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ABSTRACT

Compositional data analysis (CoDA) methods have
increased in popularity as a new framework for ana-
lyzing next-generation sequencing (NGS) data. CoDA
methods, such as the centered log-ratio (clr) transfor-
mation, adjust for the compositional nature of NGS
counts, which is not addressed by traditional nor-
malization methods. CoDA has only been sparsely
applied to NGS data generated from microbial com-
munities or to multiple ‘omics’ datasets. In this study,
we applied CoDA methods to analyze NGS and un-
targeted metabolomic datasets obtained from bac-
terial and fungal communities. Specifically, we used
clr transformation to reanalyze NGS amplicon and
metabolomics data from a study investigating the ef-
fects of building material type, moisture and time
on microbial and metabolomic diversity. Compared
to analysis of untransformed data, analysis of clr-
transformed data revealed novel relationships and
stronger associations between sample conditions
and microbial and metabolic community profiles.

INTRODUCTION

Technological advances in DNA-sequencing technologies,
such as next-generation sequencing (NGS), combined with
clever primer barcoding strategies have allowed major ad-
vances in our understanding of microbial communities
across numerous environments (1). NGS allows the genera-
tion of vast numbers of DNA sequences from microbiolog-
ical samples, anything from seafloor sediments (2) to hospi-
tal surfaces (3), which can be used to identify and enumerate
hundreds or thousands of bacteria, fungi, archaea or virus
species in a given sample (4). This data is compositional in
nature: due to sequencing depth limitations, an increase in
the measurement of one taxa results in a decrease in the
measurement of another even if the absolute abundance of
one taxa is unchanged. Furthermore, each NGS sample has
a different library size and every sequence-based taxonomic
abundance count represents a relative rather than an abso-
lute abundance, meaning that taxa counts in one sample are

not directly comparable to counts in other samples. Other
data types used for microbiome analysis, such as data from
untargeted metabolomics and transcriptomics, are also rel-
ative rather than absolute and therefore compositional (5).
Typical methods used to normalize NGS-generated count
data between samples, including rarefaction, spike-in nor-
malization, normalization by library size and transcripts
per million, often do not address the compositional nature
of the data (6). Since NGS instruments can only sequence
reads to a certain capacity, a higher number of reads of one
sequence will impact the number of other reads that can
be sequenced. The limitations of standard normalization
methods for compositional data are described thoroughly
elsewhere (6–8).

One promising approach to dealing with compositional
data, such as nucleotide sequencing libraries or untargeted
metabolite data from complex microbial communities, is the
centered log-ratio (clr) transformation. By recasting relative
count data with respect to a reference (the sample geometric
mean), the clr transformation converts compositional data
to scale-invariant data in real space, thereby allowing ap-
plication of multivariate statistical methods (7–9). Recently,
clr transformation has gained traction in the analysis of se-
quencing data for both RNA-seq and genomics (10–13),
though fewer studies have used such transformations for
microbial metagenomics and multiomics analysis (14,15).
Multiomics is the application of multiple different dataset
types, such as metabolomics, metagenomics and transcrip-
tomics, to the same biological samples. While multiomics
analyses can offer insight into the relationship between dif-
ferent levels of biology, integrating these data can be chal-
lenging. Normalization methods for one ‘omics’ type, such
as RNA-seq, may introduce spurious results when applied
to metagenomics and vice versa (16,17). Applying clr trans-
formation rather than normalization to any ‘omics’ dataset
will result in scale-invariant datasets and facilitate multi-
omics data integration.

Here, we explored the impact of clr transformation and
other compositional data analysis (CoDA) methods on the
analysis of microbiome multiomic data by reanalyzing bac-
terial and fungal community NGS datasets and a metabo-
lite dataset from a prior study that had used standard nor-
malization techniques. We reanalyzed these data using clr
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transformation and applied recently developed methods for
multiomics data integration and selection of microbial bal-
ances. Our results showed that the combination of data
transformation and multiomics analyses revealed novel bi-
ological patterns and interactions not identified with stan-
dard normalization approaches.

