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This study applied in vivo and in vitro methods to investigate the effect of dietary N-carbamoylglutamate
(NCG) on lipid metabolism, inflammation and apoptosis related-gene expression in visceral adipose
tissue and isolated adipocytes of Japanese seabass (Lateolabrax japonicus). A basal diet and a test diet
supplemented with 720 mg/kg NCG were fed to the fish for 10 weeks. During the growth trial, no
mortality and no significant differences in growth performance were observed in fish between the 2
groups (P > 0.05). Plasma Arg content and mRNA level of argininosuccinate synthetase (ASS) in adipose
tissue were significantly increased, which indicated that NCG inclusion promoted endogenous Arg
synthesis. Thereafter, the potential effects of NCG treatment on lipid metabolism-related genes
expression were studied through in vivo and in vitro methods. In the present study, we successfully
established a primary adipocytes culture system and isolated pre-adipocytes in vitro of Japanese seabass
for the first time. Both the results in vivo and in vitro showed that NCG treatment decreased the mRNA
levels of genes related to adipogenesis (fatty acid synthase, FASN), cholesterol synthesis (3-hydroxy-3-
methylglutaryl-CoA reductase, HMGCR) and fat deposition (lipoprotein lipase [LPL] and leptin), which
revealed the underlying mechanism of NCG on reducing fat deposition. The results of this study
demonstrated that NCG inclusion reduced the expression of inflammatory and apoptosis cytokines
markedly in vivo and in vitro. In conclusion, NCG did exert beneficial effects on ameliorating adipo-
genesis, inflammation and apoptosis via promoting Arg endogenous synthesis in Japanese seabass.

© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Currently, global aquaculture has developed rapidly with the
extension of large-scale and intensive farming models, and most
fish are farmed and fed with formulated diets. However, due to
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non-integrated feed or excess energy intake of commercial diets,
excess fat accumulation in fish abdomins could induce metabolic
disturbances, imbalanced immune systems and lower quality
product (Chatzifotis et al., 2010; Cheng et al., 2006). Therefore,
potential regulatory mechanisms to decrease fat deposition in fish
have received considerable attention in recent decades.

Growing evidences from animal studies indicates that diets
supplemented with gradient dietary Arg are effective in reducing
excess fat accretion in fatty rats (Fu et al., 2005; Jobgen et al., 2008),
in growing-finishing pigs (Tan et al., 2011), broiler chickens (Fouad
et al., 2013) and Nile tilapia (Oreochromis niloticus) (Li et al., 2020).
Several studies have shown that Arg may affect multiple metabolic
pathways involving fatty acid and glucose syntheses, amino acid
degradation, metabolism of energy substrates and nutrient parti-
tioning in mammals (Jobgen et al., 2006; Wu et al., 2009).
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Table 1
Formulation and compositions of experimental diets (g/kg, as is basis).

Item N0 NCG

Ingredients 1

Fishmeal 350 350
Corn gluten meal 100 100
Soybean meal 30 30
Wheat Gluten 50 50
Krill meal 50 50
Wheat flour 180 180
Wheat middling 59 59
Cassava starch 50 50
Fish oil 45 45
Soy lecithin 20 20
Soy oil 30 30
Monocalcium phosphate 18 18
Vitamin and mineral premix 2 14 14
a-Cellulose3 4 3.28
NCG3 0 0.72
Total 1000 1000

Analyzed chemical composition
Moisture 65.6 69.8
Crude protein 437 427
Crude lipid 145 146
Crude ash 89.7 86.6
Gross energy, MJ/kg 22.1 21.9

NCG ¼ N-carbamoylglutamate.
1 The fishmeal used in the experiment included 150 g/kg low-temperature dried

fish meal (999, Denmark) and 200 g/kg domestic fishmeal (Shandong Chishan
Fishmeal Factory, Rongcheng). Corn gluten meal, soybean meal, wheat gluten meal,
soy lecithin and soy oil were supplied by Bohai Oil Co., Ltd (Qingdao, China); wheat
flour, wheat middling and cassava starch were produced by NanKou Flour Mill
(Beijing, China); fish oil was provided by JinHai grain and oil industry Co., Ltd
(Qinhuangdao, China). Krill meal were provided by Liaoning Ocean Fishery Co., Ltd.
(Dalian, China).

