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Introduction

Infectious pathogens—from viruses to fungi—establish latent
infections in the human host and can, then, reactivate with
severe pathologic sequelae. To quote some examples:

• Herpes simplex virus (HSV) types 1 and 2 that are capable
of establishing lifelong infection primarily in neurons, and
(re)activation of which may be accompanied by herpes
encephalitis and recurrent vesicular eruptions in the
orolabial and genital mucosa.1–3

• Likewise, human herpesvirus 6A and 6B establish latency
in the central nervous system, with potential to reactivate
and cause multiple sclerosis and epilepsy, respectively.4

• Human cytomegalovirus (HCMV) is a nearly ubiquitous β-
herpesvirus capable of establishing a latent phase in
humans.5,6 HCMV (re)activation may associate with
both systemic and end-organ severe diseases.7–9

• Epstein–Barr’s virus establishes and maintains latency in B
cells, and its (re)activation may associate with several ma-
lignant tumors10,11 and a vast number of pathologies.12,13

• Mycobacterium tuberculosis is able to persist for the
lifetime of the host, indicating that this pathogen has
substantial molecular mechanisms to resist host-inflicted
damage. Infection of humans with M. tuberculosis is
frequent and can also lead to brain tuberculomas and
meningitis.14
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Abstract Infectious diseases pose two main compelling issues. First, the identification of the
molecular factors that allow chronic infections, that is, the often completely asymp-
tomatic coexistence of infectious agents with the human host. Second, the definition of
the mechanisms that allow the switch from pathogen dormancy to pathologic (re)
activation. Furthering previous studies, the present study (1) analyzed the frequency of
occurrence of synonymous codons in coding DNA, that is, codon usage, as a genetic
tool that rules protein expression; (2) described how human codon usage can inhibit
protein expression of infectious agents during latency, so that pathogen genes the
codon usage of which does not conform to the human codon usage cannot be
translated; and (3) framed human codon usage among the front-line instruments of
the innate immunity against infections. In parallel, it was shown that, while genetics
can account for the molecular basis of pathogen latency, the changes of the
quantitative relationship between codon frequencies and isoaccepting tRNAs during
cell proliferation offer a biochemical mechanism that explains the pathogen switching
to (re)activation. Immunologically, this study warns that using codon optimization
methodologies can (re)activate, potentiate, and immortalize otherwise quiescent,
asymptomatic pathogens, thus leading to uncontrollable pandemics.
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• Toxoplasma gondii can remain dormant for years as bra-
dyzoite within the host.15 Toxoplasma gondii (re)activa-
tion may associate with chorioretinitis, encephalitis, and
neuropsychiatric disorders such as schizophrenia.16

• Plasmodium falciparum can reactivate during pregnancy
after years of latency.17

• Cryptococcus neoformans is a common central nervous
system pathogen and causes fatal fungal meningoenceph-
alitis, especially in immunocompromised subjects.18,19

Pathologically, the disease burden related to pathogen (re)
activation is overwhelming and eradication of chronic latent
infections is a health top priority, especially when consider-
ing that latent infections are widespread in all over the
world.20–25 In general, persistent pathogen infections have
been associated with an immune response that is unable to
react with pathogen-infected cells.26 In the years, escape
from immune surveillance has been explained as possibly
due to inhibition of host cell human leukocyte antigen class II
expression27; suppression of the expression of multiple
genes that are important for antigen processing and presen-
tation28; selective elimination of Th-cells by apoptosis29;
escape from cytotoxic T lymphocytes30; antigenic drift31;
production of immunosuppressive molecules32,33; targeting
of dendritic cell-specific intercellular-adhesion-molecule-3-
grabbing nonintegrin34; and hijacking of the lipoxygenase
machinery of the host,35 inter alia. On the whole, this corpus
of data contributed important knowledge advancement of
virology and microbiology, but unfortunately, the mecha-
nism(s) underlying pathogen quiescence remain elusive.36