MATERIALS AND METHODS

The ‘omics’ portion of the original study included count
data from NGS of bacterial (16S) and fungal (ITS) ampli-
con libraries, as well as counts of untargeted metabolomic
HPLC-MS/MS analysis, obtained from microbial com-
munity samples collected longitudinally from four com-
mon building materials: gypsum, mold-free (MF) gypsum,
medium-density fibreboard and plywood (18). The materi-
als were inoculated post-sterilization by passive settling in
three locations: a laboratory (control) and two residences
(locations 1 and 2). Half of the samples were submerged in
water after inoculation for 12 h and half were kept dry. In
this study, the authors analyzed the effect of inoculation lo-
cation, material type and wetting status on overall micro-
bial and metabolite diversity and identified co-occurrences
between microbes and metabolites. Samples at time point
zero were taken just after materials were brought into the
lab, and materials were then sampled five additional times,
approximately every 5 days. The original data contained
144 samples of 6200 metabolite observations, 330 samples
of 26 578 fungal operational taxonomic units (OTUs) and
338 samples of 6466 bacterial OTUs. Unequal sample sizes
resulted from failures in sequencing reactions and selected
use of metabolomic analyses. Data from the original pa-
per, including OTU tables for the fungal/bacterial datasets
and metabolite features, were downloaded from FigShare
(https://doi.org/10.6084/m9.figshare.7865015.v2).

Two different methods of zero-handling were compared:
zero-replacement using the pseudo-counts method from the
R package zCompositions (19) version 1.3.3 and replace-
ment of zeroes with ones. Since we did not observe any
substantial differences between zero-handling methods in
the NMDS ordination plots, all subsequent analyses used
data transformed after zero-handling with zCompositions
pseudo-counts. Clr transformation was performed sepa-
rately on all three datasets: metabolites, fungi and bacteria.
To compute the clr transformation for each sample, each
count value in that sample was divided by the geometric
mean of the sample, then the natural log of that ratio was
taken (9):
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where Xj is a sample in a dataset, g(Xj) is the geometric mean
of that sample, X1j is the first value in a sample and XDj is
the last value in a sample of D-values.

As a guide to the reader, we have provided a diagram of
the various datasets and analyses used in this study (Figure
1).

Figure 1. Schematic of the analyses performed on the clr-transformed and
untransformed datasets. NMDS and DIABLO analyses were performed
on both types of datasets. Only untransformed data were inputted into sel-
bal, and only clr-transformed data were used to calculate Spearman cor-
relations.

NMDS ordination plots

The clr-transformed values following zero replacement with
the zCompositions pseudo-counts or the one-count ap-
proach, in which zeroes were replaced with ones, were used
to generate NMDS ordination plots with the R vegan pack-
age (version 2.5-6) using Euclidean distances (20). NMDS
plots were created in R using ggplot2 version 3.2.1c (21),
and samples were colored by time point, location of initial
material inoculation, material type and wetting condition,
respectively (see Lax et al. (18) for details). We also gen-
erated NMDS plots using Bray–Curtis distance with un-
transformed data rarefied to 1000 for the bacterial and fun-
gal datasets. Permutational multivariate analysis of vari-
ance (PERMANOVA) was performed for each condition
(time, material, location and wetting status) in every dataset
(bacteria, fungi and metabolites) using the R package ve-
gan with 9999 permutations for all time points except time
zero, with the P-values corrected for multiple comparisons
using the false discovery rate (FDR) Benjamini–Hochberg
method. The PERMANOVA is a multivariate test used to
determine if the centroid or dispersion of a set of samples
is equivalent among specified categories (e.g. time points
or material types). In this case, the centroid and disper-
sion were estimated using the between-sample Euclidean
and Bray–Curtis distances.

Spearman correlations

Genera of the fungal and bacterial taxa present in >10%
of samples and the 50 most abundant metabolites were
selected for correlation analysis. 16S and ITS IDs in the
OTU tables were replaced with the genus name using the
Greengenes (22) and Unite (23) databases, then the clr-
transformed count values for each sample were summed by
genus. Spearman correlations were computed using the R
package corrplot (24) on wet samples only. For each mate-
rial, we computed correlations between genera from three
different combined multiomics datasets: (i) bacteria and
fungi, (ii) metabolites and bacteria, and (iii) metabolites and
fungi. P-values were adjusted with the Bonferroni correc-
tion.

