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Abstract: Spectrum sensing is a core technology in cognitive radio (CR) systems. In this paper, a
multiple-antenna cooperative spectrum sensor based on the wavelet transform and Gaussian mixture
model (MAWG) is proposed. Compared with traditional methods, the MAWG method avoids the
derivation of the threshold and improves the performance of single secondary user (SU) spectrum
sensing in cases of channel loss and hidden terminal. The MAWG method reduces the noise of the
signal which collected by the multiple-antenna SUs through the wavelet transform. Then, the fusion
center (FC) extracts the statistical features from the signals that are pre-processed by the wavelet
transform. To extract the statistical features, an sensing data fusion method is proposed. The MAWG
method divides all SUs that are involved in the cooperative spectrum sensing into two clusters
and extracts a two-dimensional feature vector. In order to avoid complicated decision threshold
derivation, the Gaussian mixture model (GMM) is used to train a classifier for spectrum sensing
according to these two-dimensional feature vectors. Simulation experiments are performed in the
κ − µ channel model. The simulation shows that the MAWG can effectively improve spectrum
sensing performance under the κ − µ channel model.

Keywords: cognitive radio; spectrum sensing; multiple-antenna; wavelet transform; Gaussian
mixture model

1. Introduction

Spectrum sensing technology is used to detect and judge whether the primary user (PU) signal is
present and find the spectrum holes for secondary users (SUs) to access [1–3]. The single SU spectrum
sensing methods are susceptible to channel fadding, hidden terminal and other issues. To solve these
shortcomings of classical spectrum sensing, random matrix theory (RMT) is applied to cooperative
spectrum sensing (CSS), which has become a research hotspot [4]. In these methods, the covariance
matrix should be calculated based on the signal matrix from SUs. Furthermore, the corresponding
eigenvalue is calculated as a statistical feature of the covariance matrix for spectrum sensing. There are
many CSS methods based on RMT have been proposed [5–8], such as the ratio of the maximum and
minimum eigenvalue (MME), the ratio of the maximum eigenvalue to the trace (RMET), the difference
between the maximum eigenvalue and the average eigenvalues (DMEAE), and the difference between
the maximum and the minimum eigenvalue (DMM). These methods need to derive threshold based on
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the probability distribution of statistical features. However, the derivation of the threshold is usually
complexity and inaccuracy.

Spectrum sensing based on multiple-antenna can also overcome the problems of traditional
methods, such as noise uncertainty and path losses [9]. Multiple-antenna technology not only improves
spatial diversity and spatial multiplexing gain but also effectively reduces the impact of path loss,
shadows and other factors during the sensing process [10,11]. A spectrum sensing method based on
the correlation coefficient by calculating the correlation coefficient between each antenna is proposed in
Reference [12]. If the PU signal exists, the received signals between antennas are correlated. Otherwise
the received signals between antennas are noises and have no correlation, the PU signal does not exist.
According to the correlation of multiple-antenna received signals, a spectrum sensing method based
on sampling covariance eigenvalue is proposed in Reference [13], which has good robustness to noise
uncertainty. A CSS method for multiple-antenna CR networks based on improved energy detectors is
proposed in Reference [14]. In these methods, it is also necessary to derive a decision threshold and
then compare the feature of signal with the threshold to obtain a spectrum sensing decision.

The above methods all needed to derive the threshold, which affected sensing performance
in some cases. Significantly, spectrum sensing schemes based on machine learning can avoid the
calculation of threshold. These spectrum sensing methods are adaptive, which has been studied by
many scholars. Spectrum sensing can be seen as a two-class problem in machine learning, whether
the PU signal exists [15–17]. In [18], the energy values of the signals are used to obtain a classifier by
using the K-means clustering algorithm and use the classifier to judge whether the PU exists. The
maximum eigenvalue, minimum eigenvalue and the dominant eigenvalue of signals are calculated in
Reference [19]. This method combined these eigenvalues into a feature vector, and uses the K-means
or Gaussian mixture model (GMM) to achieve spectrum sensing. Based on the labeled signal features,
the support vector machine (SVM) and neural network (NN) in supervised learning are used to study
spectrum sensing in Reference [20]. In Reference [21], a feature calculation method based on RMT is
proposed, which improves the accuracy of the signal feature. K-means or K-medoids is used to train
classifier for spectrum sensing. To reduce the influence of noise on spectrum sensing performance, a
feature extraction method combining the empirical mode decomposition (EMD) and wavelet transform
is proposed in Reference [22].