Metabolically, it has been repeatedly observed that the
pathogen persistence in the human host is characterized by
restriction of pathogen protein production37 so that passage
from latency to (re)activation requires ex novo protein
synthesis.38,39 Then, it is assumed that chronic latent infec-
tions cannot be eradicated since, given the minimal expres-
sion of pathogen proteins, the host immune system cannot
recognize the infected cell through the pathogen peptides
presented on its cell surface. That is, antigenemia and patient
immune responses are correlated,40,41 by being the outcome
of the antibody response: a question of antigen dose.42

Simply put, in absentia of pathogen protein synthesis, there
is no pathogen target that might evoke antipathogen attacks
by the host immune system and, as a consequence, latent
infections cannot be eradicated.

In contrast with this view and based on reports7,8,12,13

documenting a high level of peptide sharing between patho-
gens and human proteins, the author’s laboratory studies on
cytomegalovirus (CMV)43,44 analyzed the restriction of CMV
protein synthesis as a device imposed via human codon
usage purposely to block immune responses, with the ulti-
mate aim of protecting the host from potential harmful
autoimmune cross-reactions.45–48 Indeed, lack of pathogen
protein expression would prevent not only immune attacks
against the pathogen proteins but would also inhibit cross-
reactive autoimmune reactions against the host proteins
sharing sequences with the pathogens. Expanding these
studies, here the human codon usage has been compared

with that of four genes coding for (re)activation-related
proteins from HSV-1, M. tuberculosis, P. falciparum, and C.
neoformans, respectively. Results document and confirm the
role of the human codon usage in determining the silencing
of pathogen protein expression, and highlight the correlation
between codon frequencies and amounts of the correspond-
ing isoaccepting tRNA as the biochemical mechanism that
can trigger pathogen (re)activation.

Methods

The gene coding sequences (open reading frames, ORFs) from
the following four pathogen proteins were analyzed for
codon usage:

• major viral transcription factor ICP4 (ICP4; UniProt:
P08392, ICP4_HHV11, GenBank: AAA96675.1) from
HSV-1 (NCBI:txid10298);

• transcriptional regulator WhiB5 (WhiB5; UniProt:
P71592; WHB5A_MYCTU; GenBank: CCP42744.1) from
M. tuberculosis (NCBI: txid83332);

• proliferation-associatedprotein2g4(2g4;UniProt:Q8ILI2_-
PLAF7;NCBI reference sequence: XM_001348399.1) from P.
falciparum (NCBI:txid36329);

• eukaryotic translation initiation factor 3 subunit A (eIF3a;
UniProt: P0CN42, EIF3A_CRYNJ; NCBI reference sequence:
XM_570890.1) from C. neoformans (NCBI:txid214684).

The ORF of the human protein Sushi repeat-containing
protein SRPX2 (SRPX2; UniProt: O60687; SRPX2_HUMAN;
NCBI Reference Sequence: NM_014467.3) was analyzed as a
control.

Codon usage of the Homo sapiens ORFeome was obtained
from the international DNA sequence database (http://www.
kazusa.or.jp/codon/).49 Codon usage of the ORFs coding for
the above-listed proteins was obtained using GeneInfinity
program (http://www.geneinfinity.org). Protein details were
obtained from UniProt resource (www.uniprot.org/).50

Results

The Genetic Basis of Pathogen Latency
Four ORFs coding for proteins that are representative of viral,
bacterial, protozoan, and fungal pathogens, respectively,
were analyzed for codon usage. Results were compared
with the codon usage of the human ORFeome. The four
pathogen proteins were selected because of their crucial
role in pathogen (re)activation, that is, specifically:

• HSV-1 ICP4 is a major viral transcription factor that is
necessary for the transition from immediate early gene
transcription to later viral gene transcription;51

• WhiB5 is a transcriptional regulator that contributes toM.
tuberculosis virulence and (re)activation;52