Multiomics integration

We analyzed the correlation structure of both the un-
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Figure 2. NMDS ordination plots showing clustering of samples. Columns correspond to dataset type; 16S, ITS and Metabolomics are columns one, two
and three, respectively (n = 294, 319 and 144). Each row of plots is colored by wetting status, material and location. NMDS plots in rows 1, 3 and 5 were
created from clr-transformed data, while NMDS plots in rows 2,4 and 6 were created from untransformed data.

transformed and the clr-transformed datasets using the
mixOmics DIABLO framework, an integrative, multivari-
ate method for multiomics classification (25). The same bac-
terial, fungal and metabolite datasets were integrated with
the R package mixOmics version 6.10.8c (25) using the DI-
ABLO framework to assess the correlation structure at the
component level for each of the four conditions: time, ma-
terial, location and wetting status.

Microbial balances

We supplemented our analysis with the R package selbal
version 0.1 (26), a CoDA method that detects microbial sig-
natures between different sample types (26). Rather than
identifying large numbers of differentially abundant taxa

between sample types, selbal searches for the smallest num-
ber of taxa in a microbial balance that are highly predictive
of the sample conditions. selbal was used to detect fungal
and bacterial signatures associated with time points in wet
samples, gypsum or MF gypsum on wet samples and wet
or dry condition for genera of the fungal and bacterial taxa
present in >10% of samples. Input to selbal was the raw
counts of fungal and bacterial taxa summed by genus as sel-
bal has its own zero-handling and transformation method
within the package. Fungal and bacterial datasets were pro-
cessed in selbal separately. We did not use selbal with the
metabolite dataset as the method is designed for microbial
balances. Furthermore, selbal can only predict microbial
balances for dichotomous and continuous response vari-
ables, so we only performed this analysis for the response
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Table 1. PERMANOVA results (9999 permutations) for clr-transformed and untransformed (rarefied) data for three microbial community datasets

clr-transformed (Euclidean) Untransformed (Bray–Curtis)

Dataset Variable R2 p p-adj1 R2 p p-adj1

Bacteria Time 0.0352 0.0001 0.0024 0.0414 0.0001 0.0024
Location 0.0424 0.0001 0.0024 0.0627 0.0001 0.0024
Material 0.0907 0.0001 0.0024 0.1270 0.0001 0.0024
Wet or dry 0.0921 0.0001 0.0024 0.1445 0.0001 0.0024

Fungi Time 0.0297 0.0001 0.0024 0.0505 0.0001 0.0024
Location 0.0347 0.0001 0.0024 0.0702 0.0001 0.0024
Material 0.0270 0.0001 0.0024 0.0540 0.0001 0.0024
Wet or dry 0.0464 0.0001 0.0024 0.0616 0.0001 0.0024

Metabolites Time* 0.0723 0.0006 0.0144 0.0305 0.6755 1
Location 0.0186 0.1389 1 0.0300 0.0137 0.3288
Material* 0.2295 0.0001 0.0024 0.0262 0.1767 1
Wet or dry 0.0965 0.0001 0.0024 0.0637 0.0001 0.0024

1FDR corrected for multiple comparisons.
*Significant only after clr transformation.

variables wetting status (dichotomous), wet gypsum versus
wet MF gypsum (dichotomous) and time (continuous).

RESULTS AND DISCUSSION

Sample diversity by condition

We used CoDA approaches to determine the effects of
sample condition (material type, inoculation location and
wetting) and time on microbial and metabolite diversity
using the data from Lax et al. (18), and compared the
CoDA results to the results using non-transformed (rar-
efied) data using the same statistical tests. We tested two
different zero-handling methods on the datasets: pseudo-
counts from the zCompositions package and replacement
with counts of one. As the NMDS plots looked highly
similar for both zero handling methods, we present only
the results of the zCompositions-based analyses (Figure
2). The NMDS plots of the clr-transformed data identified
several differences compared to NMDS plots of untrans-
formed data, though the separation between wet and dry
samples remained. The clr-transformed metabolite NMDS
plots showed more distinct separation by wetting status and
material type compared with the results of the untrans-
formed NMDS plots, and the clustering of fungal samples
for location 1 and the control location was also more evi-
dent (Figure 2). We did not observe apparent clustering of
samples by time point (Supplementary Figure S1).