Based on the current research, to improve the spectrum sensing performance in a fading
environment, this paper proposes multiple-antenna cooperative spectrum sensing based on the wavelet
transform and Gaussian mixture model (MAWG), which combines the advantages of cooperative SUs,
multiple-antenna and clustering algorithm. The MAWG not only reduces the influence of path losses,
shadows and other factors on spectrum sensing but also avoids the complex derivation of threshold.

The main contributions of this paper can be summarized as follows.

• A new spectrum sensing method is developed to reduce the noise associated with the signal
by using the wavelet transform. In this method, each SU collects spectrum sensing data from
environment, performs wavelet transform to reduce noise and send the pre-processed sensing
data to fusion center (FC).

• A spectrum sensing method based on GMM is proposed to avoid threshold derivation. The
GMM is used to train the CSS classifier. After training, the FC uses the classifier to make the final
decision about the PU state.

• In the experimental simulation section, we compare and analyze the performance of MAWG
and single antenna CSS method [21,23]. These methods are simulated using the κ − µ channel.
The simulation results show that the MAWG can effectively improve the spectrum sensing
performance.

This paper is organized as follows. Section 2 introduces the system model of multiple-antenna
CSS. Section 3 proposes a CSS method based on the GMM, which is called MAWG. Section 4 simulates
the MAWG method. Results indicate that the MAWG can effectively improve the spectrum sensing
performance. Section 5 summarizes the full text and outlines a simple plan for future research work.
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2. Basic Multiple-Antenna CSS and Eigenvalues in Random Matrix

There are some problems in cognitive radio networks (CRN), which are path losses and shadows.
It is difficult for a single SU to accurately determine and judge whether the PU is using the licensed
spectrum [24–27]. Therefore, in order to combat and reduce the impact of fading channels on spectrum
sensing performance, this paper study cooperative SUs with multiple-antenna for spectrum sensing.
The basic multiple-antenna CSS diagram is shown in Figure 1.

PU
SU

SU

SU

SU

Reporting channel

Sensing channel

SU

FC

Figure 1. Basic multiple-antenna CSS diagram.

According to Figure 1, it is assumed that there is only one PU, M cooperative SUs and a FC in the
cognitive radio network. Each SU participating in the CSS has Aantennas. The PU and the FC only
have one antenna, respectively. In Figure 1, the task of each SU with multiple-antenna is collecting
sensing data, using wavelet transform to reduce noise and upload the pre-processed sensing data
to the FC. The FC clusters the received signals from SUs and extracts feature vectors according to
different clusters. Based on these feature vectors, a classifier is trained by using GMM. After training,
the classifier is used for spectrum sensing in the FC.

According to the signal status received by each antenna of the SUs, a binary hypothesis model
can be expressed by [28]

xl
i(n) =

{
wl

i(n), H0,

hl
i(n)s

l
i(n) + wl

i(n), H1,
(1)

n = 1, 2, ..., N, where xl
i(n) represents the signal that is received by the lth antenna of the ith SU; hl

i(n)
represents the channel gain between PU and lth antenna of the ith SU; sl

i(n) represents the signal
that is transmitted by the PU; wl

i(n) represents Gaussian white noise (GWN); H1 and H0 represent
the presence and absence of the PU signal, respectively. N represents the number of sampling points.
In the multiple-antenna system, the received signals from different antennas exist correlation. The
correlation [29] between the ath, a ∈ 1, 2, ..., A and the bth, b ∈ 1, 2, ..., A antenna can be defined as

Cab = e−23Λ2(
dab

ν ), (2)

where Λ =
√

θ2+2 cos θ−2
2θ , dab represents the distance between the ath and the bth antenna, ν represents

the wavelength and θ indicates the propagation direction of antenna. If ν = 2dab and θ → 0 rad, the
correlation Cab is the largest because of the Λ2( dab

ν )→ 0. Thus, in this condition, sa
i (n) = sb

i (n) = si(n).
In this paper, a sample condition is considered, furthermore Equations (1) is rewritten as

xl
i(n) =

{
wl

i(n), H0,

hl
i(n)si(n) + wl

i(n), H1,
(3)



Sensors 2019, 19, 3863 4 of 18

Based on the above assumption, the definition xl
i = [xl

i(1), xl
i(2), . . . , xl

i(N)] represents the signal
that is received by the lth antenna of the ith SU. Thus, a signal matrix can be obtained

Xi =


x1

i (1) x1
i (2) · · · x1

i (N)

x2
i (1) x2

i (2) · · · x2
i (N)

...
...