2 Vitamin and mineral premix provided the following per kilogram of diets:
vitamin A 20 mg; vitamin B1 10 mg; vitamin B2 15 mg; vitamin B6 15 mg; vitamin
B12 8 mg; vitamin E 400 mg; vitamin K3 20 mg; vitamin D3 10 mg; niacinaminde
100 mg; ascorbyl calcium phosphate 1,000 mg; inositol 200 mg; calcium panto-
thenate 40mg; biotin 2mg; folic acid 10mg; choline chloride 2,000mg; corn gluten
meal 150 mg; CuSO4.5H2O 10 mg; FeSO4$H2O 300 mg; ZnSO4$H2O 220 mg;
MnSO4$H2O 25 mg; KIO3 4 mg; Na2SeO3 0.5 mg; CoCl2$6H2O 0.5 mg; MgSO4

2,000 mg; zeolite 332 mg.
3 a-Cellulose and NCG were premixed with vitamin and mineral premix.
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Additionally, the benefits, e.g., antioxidant and immune responses
improvement, inflammation alleviation, and apoptosis inhibition of
optimal or slightly extra dietary Arg, have been reported on several
fish species, including yellow catfish (Pelteobagrus fulvidraco) (Zhou
et al., 2015), hybrid striped bass (Morone saxatilis) (Cheng et al.,
2012), blunt snout bream (Megalobrama amblycephala) (Liang
et al., 2018) and Japanese seabass (Huang et al., 2019). Hence, in-
clusion of dietary Arg is particularly important in improving animal
health.

The relatively high cost and its antagonistic action with other
amino acid metabolism (Jones, 1964), has limited the potency of
Arg as a commercial feed additive. Consequently, an alternative
strategy to increase endogenous Arg biosynthesis is supplementa-
tion with N-carbamylglutamate (NCG), a metabolically stable
analogue of N-acetylglutamate (NAG), which has been demon-
strated to increase plasma Arg concentration and promote the
synthesis of endogenous Arg by activating the rate-limiting en-
zymes responsible for both the ornithine cycle and the Arg syn-
thetic pathway both in mammals and teleost (Frank et al., 2007;
Huang et al., 2019, Wang et al., 2019a,b). Compared with Arg in-
clusion in animal feed, supplementation of NCG has the advantages
of lower cost, higher absorption rate, and more stable metabolism
(Chacher et al., 2013). Moreover, NCG serves as a safe and meta-
bolically stable feed additive, and is beneficial for ameliorating fatty
liver and hepatocyte apoptosis in Japanese seabass (Lateolabrax
japonicus) (Huang et al., 2019). Further studies have shown that
dietary NCG supplementation has stimulated endogenous Arg
synthesis, enhanced the antioxidant statuses and improved the
immune response in several fish species, including mirror carp
(Cyprinus carpio), Nile tilapia (Oreochromis niloticus) and Japanese
seabass (Cheng et al., 2015; Huang et al., 2019,Wang et al., 2019a,b).
However, little information is available as to the physiological
change of supplementation with NCG on lipid metabolism in fish
visceral adipose tissue (VAT).

Therefore, the objective of the current experiment was to
investigate the potential regulatory mechanism of Arg endogenous
activator-NCG on lipid metabolism and inflammation-related gene
expression in VAT and adipocytes of Japanese seabass.
2. Materials and methods

During the feeding period, the experimental fish were main-
tained in compliance with the Laboratory Animal Welfare Guide-
lines of China (Decree No. 2 of Ministry of Science and Technology,
issued in 1988).
Table 2
Amino acids content of experimental diets (g/kg, dry matter basis).

Item N0 NCG

Arginine 19.8 19.2
Histidine 9.30 9.00
Isoleucine 16.7 16.1
Leucine 33.7 32.8
Lysine 21.9 21.2
Methionine 9.50 9.20
Phenylalanine 17.5 17.0
Threonine 14.8 14.4
Tryptophan 4.00 4.00
Valine 19.4 18.8
Asparagic acid 31.9 31.1
Cysteine 4.70 4.70
Glutamic acid 73.1 72.0
Glycine 18.5 18.1
Proline 24.5 24.0
Serine 16.5 16.2

NCG ¼ N-carbamoylglutamate.
2.1. Experimental diets

The tested NCG was supplied by Animore Sci. & Tech. Co., Ltd,
Beijing, China, and the purity of NCG was not lower than 98%. Our
previous study indicated that dietary 720 mg/kg NCG inclusion
was the optimal and effective dose for increasing endogenous Arg
synthesis in Japanese seabass (Huang et al., 2019). In this exper-
iment, a basal diet, and a test diet with 720 mg/kg NCG were
prepared. The 2 experimental diets are referred to hereafter as N0
and NCG diets. The sources of ingredients, diet formulation and
analyzed chemical compositions are shown in Table 1. All diets
were well mixed with coefficient of variation (CV) �5%, and then
extruded into 2 mm diameter pellets under the following extru-
sion conditions: feeding section (90 �C/5 s), compression section
(150 �C/5 s) and metering section (120 �C/4 s) using a Twin-
screwed extruder (EXT50A, YANGGONG MACHINE, Beijing,
China). Fish oil and soy oil were added by a pilot vacuum coater
(FAMSUN, Yangzhou, China). All diets were stored at �20 �C
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refrigeration before using. The amino acid profile of the experi-
mental diets is shown in Table 2.