PERMANOVA tests indicated that location, time, mate-
rial and wetting condition had significant associations with
bacterial and fungal community diversity (P = 0.0001, p-
adj = 0.0024 for all comparisons; Table 1). The clr trans-
formation of metabolite data found that time, material and
wetting condition, but not location, were significantly cor-
related with metabolite composition. This was also the case
for the untransformed analyses, except for the untrans-
formed metabolite dataset which only identified a signifi-
cant difference between wetted and unwetted samples (Ta-
ble 1). In the original study, the significant effect of ma-
terial on the fungal community composition was not ob-
served, meaning that our results contradicted the original
study’s conclusion that observed variations in fungal com-
munities on different materials were driven only by mois-

ture conditions. The novel associations identified in the
clr-transformed metabolite datasets also demonstrated that
CoDA has the potential to reveal community level associa-
tions not identified with non-CoDA approaches.

Correlations between abundant bacteria, fungi and metabo-
lites

Applied properly, clr-transformation allows the application
of standard statistical methods to analyze relationships be-
tween microbiome datasets, such as fungal and bacterial
sequencing datasets and metabolomics, as we do here (9).
Most correlations in all the combined datasets were within
the same ‘omics’ datasets. For example, metabolites were
mostly correlated with other metabolites rather than with
bacteria or fungi. Three fungal genera were correlated sig-
nificantly (p-adj < 0.05) with bacteria on wet gypsum: (i)
Neurospora with Acinetobacter, Agrobacterium and Erwina;
(ii) Aureobasidium with Agrobacterium, Cronobacter, En-
terobacter, Erwina and Pseudomonas; and (iii) Coprinop-
sis with Agrobacterium, Bacillus, Cronobacter, Erwina and
Pseudomonas. No significant bacteria-fungus correlations
were observed on the other wetted materials. Only two gen-
era were significantly correlated with metabolites, namely
Acinetobacter and Terribacillus. Values for the Spearman
correlations (p-adj < 0.05) can be found in Supplementary
Table S1 and correlation matrices for correlations with p-
adj < 0.05 can be found in Supplementary Figure S2. Mito-
chondrial sequences, which are likely an indicator of fungal
abundance in general, were also identified to be correlated
with Neurospora and some metabolites.

For all three correlation comparisons, bacteria-fungi (b-
f), metabolite-bacteria (m-b), and metabolite-fungal (m-f),
the number of significant correlations (p-adj < 0.05) on
wet, MF gypsum (b-f = 52, m-b = 23 and m-f = 5) was
much lower than the number of significant correlations ob-
served for wet gypsum (b-f = 369, m-b = 284 and m-f =
121) and wet plywood (b-f = 302, m-b = 147 and m-f =
159) (Supplementary Table S1). This suggested that the de-
creased presence of fungal taxa on MF gypsum (MF gyp-
sum had the lowest fungal abundance observed by quanti-
tative polymerase chain reaction in the original study) af-
fected the bacterial community structure in such a way as
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Figure 3. Correlation structure between bacterial, fungal and metabolic datasets from the mixOmics DIABLO framework, which plots the components
from the framework across the datasets by sample condition: (A) time point, (B) material, (C) location and (D) wet or dry condition. Higher values indicate
greater correlation structure between the compared datasets. The ellipses indicate discriminative power of the components to separate samples by colored
condition. The first column of plots was created with clr-transformed data while the second column of plots was created from untransformed data.

to alter its metabolic profile. Additionally, the original study
found Bacillus and Pseudomonas to be negatively correlated
with one another on wet materials. However, our analysis
found that found that this correlation was material specific:
Bacillus and Pseudomonas were not significantly correlated
on MF gypsum (corr = 0.376, p-adj = 1) or plywood (corr
= −0.558, p-adj = 0.978), but were negatively correlated on
gypsum (corr = −0.428, p-adj = 0.0275).