. . .
...

xA
i (1) xA

i (2) · · · xA
i (N)

 , (4)

where Xi ∈ RA×N . For the convenience of the representation, the covariance matrix of the SU received
signal is RXi = E[XiXT

i ]. Define a signal matrix Si of PU received by all antennas of ith SU after channel
losses. The covariance matrix of the Si is RSi = E[SiST

i ]. Further, RXi [9,12] can be calculated by

RXi = RSi + σ2I, (5)

where I represents the identity matrix. The eigenvalue of RXi can be expressed by

λj = αj + σ2, j = 1, 2, . . . , A, (6)

where αj represents the jth eigenvalue of RSi .
For H0, the PU signal does not exist, and only the GWN exists in the signal matrix Xi, which

means that RXi = σ2I. At this time αj = 0 and λmax = λ2 = λ3 = · · · = λmin = σ2.
When H1 is established, RXi = RSi + σ2I. Since the PU signal itself has a correlation, αj makes λj

no longer be equal. Therefore, we can get λmax > λ2 > λ3 > · · · > λmin.
In the following, the difference between the maximum eigenvalue and the minimum eigenvalue

TDMM is calculated by
TDMM = λmax − λmin. (7)

The ratio of the maximum eigenvalue to the matrix trace TRMET is calculated by

TRMET =
λmax

tr(RXi )
, (8)

where tr(·) represents the trace of the matrix.
For the TDMM feature, when H0 is established,

TDMM = λmax − λmin = 0; (9)

For H1,
TDMM = λmax − λmin > 0. (10)

Equations (9) and (10) indicate that the values of TDMM are significantly different at H0 and H1,
respectively. Therefore, the TDMM can be used for spectrum sensing.

Similarly, for the TRMET feature, when H0 is established,

TRMET =
σ2

Aσ2 =
1
A

; (11)
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For H1, λmax = αmax + σ2, and

TRMET =
αmax + σ2

αmax + α2 + · · ·+ αmin + Aσ2

=
αmax + σ2

Aα + Aσ2

=
1
A
× αmax + σ2

α + σ2

>
1
A

, (12)

where α represents the average eigenvalue of RSi . We can see that the values of TRMET are different
under the conditions of H0 and H1 from analyzing Equations (11) and (12), respectively. Therefore,
these TRMET can be used for spectrum sensing.

In the experimental simulation analysis section, to effectively evaluate the performance of
the MAWG algorithm, we use the detection probability Pd and false alarm probability Pf as the
performance evaluation indicators. The specific form is as follows:

Pd = P[Ĥ1|H1], (13)

where Ĥ1 is the measured status of PU being exist while H1 is the actual status of the PU being exist.

Pf = P[Ĥ1|H0], (14)

where H0 is the actual status of the PU being absent.
For convenient reference, the symbols that are used in the paper are summarized as shown in

Table 1.

Table 1. Symbols and notations.

Symbol Notations

wl
i(n) Noise signal received by the lth antenna of ith SU at time n

s(n) PU signal at time n
hl

i(n) Channel loss between PU and the lth antenna of ith SU at time n
xl

i(n) The signal received by the lth antenna of the ith SU at time n
N Sampling points

H1, H0 PU signal exists, PU does not exists
Ĥ1, The measured status of PU being exist
M Number of SUs
A Number of antennas
Xi Signal matrix collected by ith SU
Si PU signal matrix collected by ith SU

RXi , RSi Covariance matrix of Xi and Si
I Identity matrix

λj The jth eigenvalue of RXi

αj The jth eigenvalue of RSi

α Average value of αj, where j = 1, 2, . . . , A
Pf , Pd False alarm probability, detection probability

W Wavelet coefficient
Ŵ Estimated coefficient
β VisuShrink threshold
σ Standard deviation of noise
Ji Xi after wavelet transform

C1, C2 Two clusters composed of different SUs
X, P Matrix corresponding to C1 and C2
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Table 1. Cont.

Symbol Notations

RX ,RP Covariance matrix of to X and P
TDMM DMM eigenvalue
TRMET RMET eigenvalue

TX,z, TP,z Feature from RX and RP.
Tz A feature vector composed of TX,z and TP,z, where z ∈ {DMME, RMET}
S Training feature set

Tb
z The bth training feature Tz

p(x) Gaussian distribution
πk Mixing coefficien
Σk Variance
µk Mean
K Number of clusters

κ − µ Channel loss model
ξ Threshold for controlling Pf and Pd

3. Spectrum Sensing Based on GMM

The GMM is a widely used clustering algorithm which uses multiple Gaussian distributions
as parameter models according to the number of clusters. The expected maximum (EM) algorithm
obtains the most optimal Gaussian distribution parameters by using samples. In spectrum sensing, the
presence of the PU signal and the absence of the PU signal can be considered as two different Gaussian
distributions according to Equation (3). Therefore, the GMM can be used for training. It is noted that
the samples are two-dimensional feature vectors extracted from the sensing signals of SUs.