2.2. Experimental fish, feeding and sampling

Juvenile Japanese seabass were obtained from Weihai Yulong
Aquafarm, Shandong, China. All fish were acclimatised in laboratory
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conditions and fed the N0 diet for 4 weeks before the commence-
ment of the trial. Fish (initial body weight ¼ 11.67 ± 0.02 g) were
randomly selected and distributed into tanks after 24 h of starvation
with 30 fish per tank (256 L) and 6 tanks per treatment. The water
temperaturewasmaintained at (26 ± 2) �C, pH¼ 7.5 to 8.5, dissolved
oxygen (DO) > 7.0 mg/L and ammonia nitrogen levels < 0.5 mg/L.
Aeration was supplied to each tank 24 h everyday, and the photo-
period was 12 h dark (D):12 lighting (L). Fish were fed to apparent
satiation twice daily at 08:00 and 16:00 for 70 d.

The fish from each tank were batch weighed after starvation for
24 h at the end of the growth trial. Twelve fish for each treatment (2
fish from each tank, 6 replicates in each treatment) were randomly
selected and anaesthetized with chlorobutanol (300 mg/mL). The
body weight, body length and adipose tissue weight were recorded
individually to calculate condition factor (CF) and visceral adipose
index (VAI) respectively. Blood samples were drawn from the
caudal part of the sedated fish using anticoagulant syringes with 2%
NaF and 4% potassium oxalate. Blood samples were centrifuged at
1,800 � g for 10 min at 4 �C to obtain plasma. Two VAT samples
from each tank were sampled and fast frozen in liquid nitrogen for
RNA isolation, and 8 of them were used for analysis randomly. All
samples were stored at �80 �C until analysis.

2.3. Chemical analysis

The tested NCG was determined by an Ion Chromatography,
iChrom W5100, Xi'an Heb Biotech Co. Ltd, Shanxi, China). The
mixing homogeneity of feed (CV) was determined following the
method of ICCF Guidance #3 (ICCF, 2019). All chemical analyses of
the diets were carried out in duplicate according to AOAC (2006).
The dry matter was analyzed by drying the samples to a constant
weight at 105 �C. Crude protein (CP) was determined using a Kjelte
2300 Unit (Foss, Hillerød, Denmark) by the method of Kjeldahl, and
the CP content was estimated by multiplying nitrogen by 6.25.
Crude lipid was analyzed by acid hydrolysis with a Soxtex System
HT 1047 Hydrolyzing Unit (Foss, Hillerød, Denmark), followed by
Soxhlet extraction using a Soxtex System 1043 (Foss, Hillerød,
Denmark). Ash was analyzed by combustion in a muffle furnace
(CWF1100, Carbolite, Derbyshire, UK) at 550 �C for 16 h. Gross
energy was determined using an IKAC2000 Calorimeter (IKA,
Staufen, Germany). The amino acids of diets were determined by an
amino acid analyzer Hitachi 8900 (Tokyo, Japan) after hydrolysis in
6 mol/L HCl for 22 to 24 h at 110 �C. The free amino-acid concen-
trations in the plasma were analyzed by an automatic amino acid
analyzer (S-433D, Sykam, Germany).

2.4. Establishment of the cell culture system

Three Japanese seabass with body weight about 90 g were
anesthetized with chlorobutanol (300 mg/mL) before sampling.
The adipose tissue in each abdominal cavity was isolated carefully
by sterile dissection and washed 3 times with phosphate-buffered
saline (PBS, pH 7.4), and then minced and digested in 0.1% Type I
collagenase for 30 min (Sigma, USA). The tissue was digested, and
then centrifuged (500 � g for 10 min). After centrifuging, the cell
pellet was resuspended in fetal bovine serum (FBS)-free DMEM/F12
medium, and then the cell suspension was passed through a 200-
mm nylon filter to remove large particulate material. The resulting
cell suspension was then centrifuged at 500 � g for 10 min. The
digestion medium was removed, and the cell pellet was treated
with an erythrocyte lysing buffer for 5 min at room temperature to
remove red blood cells. After washing twice, the cells were resus-
pended in a growth medium (DMEM/F12, 10% FBS, 100 U/mL
penicillin/streptomycin), and the resuspended cells were seeded on
a 35 mm culture dish, cultured at 28 �C and 5% CO2. The medium
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was changed every 2 d to observe the proliferation and growth of
the cells. At d 6, the pre-adipocytes grew to the confluence stage,
andwere changed to the adipogenicmedium,whichwas composed
of growth medium supplemented with 15 mg/mL insulin, 2 mmol/L
Indomethacin, 1 mmol/L dexamethasone and 0.5 mmol/L IBMX
referred to (Liu et al., 2015) with minor modifications, and cultured
until the mature lipid droplets were induced. The morphology of
cells was observed with an inverted microscope (Primovert, Carl
Zeiss, Germany). Four replicates of mature adipocytes were treated
with 75 mg/L NCG in the full growth medium, which was obtained
by previous pre-tests.