Multiomics integration

Comparisons of DIABLO mixOmics plots produced with
clr-transformed and untransformed data revealed consis-
tently greater correlation structure across all the three
‘omics’ datasets with the clr-transformed data (Figure 3),
suggesting that clr-transformation can uncover more real
correlations between multiomics data. Comparison of cor-
relation values between clr-transformed datasets found
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Figure 4. Microbial balances for abundant bacterial and fungal genera at different conditions computed with selbal, where numerator genera are more
relatively abundant than denominator genera for higher balance values. (A) Microbial balance of bacteria in wet and dry samples. (B) Microbial balance
of fungi in wet and dry samples. Microbial Balances of wet gypsum and wet MF gypsum of (C) bacteria and (D) fungi. Microbial balances for wet samples
over time points for (E) bacteria and (F) fungi.

weaker correlation structure between the bacteria and
metabolite datasets compared to the other pairwise dataset
comparisons (Figure 3). The correlation structure of the
datasets extracted by the DIABLO framework found the
strongest discrimination between samples based on the ma-
terial (Figure 3B) and wetting condition (Figure 3D), as
seen by the greater separation of samples by those variables.
This outcome agreed with the results of the NMDS ordina-
tion plots, which identified the strongest associations of the
bacterial, fungal and metabolite datasets with wetting con-
dition and material type (Figure 2).

Microbial balances between conditions

We analyzed the same abundant fungal and bacterial gen-
era used in the correlation analyses with selbal to deter-
mine fungal and bacterial balances for wet samples over
time, wet gypsum or wet MF gypsum samples and wet and
dry samples (Figure 4). Interestingly, selbal was the only
method that detected associations with any of the datasets
and time point. selbal additionally identified many bacterial
genera associated with wet or dry samples that were biolog-
ically plausible (Figure 4A). Species of one of the genera
associated with wet samples, Paenibacillus, have been iso-
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lated from wet environments, including milk, wetlands and
a fresh water spring (27–29). The fungal genera Neurospora
and Aureobasidium were more predictive of wet samples,
while the fungal genus Coprinopsis was more predictive of
dry samples (Figure 4B). As previously noted, these three
genera were the only fungi associated with bacterial gen-
era in wet conditions in the Spearman correlation analyses.
Neurospora has also been identified as an important poten-
tial allergen in indoor environments (30,31). Acinetobacter,
Neurospora and Aspergillus were relatively more abundant
on wet MF gypsum compared to wet gypsum, whereas Mi-
crococcus, Sphaeropsis and Penicillium were more abundant
on wet MF gypsum (Figure 4C and D). Fungal and bacte-
rial microbial signatures detected by selbal as more abun-
dant in earlier or later time points are shown in Figure 4E
and F. Of the genera more abundant in later time points,
Methylobacterium has been shown to be associated with wet
environments (32), Alicyclobacillus species is a known cul-
prit in spoilage of fruit juices (33,34) and Exiguobacterium
has been isolated from marine water (35). The identification
of taxa not identified as interesting in the original study as
potentially biologically relevant, indicates the potential util-
ity of sparse models of microbial balances for investigating
microbial community diversity.

In summary, by using both standard and more recently
developed statistical methods on clr-transformed sequenc-
ing data we discovered relationships and discriminatory fac-
tors not identified in the original study. Additionally, the
greater separation of the clr-transformed data by variables
in some of the NMDS plots and a greater correlation struc-
ture between datasets using clr-transformed data shown in
the DIABLO analyses indicated that the clr transformation
may model the structure of the data better than approaches
like rarefaction. Studies drawing conclusions from sequenc-
ing data normalized only by traditional methods, rather
than CoDA methods, may miss out on novel and interesting
biological insights due to sub-optimal data standardization.
There are some methods, however, to which the clr transfor-
mation of compositional counts may not be the most appro-
priate step. For example, some diversity metrics depend on
‘absence’ or ‘presence’ counts (zeroes or non-zeroes, respec-
tively). Since clr transformation requires the replacement
of zeroes, there are no ‘absent’ species; samples would have
the same number of species ‘present’, rendering this type of
metric useless. This is also true for more complicated diver-
sity metrics like Faith’s Phylogenetic Diversity (PD), which
sums branch lengths for the phylogenetic tree of each sam-
ple for present species (36). If all species are ‘present’, Faith’s
PD will be the same for each sample. Even measures like
evenness, which take taxa abundance into account, are sen-
sitive to bias introduced in sample preparation, sequencing
and analysis methods (37).
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