3.1. Spectrum Sensing System Model Based on GMM

In this section, the GMM is used for spectrum sensing. The whole process is divided into
two parts, that is, the training part and the spectrum sensing part. As shown in Figure 2, the blue
dotted box indicates the training part, and the yellow dotted box indicates the spectrum sensing
part. Each SU previews the authorized spectrum, collects enough sensing data and pre-processes
these data by Wavelet transform. Assume that these sensing data contain both states of PU. Then,
the two-dimensional feature vectors Tz are extracted from these sensing data. Finally, the classifier is
trained on the FC. After the training, the classifier is used for spectrum sensing.

Authorized 

spectrum
GMM Classifier

SU1

SU2

SUM

H1

H0
.

.

.

Signal matrix

Signal matrix

Signal matrix

Wavelet transform

Wavelet transform

Wavelet transform

Sensing date 

fusion 

X

P

Tz 

Sensing date 

fusion 

X

P

Tz 

Collect sensing data
Report sensing data Training part

Spectrum sensing part

Figure 2. Spectrum sensing system model based on GMM.

3.2. Signal Preprocessing Based on Wavelet Transform

Before calculating the two-dimensional feature vector of the SUs signals, in order to reduce
the impacts of noise on the feature and improve the spectrum sesing performance under a low
signal-noise ratio (SNR), the wavelet transform is used to conduct denoising in each SU. For the
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specific case in this paper, it is assumed that the signal collected by the lth antenna of the ith SU is
xl

i = [xl
i(1), xl

i(2), . . . , xl
i(N)] and the specific algorithm steps are as follows [30].

Step 1: The wavelet transform signal xl
i is used to obtain the wavelet coefficient W.

Step 2: The wavelet coefficient W is the threshold that is used to obtain the estimated coefficient Ŵ.
Step 3: Perform wavelet reconstruction using Ŵ and obtain denoised signal.
This paper uses a soft threshold function that is as follows:

Ŵ =

{
sgn(W)(|W| − β), |W| ≥ β,

0, |W| < β,
(15)

where β is the VisuShrink threshold [31,32], which satisfies

β = σ
√

2 ln N, (16)

where σ is the standard deviation of the noise.
After the signals of SUs received are reduced noise by using wavelet noise, a new signal matrix

can be obtained

Ji =


y1

i (1) y1
i (2) · · · y1

i (N)

y2
i (1) y2

i (2) · · · y2
i (N)

...
...

. . .
...

yA
i (1) yA

i (2) · · · yA
i (N)

 . (17)

After sensing data is pre-processed by SUs, these sensing data is uploaded to the FC. In the CSS,
i > 2. To extract signal feature, a sensing data fusion method is used to obtain a two-dimensional
feature vector. It is noted that the fusion method can fuse the sensing data from SUs which equip
different number antennas. Specifically, The FC divides the SUs into two clusters C1 and C2. When
i ≥ 2 and M is an odd number, let J1, J3, . . . , JM ∈ C1 and J2, J4, . . . , JM−1 ∈ C2. When i ≥ 2 and M is
even, let J1, J3, . . . , JM−1 ∈ C1 and J2, J4, . . . , JM ∈ C2. Then, the matrices in C1 and C2 are recombined
to obtain matrices X and P.

When i ≥ 2 and M is an odd number, the signal data that is collected by the SUs in the
recombination cluster C1 can obtain X, which is a (M+1)A

2 × N matrix

X =



y1
1(1) y1

1(2) · · · y1
1(N)

y2
1(1) y2

1(2) · · · y2
1(N)

...
...

. . .
...

yA
1 (1) yA

1 (2) · · · yA
1 (N)

...
...

. . .
...

yl
i(1) yl

i(2) · · · yl
i(N)

...
...

. . .
...

y1
M(1) y1

M(2) · · · y1
M(N)

y2
M(1) y2

M(2) · · · y2
M(N)

...
...

. . .
...

yA
M(1) yA

M(2) · · · yA
M(N)



. (18)

By reorganizing the matrix in cluster C2, P can be obtained as a (M−1)A
2 × N matrix
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P =



y1
2(1) y1

2(2) · · · y1
2(N)

y2
2(1) y2

2(2) · · · y2
2(N)

...
...