2.5. Oil red O (ORO) staining

The cells were washed 3 times with PBS and fixed in 4% para-
formaldehyde for 30 min and then rinsed with PBS. Cells were then
stained with ORO for 30 min and rinse with 60% isopropanol to
remove excess ORO, and rinsed with PBS 3 times. Cell morphology
was observed with an inverted microscope (Primovert, Carl Zeiss,
Germany) and photographed with a digital camera (Leica DM2500,
Leica, Solms, Germany).

2.6. RNA isolation, reverse transcription and mRNA level analysis

Total RNAwas isolated from adipose tissue and adipocytes using
an miRNA easy Mini kit (QIAGEN Sciences, MD, USA), spectropho-
tometrically quantified using a NanoDrop2000 (Thermo, USA) and
electrophoresed on a 1% denaturing agarose gel to test the integrity.
For each reverse transcription reaction, 1.0 mg of total RNAwas first
treated with gDNA Eraser to remove genomic DNA contaminants
and then subjected to cDNA synthesis by reverse transcription in a
20 mL volume using an iScript cDNA Synthesis Kit (Bio-Rad, USA).

The core fragment of all the genes was obtained from the
database of RNA-seq of Japanese seabass. EF1a (GenBank accession
no. JQ995147), a housekeeping genewhose expressionwas found to
be unaffected by the treatment in the present experiment, was used
as an endogenous reference to normalize the template amount.
Specific primers of these genes were designed according to the
partial cDNA sequences of these genes using the Japanese seabass
transcriptome analysis shown in Table 3. Real-time quantitative
PCR (RT-qPCR) analysis was performed using a CFX96TM Real-Time
System (Bio-Rad, USA) in a 20-mL reaction volume containing iTaq
Universal SYBR Green Supermix (Bio-Rad, USA).

Serial dilutions of cDNA generated from liver tissues were used
to generate a standard curve to determine the amplification effi-
ciency (E-values) of target and reference genes. The E-values
ranged from 90% to 110% (Table 3). The RT-qPCR temperature pro-
file for all genes was 95 �C for 30 s followed by 40 cycles of 10 s at
95 �C, 30 s at annealing temperature (Tm) (Table 3) and 40 s at
72 �C. After the final cycle of RT-qPCR, the melting curves were
systematically monitored (65 �C temperature gradient at 0.05 �C/
10 s from 65 to 95 �C). During the detection, each samplewas run in
triplicate. PCR-grade water in place of the template served as the
negative control. The expression values were calculated as (1þ E-
values) �DDCt (Pfaffl, 2001).

2.7. Statistical analysis

Statistical differences between the 2 groups were analyzed by
the unpaired student's t-test and homogeneity of variance was
confirmed by Levene's test using SPSS Statistics 17.0 (IBM. Inc. USA).
P < 0.05 was considered statistically significant, P < 0.01 was a very
significant difference, and P < 0.001 was an extremely significant
difference. The graphics were drawn using GraphPad Prism 6.0
(GraphPad Software Inc. USA).



Table 3
Primer sequences for real-time RT-qPCR.

Gene Forward primer (50-30) Reverse primer (50-30) Products length, bp Tm, �C E-value, %

ACC1 AATCAACATCCGCCTGACTCCAAC CCTGCTTGTCTCCGTATGCTTGG 176 59.0 90.2
ASS CCCAGGAGGCACAATTCTGT CGCACAAAATCACACTCCGG 153 57.6 93.8
ATGL CTTCCTCTCCGCAACAAGTC TGGTGCTGTCTGGAGTGTTC 211 55.8 100.0
Caspase-3 ATCACAGCAACTACGCCTCATTCG GCCTCTGCAAGCCTGGATGAAG 176 61.6 98.9
Caspase-8 AAGACGCATCTGTTCGCTTCCTG GCGACAGCTTCAGCCTATCCATC 116 61.6 98.9
Caspase-9 TGCGGAGGAGGTGAACGAGAC CGGTTCGTCGGACATGCTCAG 138 62.8 90.5
C/EBPa CACGGACAACGACAGACTGA GCCACACACCAACTCACGTA 213 60.5 93.4
C/EBPb TCTGATTCCAGGGTGTCCTC TCATCTGCTCAGCCACTCTG 181 57.1 98.8
EF1a AATCGGCGGTATTGGAACTG TCCACGACGGATTTCCTTGA 205 58.5 102.0
FASN AGGCATTGTGGAGGGTGTAG CCAGTCCACCAGTGATGATG 233 56.8 97.1
HMGCR GGAAGAGGAAGAGGACAACAAGCC GAACCATGACCAGGCCAAGCG 80 56.6 101.0
HSL TGATGTTTGCCAAGAAGCTG CTGATGGACTGGTGCTCTGA 228 57.8 93.8
Leptin TGCAACTTTTAAGTGGGGGTA TGTTGTAACCCTCCAGCACGG 201 59.0 103.5
IL1b CTGAACATCAAGGGCACAGA GTTGAAGGGGACAGACCTGA 192 60.8 92.8
IL8 GAGCTGATTCCTGCCAACTC CCGATCTGTTCAGGGTGTTC 153 55.8 98.0
LPL AGCACCTCCAAAACCTTCCT TCTGAGCTGCCACCACATAG 169 58.8 92.9
PPARg AGGCCTGCTGAATGTGAAGC GCTGGATGAAGTGGACGTGG 170 58.0 93.3
TNF-a GACTCCATAGGCAGCAAAGC AGAAAGTCTTGCCCTCGTCA 205 60.8 103.2

