies [36], they have not been tested in animal models of human cancers. As such,
there is still a need to establish in vivo studies with the compound, so that attempts to its translation
into clinical practice can be improved. Nevertheless, the existing information on these agents provide
a strong rationale for the continued exploration of their clinical potential, as well as the design and
synthesis of more effective analogues or prodrugs, through the application of chemical methodologies,
including total or combinatorial synthesis.
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Table 2. The current stage of development and the clinical trial information of taccalonolide, persin, curcumin, combretastatin, noscapine, maytansinoids, chalcones,
and quercetin. The clinical trial information was obtained from the NIH ClinicalTrials.gov (https://clinicaltrials.gov/) by using the search criteria “cancer” and the
“compound name” in the database. N/A indicates not applicable.

Compound Stage of
Development Clinical Trial

Active
(NCI clinical trial identifier, Study phase,

Year of study start)

Completed
(NCI clinical trial identifier, Study phase,

Year of study start–study completed)

Withdrawn/Terminated/Suspended
(NCI clinical trial identifier, Study
phase, Year of study start–study

withdrawn/terminated/suspended)

Taccalonolide

Pre-clinical
(in vitro cell-based studies and
in vivo human tumor xenograft

studies in mice)

- - -

Persin Pre-clinical
(in vitro cell-based studies) - - -

Curcumin

Clinical
(Total 60 clinical trials: 22 active,

26 completed, and 12
withdrawn/terminated/suspended

trials)

NCT04403568, Early Phase 1, 2020
NCT02724202, Early Phase 1, 2016

NCT03980509, Phase 1, 2020
NCT01859858, Phase 1, 2013
NCT01294072, Phase 1, 2011
NCT02598726, Phase 1, 2016
NCT02336087, Phase 1, 2016
NCT04294836, Phase 2, 2020
NCT00745134, Phase 2, 2020
NCT02724618, Phase 2, 2016
NCT04266275, Phase 2, 2020
NCT00745134, Phase 2, 2008
NCT03192059, Phase 2, 2017
NCT03598309, Phase 2, 2019
NCT02782949, Phase 2, 2017
NCT03493997, Phase 2, 2017
NCT03769766, Phase 3, 2019
NCT02064673, Phase 3, 2014

NCT03847623, Phase N/A, 2017
NCT03865992, Phase N/A, 2019
NCT01948661, Phase N/A, 2014
NCT03431896, Phase N/A, 2018

NCT01160302, Early Phase 1, 2010–2016
NCT01035580, Phase 1, 2010–2012
NCT01333917, Phase 1, 2010–2013
NCT00027495, Phase 1, 2001–2007
NCT01201694, Phase 1, 2011–2014
NCT01042938, Phase 2, 2008–2011
NCT02439385, Phase 2, 2015–2019
NCT03072992, Phase 2, 2017–2019

NCT01490996, Phase 1/2. 2012–2017
NCT00192842, Phase 2, 2004–2010
NCT01740323, Phase 2, 2015–2018
NCT00094445, Phase 2, 2004–2014
NCT02556632, Phase 2, 2015–2016
NCT02017353, Phase 2, 2013–2016
NCT00641147, Phase 2, 2010–2016
NCT00365209, Phase 2, 2006–2011
NCT02100423, Phase 2, 2014–2018

NCT01246973, Phase 2/3, 2011–2015
NCT01712542, Phase N/A, 2012–2013
NCT03290417, Phase N/A, 2017–2019
NCT01975363, Phase N/A, 2013–2016
NCT01917890, Phase N/A, 2011–2013
NCT03211104, Phase N/A, 2007–2015
NCT00113841, Phase N/A, 2004–2009
NCT03482401, Phase N/A, 2017–2019
NCT00927485, Phase N/A, 2007–2016

NCT01608139, Phase 1, 2012
NCT00247026, Phase 1/2, 2007

NCT02300727, Phase 1/2, 2015–2018
NCT02095717, Phase 2, 2014–2018
NCT00852332, Phase 2, 2009–2017

NCT02944578, Phase 2, 2017
NCT01269203, Phase 2, 2012
NCT00248053, Phase 2, 2005
NCT00969085, Phase 2, 2012

NCT00003365, Phase N/A, 1996–2006
NCT00118989, Phase N/A, 2005–2012
NCT00176618, Phase N/A, 2004–2007

ClinicalTrials.gov
https://clinicaltrials.gov/
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Table 2. Cont.

Compound Stage of
Development Clinical Trial

Combretastatin

Clinical
(Total 17 clinical trials: 1 active,

11 completed, and 5
withdrawn/terminated/suspended

trials)

NCT02576301, Phase 1/2, 2015

NCT00395434, Phase 1, 2006–2007
NCT00960557, Phase 1, 2009–2010
NCT00003698, Phase 1, 1998–2003
NCT00003768, Phase 1, 1998–2001

NCT01240590, Phase 1/2, 2011–2016
NCT00653939, Phase 2, 2008–2011
NCT00060242, Phase 2, 2003–2008
NCT00113438, Phase 2, 2005–2007
NCT02132468, Phase 2, 2014–2016
NCT02279602, Phase 2, 2014–2016
NCT00699517, Phase 3, 2008–2013

NCT01085656, Phase 1, 2011–2016
NCT00077103, Phase 1/2, 2003–2007
NCT00507429, Phase 2/3, 2007–2011
NCT02641639, Phase 2/3, 2016–2017
NCT01701349, Phase 3, 2015–2017