. . .
...

yA
2 (1) yA

2 (2) · · · yA
2 (N)

...
...

. . .
...

yl
i(1) yl

i(2) · · · yl
i(N)

...
...

. . .
...

y1
M−1(1) y1

M−1(2) · · · y1
M−1(N)

y2
M−1(1) y2

M−1(2) · · · y2
M−1(N)

...
...

. . .
...

yA
M−1(1) yA

M−1(2) · · · yA
M−1(N)



. (19)

Similarly, when i ≥ 2 and M is even, X and P are also obtained, and both are MA
2 × N matrices.

According to the obtained X and P matrices, the corresponding covariance matrices RX = E[XXT]

and RP = E[PPT] are respectively calculated.
When i ≥ 2 and M is an odd number, it is assumed that the eigenvalues of matrices RX and

RP are λ1(λmax) > λ2 > λ3 > · · · > λ(M+1)A/2(λmin) or λ(M−1)A)/2(λmin) from the maximum
to the minimum. When i ≥ 2 and M is even, then the eigenvalues of matrices RX and RP are
λ1(λmax) > λ2 > λ3 > · · · > λMA/2(λmin) from the maximum to the minimum. According to this,
TDMM can be obtained by

TDMM = λmax − λmin. (20)

TRMET can be calculated by

TRMET = λmax/tr(Rg). g ∈ {X, P} (21)

Based on the covariance matrix, the corresponding statistical feature TDMM or TRMET is calculated.
Let TRX ,z and TRP ,z, where z ∈ {DMM, RMET}, denote the features corresponding to RX and RP,
respectively. Thus, a feature vector is obtained

Tz = [TRX ,z TRP ,z]
T, z ∈ {DMM, RMET}. (22)

In the next section, the classifier is trained by using a sufficient number of Tz feature vectors and
GMM, which is used to achieve spectrum sensing.

3.3. Offline Training Based on GMM

Before training begins, we need to prepare a training feature vectors set [33],

S = {T1
z , T2

z , . . . , TB
z }, (23)

where B is the number of training feature vectors, Tb
z, b = 1, 2, . . . , B is the bth feature vector that is

extracted according to the method that is proposed in this paper. The distributions of GMM can be
expressed by [19]

p(x) =
K

∑
k

πkN (x|µk, Σk). (24)

where K represents the number of mixed components, πk is the mixing coefficient that satisfies
∑K

k πk = 1, N (x|µk, Σk) is a Gaussian distribution with a mean of µk and a variance of Σk,

N (x|µk, Σk) =
1

(2π)
D
2 |Σk|

1
2

e−
1
2 (x−µk)

TΣ−1
k (x−µk). (25)
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According to the situation of spectrum sensing, spectrum sensing can be considered as a two-class
problem whether the PU is using the licensed spectrum, which means K = 2. Thus, Equation (24) can
be rewritten as

p(x) = π1N (x|µ1, Σ1) + π2N (x|µ2, Σ2). (26)

The maximum likelihood function is as follows:

ln p(S|π, µ, Σ) =
B

∑
b=1

ln{
K

∑
b=1

πkN (Tb
z|µk, Σk)}. (27)

To solve the parameters in Equation (26), the maximum likelihood function Equation (27) is used
to estimate the parameters (π1, µ1, Σ1) and (π2, µ2, Σ2).

The process is described by Algorithm 1.

Algorithm 1 : Offline training based on GMM.
Initialization: K = 2, πk, µk, Σk, where k = 1, 2.
Repeat:
Step 1: Calculate the posterior probability γ(b, k) according to the current πk, µk, Σk.

γ(b, k) = πkN (Tb
z |µk ,Σk)

∑K
j=1 πjN (Tb

z |µj ,Σj)
, where k = 1, 2 and b = 1, 2, . . . , B.

Step 2: According to γ(b, k), calculate πk, µk, Σk.
µk =

1
Bk

∑B
b=1 γ(b, k)Tb

z,

Σk =
1

Bk
∑B

b=1 γ(b, k)(Tb
z − µk)(Tb

z − µk)
T,

πk =
Bk
B ,

where Bk = ∑B
b=1 γ(b, k).

Step 3: Check whether the parameters converge. If they do not converge, return to Step 1 and continue
executing the algorithm.