ACC1 ¼ acetyl-CoA carboxylase 1; ASS ¼ argininosuccinate synthetase; ATGL ¼ adipose triglyceride lipase; Caspase ¼ cysteine-aspartic proteas; C/EBP ¼ CCAAT-enhancer-
binding protein; EF1a ¼ eukaryotic translation elongation factor 1 alpha; FASN ¼ fatty acid synthase; HMGCR ¼ 3-hydroxy-3-methylglutaryl-CoA reductase; HSL ¼ hormone-
sensitive triglyceride lipase; IL ¼ interleukin; LPL ¼ lipoprotein lipase; PPAR ¼ peroxisome proliferator activated receptor; TNF ¼ tumor necrosis factor.
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3. Results

3.1. Growth performance and the ability of Arg endogenous
synthesis in Japanese seabass

The results of growth performance andmorphometric parameters
are presented in Table 4. No mortality occurred throughout the 10-
week experimental trail. Fish in both groups had fast growth with
weight gain (WG) up to 672%. There was no significant difference in
WG, feeding rate (FR), feed conversion ratio (FCR), CF, VAI between
the groups (P > 0.05). Plasma concentrations of arginine were
significantly increased after NCG treatment (P < 0.05), but there was
no effect on the concentrations of lysine (P> 0.05) (Fig.1A). Compared
with the N0 group, plasma ammonia in the NCG group was signifi-
cantly decreased (P < 0.05) (Fig. 1A). Additionally, Arg synthesis
related gene-argininosuccinate synthetase (ASS) mRNA level was up-
regulated remarkedly in adipose tissue by NCG inclusion (Fig.1B). The
above results indicate that dietary NCG improvedArgmetabolism and
reduced the metabolic waste in Japanese seabass.
Table 4
Effects of dietary N-carbamoylglutamate (NCG) on the growth performance,
morphometric parameters and whole-body composition in Japanese seabass
(means ± SEM, n ¼ 6)1.

Item N0 NCG

Growth performance
WG2, % 678 ± 3.71 666 ± 6.68
FR3, % BW/d 2.09 ± 0.01 2.10 ± 0.01
FCR4 0.92 ± 0.00 0.93 ± 0.00

Morphometric parameters
CF5, g/cm3 1.33 ± 0.02 1.26 ± 0.04
VAI6, % 7.49 ± 0.35 7.39 ± 0.22

1 Values in the same row with different superscript letters are significantly
different (P < 0.05). The data for FR, FCR, CF and VAI have been published in Huang
et al. (2019).

2 WG (weight gain) ¼ 100 � (Wf e Wi)/Wi. Wf is the final total weight (g), Wi is
the initial total weight (g).

3 FR (feeding rate) ¼ 100 � feed intake/[(Wf þ Wi)/2]/d.
4 FCR (feed conversion ratio) ¼ feed intake/(Wf e Wi).
5 CF (condition factor) ¼ 100 � (body weight, g)/(body length, cm)3.
6 VAI (visceral adipose index) ¼ 100 � (visceral adipose weight, g)/(whole body

weight, g).
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3.2. In vivo evaluation of NCG on lipid metabolism related gene
expression in visceral adipose tissue of Japanese seabass

As shown in Fig. 2, compared with N0, the NCG group showed a
decreased relative mRNA level for fatty acid synthase (FASN) (adi-
pogenesis), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)
(cholesterol synthesis), peroxisome proliferator activated receptor
g (PPARg), CCAAT-enhancer-binding protein b (C/EBPb) (adipocytes
differentiation), leptin and ipoprotein lipase (LPL) (fatty deposition)
(P < 0.05). There was no significant difference in adipose triglyc-
eride lipase (ATGL) and ormone-sensitive triglyceride lipase (HSL)
(lipolysis) mRNA levels of VAT in Japanese seabass (P > 0.05).