• 2g4 is a proliferation-associated protein that belongs to
the proteases implicated in the P. falciparum erythrocytic
replication cycle including merozoite egress from schiz-
onts, host cell invasion by merozoites, and hemoglobin
degradation;53,54
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• C. neoformans eIF3a is a subunit of the eukaryotic trans-
lation initiation factor 3 (eIF-3) complex. The eIF-3 com-
plex specifically targets a subset of mRNAs involved in the
cell proliferation.55

In addition, the human protein SRPX2 was used as a
control because it is expressed in the brain, an organ where
pathogen quiescence preferentially occurs. In particular,
SRPX2 is expressed in neurons of the rolandic area of the
brain with a role in the perisylvian region, critical for
language and cognitive development.56

The comparative pathogen versus human codon usage
pattern is illustrated in ►Fig. 1 and numerically tabulated in
►Supplementary Table S1 (online only).

►Fig. 1 shows four fundamental points:

• All of the 61 codons that specify the 20 amino acids in the
genetic code are used in the human ORFeome (►Fig. 1,
panel 1).

• The control, that is, the neuronal human SRPX2 ORF,
conforms to the human ORFeome in the codon choices
(►Fig. 1, panel 2).

• In contrast, the four proteins derived from pathogens and
essential for (re)activation51–55 are coded by ORFs char-
acterized by codon usage patterns markedly different
from those of the human ORFeome and neuronal human
SRPX2 ORF, with many codons being unused and a few
codons being overused (►Fig. 1, panels 3–6 vs. panels 1
and 2).

• The codon usages of the four ORFs coding for the pathogen
proteins are strikingly different among themselves and
have no codon choices in common and, rather, each of the
four ORFs uses a highly specific codon pattern (►Fig. 1,
panels 3–6).

In sum, ►Fig. 1 shows that the usage of synonymous
codons in ORFs that code for (re)activation-related pathogen
proteins differs from the human codon usage. A striking

Fig. 1 Codonusageof (1)humanORFeome,andORFcoding for: (2)humanSRPX2; (3)HSV-1 ICP4; (4)M. tuberculosisWhiB5; (5)P. falciparum2g4;and (6)C.
neoformans eIF3a. Codon usage is expressed as codon frequency per thousand. In the abscissa, amino acids given in one-letter code.
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example is the HSV-1 ICP4 ORF that preferentially uses the
Ala codon GCG (76.98‰) that, instead, is rarely used in the
human ORFeome as well as in the human neuronal SRPX2
ORF (7.37 and 2.15‰, respectively) (►Fig. 1, panel 3 vs.
panels 1 and 2, and ►Supplementary Table S1). Likewise,
deviations from the human codon usage are evident in the
bacterial, protozoan, and fungal ORFs coding for the (re)
activation-related proteins analyzed here (►Fig. 1, panels
4–6 vs. panels 1 and 2, and ►Supplementary Table S1).

Then, given the long-standing notion that codon usage is a
basic determinant of gene expression,57–62 results illustrated
in►Fig. 1 and tabulated in►Supplementary Table S1 provide
physical reality to the working hypothesis according to
which deviation from the host usage of synonymous codons
represents a powerful genetic constraint capable of blocking
pathogen protein synthesis in the human host. In fact, as a
documented known rule,63 the ORFs/ORFeome of each bio-
logical entity—from proteins to proteomes, from viruses to
humans—are characterized by specific sets of synonymous
codons that determine/inhibit/modulate the protein expres-
sion pattern in cells, tissues, and organisms. Accordingly,
ORFs that preferentially use optimal synonymous codons
(i.e., the most abundant ones) are easily expressed, while
ORFs that do not match with the host ORFeome and use
nonoptimal synonymous codons (i.e., the rare ones) will be
expressed at a very limited extent, if any.

Biochemical Basis of Pathogen (Re)Activation
Data illustrated in ►Fig. 1 and ►Supplementary Table S1

locate the molecular basis of the lack of pathogen protein
expression in the human host as due to different codon
usages, but by themselves do not explain how pathogen
usage of suboptimal codons can lead to a block of pathogen
protein synthesis.