Noscapine
Clinical

(Total 2 clinical trials:
2 terminated trials)

NCT00912899, Phase 1, 2007–2010
NCT00183950, Phase 1/2, 2000–2006

Maytansinoids as
ADC

Clinical
(Total 92 clinical

trials: 42 active, 37 completed, 13
withdrawn/terminated/suspended

trials)

NCT04189211, Phase 1, 2017
NCT03364348, Phase 1, 2017
NCT03102320, Phase 1, 2017
NCT04042051, Phase 1, 2019
NCT03552471, Phase 1, 2018
NCT02996825, Phase 1, 2017
NCT04296942, Phase 1, 2020
NCT02390427, Phase 1, 2015

NCT03126630, Phase 1/2, 2018
NCT04298918, Phase 1/2, 2020
NCT03816358, Phase 1/2, 2019
NCT01565200, Phase 2, 2012
NCT03832361, Phase 2, 2020
NCT03418558, Phase 2, 2015
NCT02675829, Phase 2, 2016
NCT01494662, Phase 2, 2012
NCT01904903, Phase 2, 2013
NCT01853748, Phase 2, 2013
NCT04351230, Phase 2, 2020
NCT02452554, Phase 2, 2015
NCT03225937, Phase 2, 2012
NCT04419181, Phase 2, 2020
NCT03894007, Phase 2, 2019
NCT00781612, Phase 2, 2008
NCT04341181, Phase 2, 2020
NCT02314481, Phase 2, 2017
NCT04197687, Phase 2, 2020
NCT04266249, Phase 2, 2020

NCT03153163, Phase 1, 2017–2018
NCT02696642, Phase 1. 2016–2019
NCT01439152, Phase 1, 2011–2019
NCT01513083, Phase 1, 2012–2014
NCT02824042, Phase 1, 2016–2019
NCT02751918, Phase 1, 2016–2019
NCT02254018, Phase 1, 2002–2014
NCT02038010, Phase 1, 2014–2017
NCT01816035, Phase 1, 2014–2017
NCT02605915, Phase 1, 2015–2019

NCT00934856, Phase 1/2, 2009–2013
NCT00875979, Phase 1/2, 2009–2011
NCT00951665, Phase 1/2, 2009–2013
NCT01638936, Phase 1/2, 2012–2018
NCT01001442, Phase 1/2, 2010–2016
NCT01470456, Phase 2, 2011–2014
NCT01472887, Phase 2, 2012–2016
NCT0261014, Phase 2, 2015–2019

NCT03023722, Phase 2, 2017–2019
NCT02924883, Phase 2, 2016–2020
NCT02289833, Phase 2, 2014–2018
NCT03106077, Phase 2, 2017–2019
NCT01975142, Phase 2, 2013–2019
NCT02254005, Phase 2, 2002–2014
NCT00679211, Phase 2, 2008–2011

NCT02221505, Phase 1, 2014–2015
NCT03045393, Phase 1, 2017–2018
NCT03455556, Phase 1, 2018–2020
NCT02947152, Phase 1, 2016–2017

NCT02318901, Phase 1/2, 2014–2018
NCT02658084, Phase 1/2, 2017–2018

NCT03836157, Phase 2, 2019
NCT02725541, Phase 2, 2016–2019
NCT02839681, Phase 2, 2016–2018
NCT01702558, Phase 2, 2012–2017
NCT01440179, Phase 2, 2011–2014

NCT01641939, Phase 2/3, 2012–2016
NCT02144012, Phase 3, 2014–2016
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Table 2. Cont.

Compound Stage of
Development Clinical Trial

NCT04274426, Phase 2, 2020
NCT03587311, Phase 2, 2018
NCT02465060, Phase 2, 2015
NCT03784599, Phase 2, 2018
NCT03726879, Phase 3, 2019
NCT01966471, Phase 3, 2014
NCT04296890, Phase 3, 2020
NCT01702571, Phase 3, 2012
NCT01772472, Phase 3, 2013
NCT03084939, Phase 3, 2017
NCT03529110, Phase 3, 2018
NCT04209855, Phase 3, 2019
NCT04185649, Phase 3, 2018

NCT02226276, Phase N/A, 2015

NCT00509769, Phase 2, 2007–2009
NCT01196052, Phase 2, 2010–2013
NCT02999672, Phase 2, 2016–2018
NCT00679341, Phase 2, 2008–2012
NCT00943670, Phase 2, 2009–2011
NCT02420873, Phase 2, 2015–2017
NCT00829166, Phase 3, 2009–2015
NCT02631876, Phase 3, 2016–2020
NCT0112018, Phase 3, 2010–2016

NCT01419197, Phase 3, 2011–2015
NCT02131064, Phase 3, 2014–2018
NCT02658734, Phase 4, 2016–2019

Chalcones Pre-clinical
(in vitro cell-based studies) - - -

Quercetin

Clinical
(Total 10 clinical trials: 7 active,

1 completed, and 2
withdrawn/terminated trials

NCT01912820, Phase 1, 2014
NCT03493997, Phase 2, 2017
NCT01961869, Phase 2, 2013
NCT03476330, Phase 2, 2018
NCT04252625, Phase 2, 2020

NCT02195232, Phase 2/3, 2015
NCT04267874, Phase N/A, 2019

NCT01732393, Phase 1/2, 2010–2012
NCT02989129, Early Phase 1,

2018–2020
NCT00003365, Phase N/A, 1996–2006
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