3.3. Isolation and maturing induction of Japanese seabass pre-
adipocytes in vitro

In the present study, we successfully established a primary ad-
ipocytes culture system and isolated pre-adipocytes in vitro of
Japanese seabass for the first time. As shown in Fig. 3A, on d 2 after
seeding, most of the cells were attached to the bottom of the dish.
Themorphology of pre-adipocytes was similar to that of fibroblasts,
with a cytoplasm devoid of lipid droplets. As culture time pro-
gressed, the pre-adipocytes proliferated and reached confluence
after being seeded for 6 d (Fig. 3B). At confluence, pre-adipocytes
were successfully induced into mature adipocytes after 7 d of be-
ing cultured in the induction medium, in which, the lipid droplets
were easily observed in the cytoplasm and were stained into a red
color by ORO staining (Fig. 3C and D).

3.4. In vitro evaluation of NCG on lipid metabolism related gene
expression in adipocytes

To determine the changes at the transcription level of adipo-
cytes in vitro in comparison to adipose tissue, the expression of
lipid metabolism-related genes was analyzed. As shown in Fig. 4,
the NCG treatment group significantly reduced gene expression of
FASN, HMGCR and fatty deposition (LPL and leptin) (P < 0.05). There
was no significant difference in mRNA levels of genes related to
adipocyte differentiation (PPARg, C/EBPa and C/EBPb) and lipolysis
(ATGL and HSL) (P > 0.05).
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3.5. In vivo and in vitro evaluation of NCG on inflammation and
apoptosis responses

The results of mRNA levels of inflammation and apoptosis fac-
tors in Japanese seabass adipose tissue in vivo are shown in Fig. 5.
The NCG group significantly down-regulated inflammation related
factors-interleukin 1b (IL-1b) and IL-10 mRNA levels in Japanese
seabass adipose tissue (Fig. 5A) (P < 0.01). Moreover, the mRNA
levels of apoptosis factors (caspase-3 and caspase-8) was decreased
in the NCG group compared with the N0 group (Fig. 5B) (P < 0.05).

The results of mRNA levels of inflammation and apoptosis
factors in adipocytes in vitro are shown in Fig. 6. The pro-
inflammatory factor IL-8 was down-regulated, and the anti-
inflammatory factor IL-10 was up-regulated simultaneously in
the NCG treatment group (P < 0.01) (Fig. 6A). There was no sig-
nificant difference in the relative expression of apoptosis factors
genes (P > 0.05) (Fig. 6B).
4. Discussion

Several studies have reported that NCG is effective in
improving growth performance. Frank et al. (2007) found that
50 mg/kg body weight per 12 h for 7 d can improve body weight of
piglets significantly. Hu et al. (2019) also reported that supple-
mentation with 1,000 mg/kg NCG improved growth performance
in yellow-feather broilers. A similar result was observed by Wang
et al., 2019a,b, that 1,200 mg/kg dietary NCG increased WGR and
protein efficiency rate in mirror carp (C. carpio) based on an Arg
deficient diet (1.24%). However, Cheng et al. (2015) reported that
250 to 5,000 mg/kg NCG in a basal diet with 2.30% of Arg had no
effect on growth performance but reduced hepatic fat deposition
in Nile tilapia (oreochromis niloticus). In our previous study, we
also did not observe a difference on specific growth rate, but an
improved protein retention and lipid metabolism in the liver was
found when Japanese seabass were fed the diets with 360 to
720 mg/kg NCG (Huang et al., 2019). In the present study, 720 mg/
kg NCG did not affect the growth performance of Japanese
PP
AR
γ

C/
EB
Pα

C/
EB
Pβ LP

L

Le
pti
n

Adipocyte differentiation
factors

Lipidosis

** * ** *

of lipid metabolism in adipose tissue in vivo of Japanese seabass. FASN ¼ fatty acid
reductase; ATGL ¼ adipose triglyceride lipase; HSL ¼ hormone-sensitive triglyceride
ng protein; LPL ¼ lipoprotein lipase. Values marked with asterisk(s) are significantly



50 μm

(A) (B)

(C) (D)

50 μm

50 μm 50 μm

Fig. 3. Morphological changes of Japanese seabass preadipocyte during differentiation. Confluent preadipocytes were induced for differentiation with an adipogenic medium. (A)
The preadipocyte on d 2; (B) preadipocyte induction after growth to confluence stage at d 6; (C) the mature adipocyte after 7 d induction; (D) the oil red O stained mature adipocyte,
with the lipid drops stained in red color.