Actually, since 1980s,64–68 it was demonstrated that,
mechanistically, the basis for the correlation between rarely
used codons and restricted protein expression (or, vice
versa, highly used codons and high protein expression)
resides in the quantitative matching between synonymous
codons and isoaccepting tRNAs. That is, codon frequencies
correlate with the amounts of the corresponding isoaccept-
ing tRNA so that optimal, highly used codons correlate with
abundant isoaccepting tRNAs, whereas rarely used, low-
frequency codons correlate with low amounts of the corre-
sponding isoaccepting tRNAs. Such a quantitative relation-
ship between codons and isoaccepting tRNAs implies that
the composition of the tRNA isoacceptor pools has to
change in order pathogen protein expression can be re-
sumed. In effect, changes in the composition of the tRNA
isoacceptor pools occur under growth conditions. As docu-
mented in ►Fig. 2, changes of tRNA isoaccepting species, as
both relative percentage of total tRNA and absolute concen-
tration, occur during cell proliferation induced by partial
hepatectomy.69

Specifically,►Fig. 2 shows that tRNAswhich are abundant
under quiescence decrease during cell proliferation, and vice
versa, so that cell proliferation provides a metabolic window
for resumption of pathogen protein expression.

In this experimentally validated perspective, it assumes a
crucial importance the fact that pathogen (re)activation is
mostly associated with immunosuppressive treatments,70–77

that is, with treatments that in general implicate administra-
tionof glucocorticoids. As amatter of fact, it iswell known that
glucocorticosteroids can induce cell proliferation78–91 so that,
consequently, it can induce proliferation-associated tRNA
changes and favor pathogen protein expression and (re)acti-
vation. Therefore, in a clinical context, the present studymight
also help understand the pathogen (re)activation phenome-
non in infected fetuses and newborns (i.e., in organisms
growing rapidly)7 and pregnancy,17 as well as in subjects
treatedwithglucocorticoids following, for example, transplant
procedures.75,77

Conclusion

A leitmotiv of the research conducted in the author’s labora-
tory since 200092 is that, following immune responses
against infectious pathogens, the extremely high level of
peptide sharing between human proteins and infectious
agents92–94 can cause harmful autoimmune cross-reactions
and severe pathologies in the human host.7,8,12,13,48 In this
scientific context and using CMV as a research model,43,44

data have been obtained in favor of the hypothesis that, to
avoid cross-reactivity, expression of genes essential for viral
(re)activation is purposely blocked because of a viral usage of
synonymous codons different from that of the host. Here, the
present study provides further evidences in favor of such
working hypothesis by comparatively analyzing the human
codon usage to that of four ORFs coding for (re)activation-
related proteins derived, respectively, from HSV-1, M. tuber-
culosis, P. falciparum, and C. neoformans. Indeed, the data
illustrated in ►Fig. 1 substantiate the concept that human
codon usage is a main factor able to block pathogen protein
expression in the human host, in this way avoiding potential
immune response-associated cross-reactions and, conse-
quently, allowing a pacific, unharmful, quiet coexistence
between potentially dangerous pathogens and the human
host.

In practice, pathogen-restricted protein synthesis
emerges as a crucial protective phenomenon that avoids
immune responses and the associated potential autoimmu-
nity. Accordingly, resumption of pathogen protein synthesis
by the fine tuning of the quantitative relationship between
codons and isoaccepting tRNAs via cell proliferation
(►Fig. 2), that is, under proliferative conditions determined
by therapeutical treatments (such as glucocorticoids) or
physiological cell proliferation (growth, pregnancy) may
trigger pathogen virulence by evoking antipathogen immune
responses able to cross-react with the host proteins.

So, as a logical conclusion, the genetic basis that specifi-
cally characterizes the human gene expression, that is, the
human codon usage, has the value of a powerful first-line
defense in the human innate immunity. Useless to say,
clinically, the present study and conclusions invite to revise
approaches currently used for managing infectious diseases
and related pathologies. This is all the more so in light of the
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current (re)emerging infectious threats such as the severe
acute respiratory syndrome-related coronavirus 2.95,96
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