End

3.4. Online Spectrum Sensing Based on GMM

After the training is completed, the optimal parameters π∗k , µ∗k , and Σ∗k can be obtained. According
to these optimal parameters, a classifier for spectrum sensing can be constructed

ln
π∗1N (Tz|µ∗1 , Σ∗1)
π∗2N (Tz|µ∗2 , Σ∗2)

> ξ. (28)

where, the parameter ξ is used to control Pf in the spectrum sensing system. If ξ is smaller, the PU
is more likely not to use the authorized channel, which means the channel is available. Then, the
probability of miss detection and Pf are increased. Conversely, if the ξ is larger, the PU is more likely
to use the authorized channel, which means the channel is unavailable. Hence, the Pd and spectrum
utilization are reduced.

When performing online sensing, the two-dimensional feature vector Tz are extracted from the
channel which needs to be perceived. Finally, we use Equation (28) for spectrum sensing.

4. Experimental Simulation Analysis

In this section, the MAWG method is verified in κ − µ channel fading model. The κ − µ channel
model is a widely accepted model because it can generate many known wireless channel models by
adjusting the parameters κ and µ. By setting κ and µ in the κ − µ fading channel to some specific
parameter values, it can be converted into known models, such as the Rayleigh fading channel
(µ = 1, κ → 0), the Rician channel (µ = 1) and the Nakagami-m channel (κ → 0).

To demonstrate the performance of the MAWG method, in the simulation experiment, DMM or
RMET is selected as the characteristic of the signal. The PU signal is a multiple component signal [22]
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in this experiment. According to the spectrum sensing statistical feature extraction method that is
described above, 2000 feature vectors are extracted. Firstly, 1000 feature vectors are used to train the
GMM framework. After the training is completed, the classifiers which are used for spectrum sensing
are obtained. Then, the other 1000 feature vectors are used for testing.

4.1. Clustering Performance Analysis

In this section, we analyze the clustering effect of the GMM clustering algorithm under different
characteristics and different channel conditions. The channel conditions are the Rayleigh fading
channel (µ = 3, κ → 0) and Rician fading channel (µ = 1, κ = 3). Figures 3 and 4 show the clustering
effects of the different features under Rayleigh channel with an SNR = −10 dB.
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Figure 3. Clustering effect of the differences between maximum and minimum eigenvalue (DMMs)
under the Rayleigh channel.
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Figure 4. Clustering effect of the ratios of the maximum eigenvalue to the trace (RMETs) under the
Rayleigh channel.

Figures 5 and 6 show the clustering effects of the different features under the Rician channel with
a SNR = −10 dB.
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Figure 5. Clustering effect of the DMMs under the Rician channel.
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Figure 6. Clustering effect of the RMETs under the Rician channel.

In Figures 3–6, the yellow circles represent the feature vectors that are classified as noise. The blue
circles represent the feature vectors that are classified as the PU signal existence class. The star
represents the mean µ∗2 of the PU signal existence classes. The square represents the mean µ∗1 of the
noise class.

By observing and analyzing Figures 3–6, it can be found that the DMM feature can contain higher
characteristic information for the reaction signal. Therefore, in the following simulation analysis, the
simulation experiments are mainly carried out for DMM features in the MAWG method, which is
called the MAWGDMM method.

4.2. Experimental Results and Performance Analysis with Different SNR

The IQDMM and IQRMET methods in Figures 7 and 8 are proposed in Reference [21]. DARDMM
and DARRMET are proposed in Reference [23]. These methods use the IQ and DAR decomposition
to increase the logic SUs. In the feature extraction, the DMM and RMET were chosen to construct
feature vector. For achieve CSS, the K-means is used in [21] and K-medoids is used in Reference [23].
The simulation parameters are set as follows in the MAWGDMM algorithm: the number of SUs is
M = 2, the number of sampling points is N = 1000 and the number of antennas is A = 3.

Figure 7 shows the simulation results when the SNR = −14 dB with Rayleigh and Rician fading
channels. Figure 8 shows the simulation results when the SNR = −16 dB with Rayleigh and Rician
fading channels. Tables 2 and 3 show the detection probabilities of the different algorithms under
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different fading channels at the same false alarm probability. The receiver operating characteristics
(ROC) have been drawn for a comparative performance analysis.
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Figure 7. Comparison of the receiver operating characteristics (ROC) in different methods at SNR =

−14 dB.

Table 2. Detection probabilities of different algorithms when the SNR = −14 dB.