Re
la
tiv
e
m
RN

A
ex
pr
es
si
on

FA
SN

AC
C
1

HM
GC
R

AT
GL HS

L

PP
AR
γ

C/
EB
Pα

C/
EB
Pβ LP

L

Le
pti
n

0.0

0.5

1.0

1.5 N0 NCG

*** **** **

Adipogenesis Lipolysis Adipocyte differentiation
factors

LipidosisCholesterol
synthesis

Fig. 4. Effect of N-carbamoylglutamate (NCG) treatment on the expression of lipid metabolism related genes in Japanese seabass adipocytes in vitro. FASN ¼ fatty acid
synthase; ACC1 ¼ acetyl-CoA carboxylase 1; HMGCR ¼ 3-hydroxy-3-methylglutaryl-CoA reductase; ATGL ¼ adipose triglyceride lipase; HSL ¼ hormone-sensitive triglyceride
lipase; PPAR ¼ peroxisome proliferator activated receptor; C/EBP ¼ CCAAT-enhancer-binding protein; LPL ¼ lipoprotein lipase. Values marked with asterisk(s) are significantly
different (*, P < 0.05; **, P < 0.01; ***, P < 0.001) (mean ± SEM, n ¼ 4).

H. Huang, X. Zhang, X. Liang et al. Animal Nutrition 7 (2021) 707e715
seabass, which could be related to the Arg level in the basal diet
(1.90%), which might be in the range of growth requirement for
most of fish (NRC, 2011).

As a metabolically stable analog of NAG, NCG has been proven to
increase endogenous Arg synthesis and Arg level in circulating
blood (Huang et al., 2019; Wang et al., 2019a,b; Wu et al., 2004). In
the current study, we consistently found that dietary NCG inclusion
712
increased the serum concentration of Arg. Additionally, NCG
treatment had no effect on the serum lysine level in Japanese
seabass, suggesting that NCG supplementation did not cause
lysine-Arg antagonism. To evaluate the ability of NCG on promoting
endogenous Arg synthesis, the gene expression level of ASS (the
rate-limiting enzyme in providing Arg) was further determined.
The results showed that dietary supplementation with NCG
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stimulated Arg synthesis via increasing plasma Arg level and
upregulating Arg synthesis related gene expression.

While there are numerous reports of potential benefits on
reducing fat deposition from Arg supplementation (Fouad et al.,
2013; Tan et al., 2009, 2011), information on the effects of Arg
endogenous activator-NCG on fat deposition is not available. It is
well-known that fat deposition is mainly affected by the course of
reaction of lipid metabolism, including adipogenesis, adipocytes
differentiation, deposition and lipolysis, etc (Wood et al., 2008). The
balance of lipid metabolism depends both on lipogenesis and
lipolysis. Fatty acid synthesis is regulated by key enzymes,
including acetyl coenzyme A (CoA), ACC and FASN, whereas hy-
drolysis of triacylglycerols in adipose tissue is catalyzed by HSL and
ATGL (Zimmermann et al., 2004; Zou and Shao, 2008). In the pre-
sent study, we found that dietary NCG supplementation decreased
the FASN mRNA level significantly, but did not affect the gene
expression of ACC, HSL and ATGL. The downregulation of FASN gene
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expression will reduce the availability of fatty acids for esterifica-
tion into triglycerides (TG) and storage in adipose tissue. In addi-
tion, we observed that the mRNA level of HMGCR was
downregulated with dietary NCG inclusion. HMGCR is a crucial
enzyme during cholesterol biosynthesis and affects local lipids
uptake and deposition in pig peripheral tissues, which is indis-
pensable for lipid metabolism (Cui et al., 2010). Besides, PPARg, C/
EBPa and C/EBPb stimulate differentiation and proliferation of
porcine adipocytes, so an increase in its expression would lead to
enhanced lipogenesis in adipose tissue (Ding et al., 2000). Our re-
sults showed that NCG supplementation resulted in decreased
mRNA levels of PPARg and C/EBPb, which indicated that NCG
inhibited adipogenesis in Japanese seabass adipose tissues. LPL
mediates the hydrolysis of TG-rich lipoproteins and produces
nonestesterified fatty acid (NEFA) preferentially for fat storage in
adipose tissue, so LPL is considered a gatekeeper in the develop-
ment or progression of obesity (Wang et al., 2009). Furthermore,
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studies found that leptin mRNA level in VAT is positively correlated
with the degree of obesity, and with the proliferation of pre-
adipocytes and hypertrophy of adipocytes, the expression of lep-
tin mRNA in adipocytes also increased (Chen et al., 1997;
Shillabbeer et al., 1998). Interestingly, mRNA levels for LPL and
leptin were substantially decreased in response to dietary NCG
supplementation. The most novel and significant result of the
current study is that dietary NCG may reduce fat deposition by
modulating lipid metabolism in adipose tissue of Japanese seabass.