MAWGDMM DARDMM DARRMET IQDMM IQRMET

Rayleigh, Pf = 0.1 0.98 0.85 0.78 0.69 0.59
Rayleigh, Pf = 0.2 1.00 0.91 0.85 0.75 0.67

Rician, Pf = 0.1 0.99 0.84 0.74 0.41 0.24
Rician, Pf = 0.2 1.00 0.90 0.86 0.81 0.75
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Figure 8. Comparison of ROC in different methods at SNR = −16 dB.

Table 3. Detection probabilities of different algorithms when the SNR = −16 dB.

MAWGDMM DARDMM DARRMET IQDMM IQRMET

Rayleigh, Pf = 0.1 0.61 0.53 0.42 0.13 0.10
Rayleigh, Pf = 0.2 0.78 0.67 0.57 0.40 0.35

Rician, Pf = 0.1 0.65 0.36 0.24 0.19 0.14
Rician, Pf = 0.2 0.84 0.61 0.46 0.46 0.32
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Multiple-antenna spectrum sensing can make full use of multiplexing and spatial diversity,
which can reduces the effects of path losses and shadows on spectrum sensing. Thus, according to
Figures 7 and 8, Tables 2 and 3, it can conclude that the MAWGDMM has better spectrum sensing.

When the SNR = −14 dB, Pf = 0.1, a Rayleigh channel is used. The spectrum sensing performance
of the MAWGDMM algorithm relative to DARDMM, DARRMET, IQDMM, and IQRMET algorithms
is increased by 15.29%, 25.64%, 42.03% and 66.10%, respectively. When Pf = 0.2, the spectrum
sensing performance is improved by 9.89%, 17.65%, 33.33%, and 49.25%, respectively. When using the
Rician channel and Pf = 0.1, the performance is improved by 17.86%, 33.78%, 141.46%, and 312.50%,
respectively. The performance is improved by 11.11%, 16.28%, 23.46%, and 33.33%, respectively, when
Pf = 0.2.

In SNR = −16 dB, the sensing performance of the MAWGDMM algorithm is analysed in the
Rayleigh channel and the Rician channel, respectively. From the first row in Table 3, when using
Rayleigh and p f = 0.1, the performance of the MAWGDMM method is 15.09%, 45.24%, 369.23%
and 510.00% higher than DARDMM, DARRMET, IQDMM and IQRMET, respectively. When using
Rayleigh and Pf = 0.2, the sensing performance of MAWGDMM methd is improved by 16.42%,
36.84%, 95.00% and 122.86%, respectively. Under the Rician channel, the performance is improved by
80.56%, 170.83%, 242.11%, and 364.29%, respectively, when Pf = 0.1. The performance is improved by
37.70%, 82.61%, 82.61%, and 162.50%, respectively, when Pf = 0.2.

4.3. Performance Analysis with Different Values of A and M

This section analyzes the impacts of different number of cooperative SUs and the number of
different antennas on the spectrum sensing performance. In Figure 9, the simulation parameters are
set as follows—SNR = −16 dB, N = 1000, A = 2, and M is 2, 3, 4, 5, respectively.

As the number of SUs increases, more comprehensive information for the PU signal is collected,
which can overcome the problem hidden terminal and improve the spatial diversity. The final decision
of the FC is more reliable. Thus, from Figure 9 and Table 4, we can see that the spectrum sensing
performance is further improved as the number of SUs increases.
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Figure 9. Comparison of ROC in different number of SUs.

Table 4. Detection probabilities of different numbers of secondary users (SUs) when the SNR = −16 dB.

M = 2 M = 3 M = 4 M = 5
Rayleigh, Pf = 0.1 0.40 0.68 0.85 0.98
Rayleigh, Pf = 0.2 0.67 0.81 0.94 0.99

Rician, Pf = 0.1 0.41 0.68 0.85 0.96
Rician, Pf = 0.2 0.72 0.84 0.94 0.98
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When the SNR = −16 dB, a Rayleigh channel is used, and Pf = 0.1; the spectrum perceptual
performance when M = 5 is improved by 15.29%, 44.12%, and 145.00%, respectively, compares to
conditions when M = 4, M = 3, and M = 2. When Pf = 0.2, the perceived performance is increased
by 5.32%, 22.22%, and 47.76%, respectively. Under a Rician channel, the performance is increased
by 12.94%, 41.18%, and 134.15%, respectively, when Pf = 0.1; the performance is increased by 4.26%,
16.67%, and 36.11%, respectively, when Pf = 0.2.

In Figure 10, the simulation parameters are set as follows in the MAWGDMM algorithm:
SNR= −16 dB, M = 2, N = 1000, and A is 2, 3, 4, and 6, respectively.