The formation and differentiation of adipocytes is a complex
process, and the adipocytes culture model in vitro provides a better
condition for the study of adipogenesis. In this study, we investi-
gated the characteristic of Japanese seabass pre-adipocytes as they
developed into mature adipocytes. In the current study, similar to
mammals and other fish, Japanese seabass pre-adipocytes were
able to differentiate in mature adipocytes accompanied by lipid
accumulation in the cytoplasm. It was found that adipocytes dif-
ferentiation is characterized as lipid droplet accumulation, from a
fibroblast-like cell to a mature adipocyte that is filled with a single
large lipid droplet in the cytoplasm. Studies in fish have shown that
lipid droplets with different size gradually filled in the cell, and that
small lipid droplets fused into large lipid droplets and eventually
differentiated into mature adipocytes, as shown in Atlantic salmon
(Salmo salar) (Vegusdal et al., 2003), rainbow trout (Oncorhynchus
mykiss) (Bouraoui et al., 2008), gilthead sea bream (Sparus aurata)
(Salmer�on et al., 2013), Nile tilapia (Wen et al., 2018) and grass carp
(Ctenopharyngodon idellus) (Liu et al., 2015). In the current study,
we successfully isolated pre-adipocytes from the visceral adipose
tissue of Japanese seabass and induced them into mature adipo-
cytes for the first time. To explore the effects of NCG on lipid
metabolism-related gene expression in adipocytes in vitro, we
measured the mRNA level of genes mentioned above. The results of
the present study demonstrated that NCG treatment significantly
inhibited FASN, HMGCR, LPL and leptin mRNA level in adipocytes.
Besides, there was no significant difference in lipolysis (ATGL and
HSL) and adipocytes proliferation and differentiation key factors
(PPARg, C/EBPa and C/EBPb) of Japanese seabass adipocytes.

In addition to adipocytes, themost abundant cell type in adipose
tissue, adipose tissue also contains pre-adipocytes (which are adi-
pocytes that have not yet been loadedwith lipids), endothelial cells,
fibroblasts, leukocytes and macrophages (Tilg and Moschen, 2006).
Hence, adipose is no longer considered an inert tissue mainly
devoted to energy storage but is emerging as an active participant
in regulating physiologic and pathologic processes, which produces
and releases a variety of pro-inflammatory and anti-inflammatory
factors (Fantuzzi, 2005). Furthermore, changes in the number and
size of the adipocytes affect the microenvironment of expanded fat
tissues, accompanied by alterations in adipokine secretion (Choe
et al., 2016). Wang et al. (2017) compared the structure and meta-
bolic functions of VAT and subcutaneous adipose tissues (SAT) of
Nile tilapia, and found that VAT is the preferable lipid deposition
tissue, with more inflammatory cells and lower lipid catabolic ac-
tivity than SAT (Wang et al., 2017). Over-accumulated adipose tis-
sue in fish abdomins impairs health and decreases stress resistance
(Chatzifotis et al., 2010; Cheng et al., 2006). In the present study, we
found that dietary NCG supplementation significantly down-
regulated inflammation-related factors (IL-1b and IL-10) and
apoptosis factors (caspase-3 and caspase-8) mRNA level in Japanese
seabass VAT in vivo. Concurrently, similar findings were observed
in vitro, in which the pro-inflammatory factor IL-8 was down-
regulated, and the anti-inflammatory factor IL-10 was up-
regulated simultaneously in mature adipocytes with NCG treat-
ment. Gao et al. (2005) reported that up-regulated gene expression
of adipose inflammatory chemokines and cytokines was associated
with increased fat accumulation and adipocytes hypertrophy.
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Primary adipocytes often do not fully reproduce in vivo results
because single cells are missing many functions compared with
adipose tissue. Although there was no difference in the gene
expression of adipocytes proliferation and differentiation key fac-
tors in vitro, it was consistent with the in vivo results in the inhi-
bition of adipogenesis genes and inflammatory factor mRNA levels.
As described in the previous study (Huang et al., 2019), an impor-
tant function of 720mg/kg NCG inclusionwas to alleviate fatty liver
disease in the species. In the present study, we focused on the lipid
metabolism in the VAT, and found the significantly downregulated
lipogenesis gene expression by NCG inclusion in vivo and in vitro.

5. Conclusion

Dietary NCG can reduce visceral fat deposition by diminishing
adipogenesis related genes expression, and further reduce the in-
flammatory and apoptosis responses via promoting Arg endoge-
nous synthesis in Japanese seabass in vivo and in vitro. Moreover,
we successfully established a primary adipocytes culture system,
and the isolated pre-adipocytes of Japanese seabass could be awell-
worked assay for lipid metabolism study.
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