As the number of SU antennas increases, the spatial diversity and spatial multiplexing gain are
improved. The MAWGDMM can work well when many antennas observe the authorized spectrum
together. By analyzing Figure 10 and Table 5, we can conclude that the spectrum sensing performance
is improved.

When the SNR = −16 dB, a Rayleigh channel is used and Pf = 0.1, the spectrum sensing
performance when A = 6 is improved by 22.22%, 65.00%, and 153.85%, respectively, compares to
conditions when A = 4, A = 3, and A = 2. When Pf = 0.2, the performance is increased by 2.04%,
26.59%, and 75.44%, respectively. Under a Rician channel, the performance is increased by 15.29%,
48.48%, and 145.00% respectively, when Pf = 0.1, and the performance is increased by 4.21%, 19.28%,
and 65.00%, respectively, when Pf = 0.2.

Table 5. Detection probabilities for the different numbers of antennas when the SNR = −16 dB.

A = 2 A = 3 A = 4 A = 6

Rayleigh, Pf = 0.1 0.39 0.60 0.81 0.99
Rayleigh, Pf = 0.2 0.57 0.79 0.98 1.00

Rician, Pf = 0.1 0.40 0.66 0.85 0.98
Rician, Pf = 0.2 0.60 0.83 0.95 0.99
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Figure 10. Comparison of ROC in different number of antennas.

4.4. Performance Analysis with Different Numbers of Sample Points

This section will analyze the effect of different numbers of samples on the spectrum sensing
performance. In Figure 11, the simulation parameters are set as follows—the SNR = −16 dB, M = 2,
A = 2, N is 1000, 1200, 1600, and 2000, respectively.
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Figure 11. Comparison of ROC in different number of sampling points.

As the number of sampling points increases, a more complete PU signal can be collected by the
SUs. The feature vector is more representative of the status of the PU. By analyzing Figure 11 and
Table 6, it can be concluded that as the number of sample points increases, the spectrum sensing
performance is improved.

Table 6. Detection probabilities of different numbers of sampling points when the SNR = −16 dB.

N = 1000 N = 1200 N = 1600 N = 2000

Rayleigh, Pf = 0.1 0.40 0.55 0.60 0.94
Rayleigh, Pf = 0.2 0.57 0.68 0.92 0.96

Rician, Pf = 0.1 0.41 0.46 0.70 0.82
Rician, Pf = 0.2 0.60 0.66 0.90 0.96

When the SNR = −16 dB, a Rayleigh channel is used and Pf = 0.1; the spectrum sensing
performance when N = 2000 is improved by 56.67%, 70.9%, and 135.00%, respectively, compares to
conditions when N = 1600, N = 1200, and N = 1000. In the case when Pf = 0.2, the performance
is increased by 4.35%, 41.18%, and 68.42%, respectively. Under a Rician channel, the performance
is increased by 17.14%, 78.26%, and 100.00%, respectively, when Pf = 0.1, and the performance is
increased by 6.67%, 45.45%, and 60.00%, respectively, when Pf = 0.2.

5. Conclusions

This paper aims to improve spectrum sensing performance, especially the spectrum sensing
performance of the fading channel. Based on this aim, this paper proposes the multiple-antenna CSS
based on the wavelet transform and GMM. This method adopts cooperative SUs and the multiple
antenna spectrum sensing method, which can effectively overcome the problems that are encountered
by single SU spectrum sensing, such as path losses and shadows. Specifically, this paper proposes a
new signal feature extraction method and combines the GMM to achieve spectrum sensing. In the
experimental simulation section, the simulation with the κ− µ channel is performed and the simulation
results are analyzed. The results show that the MAWG method can improve the spectrum sensing
performance to some extent. In this paper, the analysis of the overall cost is ignored; in future research,
we will further analyze the overall cost and improve the applicability of the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

CR Cognitive radio
CRN Cognitive radio networks
MAWG A multiple-antenna cooperative spectrum sensing based on the wavelet transform and Gaussian

mixture model
GMM Gaussian mixture model
SU Secondary user
FC Fusion center
PU Primary user
RMT Random matrix theory
CSS Cooperative spectrum sensing
MME The ratio of the maximum and minimum eigenvalue
DMEAE The maximum eigenvalue and the average eigenvalues
DMM the difference between the maximum and the minimum eigenvalue
SVM Support vector machine
NN Neural network
EMD Empirical mode decomposition
GWN Gaussian white noise
SNR Signal-noise ratio
ROC Receiver operating characteristics
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