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Abstract

Combining different metabolomics platforms can contribute significantly to the discovery of

complementary processes expressed under different conditions. However, analysing the

fused data might be hampered by the difference in their quality. In metabolomics data, one

often observes that measurement errors increase with increasing measurement level and

that different platforms have different measurement error variance. In this paper we com-

pare three different approaches to correct for the measurement error heterogeneity, by

transformation of the raw data, by weighted filtering before modelling and by a modelling

approach using a weighted sum of residuals. For an illustration of these different

approaches we analyse data from healthy obese and diabetic obese individuals, obtained

from two metabolomics platforms. Concluding, the filtering and modelling approaches that

both estimate a model of the measurement error did not outperform the data transformation

approaches for this application. This is probably due to the limited difference in measure-

ment error and the fact that estimation of measurement error models is unstable due to the

small number of repeats available. A transformation of the data improves the classification

of the two groups.

Introduction

Over the last decades, metabolomics has become an indispensable tool that has provided a

wealth of information on biological systems. To get a better grasp of the underlying biochemi-

cal processes, combining data from different metabolomics platforms can contribute greatly.

Data of each platform provides information on different parts of the metabolism, and by com-

bining the data sets they may complement each other.

The combination of data sets is sometimes referred to as data integration or by data fusion.

The difference between these approaches is not well defined. Data integration methods are
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qualitative approaches that collect measurements of different origins and puts them on a well-

defined scaffold, e.g. a metabolic network. Data integration thus consider the identity of the

variables in the different data sets. E.g. gene expression data, proteomics and metabolomics

data can be integrated by placing their intensity values at the corresponding position in the

metabolic network. The identity of the different variables of different sources is taken into

account when collecting the data. When a metabolite is measured on two platforms, both vari-

ables are linked to the same position on the network. Thus for data integration, network infor-

mation and ontologies on the meaning of the variables are necessary.

Data fusion methods are quantitative methods that combine multiple data sets that are

measured on the same set of samples. The models that are developed are based mainly on cor-

relations between the variables. In data fusion methods, the identity of the variables of the data

sets is not directly used in the analysis. Only after the models have been developed, the identity

of the variables can be used when interpreting the data analysis results. In this paper the focus

is fully on data fusion methods.

Several classification methods exist for high dimensional data [1], e.g. principal component

discriminant analysis (PCDA)[2], and partial least squares discriminant analysis (PLS-DA)[3],

both of which are frequently used in the field [4,5]. However, these standard methods cannot

handle complementary data obtained from multiple platforms. A commonly used method to

fuse data from multiple platforms, to reveal their underlying relationships, is simultaneous

component analysis (SCA)[6–8]. While useful for certain questions, it does not specifically

classify or make predictions about class membership. To overcome this bottleneck, we propose

to incorporate SCA into PCDA. This new method, simultaneous component discriminant

analysis (SCDA), will allow for proper discrimination between classes by fusing data from dif-

ferent platforms.

The analysis of fused metabolomics data from different platforms however is not straight-

forward. One of the issues is that most multivariate data analysis methods, and also SCDA, are

limited by the fact that homoscedastic error is assumed. In metabolomics, many error sources

result in a measurement error variance that is proportional to the measured intensity. This is

the reason why relative standard deviations (RSD) are often used to quantify the quality of a

metabolomics platform[9]. In more advanced approaches, the measurement error variance is

proportional to the intensity level at large intensity levels but constant at low intensity levels

[10,11]. Heteroscedastic and even correlated error structures can lead to incorrect estimation

of standard errors of discrimination coefficients and thus making incorrect assumptions about

variable importance in discrimination models.

Several methods have been applied successfully to remove the non-constant measurement

error variance. Transformation of the data is a well- known method to stabilize the variability

of the data. The most common transformation approaches are the square root and the log

transformation[12,13]. Both methods however, do not take a constant measurement error var-

iance into account for low concentration values. The generalized log (glog) transformation

works better in cases where the measurement error stays stable at low intensities, but increases

for higher intensities. Generalized log-transformation (glog) of metabolomic data was used to

make multivariate classification more effective.

Maximum likelihood scaling (MALS) [14] also takes the measurement errors into account.

It uses a maximum likelihood principal component analysis to filter out measurement noise

within the data; it down-weights measurements with higher uncertainty, i.e. higher measure-

ment error variances. Both data-transformation and MALS filtering approaches are methods

that are applied before data analysis.

We also introduce a third approach to deal with the non-constant measurement error vari-

ance. The SCDA method will be extended by down-weighting unreliable data through

Fusing metabolomics data sets with heterogeneous measurement errors
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Maximum Likelihood Fusion. A weighted SCA method is used to obtain unbiased principal

components which will successfully be used for the classification. The weights in the weighted

SCA are obtained from estimates of the measurement error variance for each measured metab-

olite level. Such estimates usually come from repeated analysis of quality control samples; how-

ever, the quality control sample does not cover a wide range of the metabolite levels. Instead in

this approach sample replicates are used for a good characterization of measurement errors of

the study. They include both the uncertainty of the analytical method as well as the uncertainty

of the sample work-up, and they do cover a large range of metabolite concentration. As multi-

ple samples are replicated in a study, measurement error variance can be estimated at different

levels of all metabolites.

We explore the effect of the variance stabilization methods on the data, how well they are

able to produce a homoscedastic error variance. Furthermore, we study whether the trans-

formed data is better able to discriminate between the two groups. The error variance stabiliza-

tion methods are divided into 3 method groups: (1) transformation, (2) filtering, and (3)

modelling. The methods are all applied to two metabolomics platforms (lipids and amino

acids) obtained from healthy obese and diabetic obese individuals qualified for gastric bypass

surgery.

The article is organized as follows. In the Methods section first PCDA and SCA are intro-

duced. Then, the three method groups for correcting heterogeneous error variances are

explained, as well as the Rocke-Lorenzato error model. Finally, the metabolomics data of the

gastric bypass study and its pre-processing is discussed. The Results section shows the variance

stabilization and the classification results.

Methods

2.1. Principal component discriminant analysis

Principal component discriminant analysis (PCDA) [2] is a discrimination method, ideal for

high dimensional data [15]. It is used in cases where normal linear discriminant analysis

(LDA) fails, i.e. in the presence of multicollinearity and/or high dimensional data. It is a two-

step method that summarizes the data into multiple principal components, and additionally

performs LDA on the first R principal components.

Consider a platform measuring J metabolites has been used to measure two groups of I1

and I2 individuals (I = I1+I2) then data block X (I x J) containing all these measurements can

be subjected to a principal component analysis.

X ¼ TPT þ E ðEq 1Þ

Here T (I x R) is the score matrix, P (J x R) the loading matrix, and E (I x J) the residual

matrix for the first R principal components. T1 (I1 x R) is that part of T that contains the score

values for the individuals in group 1 and likewise T2 (I2 x R) contains the scores for the individ-

uals in group 2. In the second step, LDA tries to find a linear combination of the first R princi-

pal component scores such that the between class difference is maximal compared to the

within class difference. That is, a weight vector β is estimated that maximizes

G bð Þ ¼
βTΣBβ
βTΣWβ

ðEq 2Þ

where ΣB ¼ ð
�T1 �

�T2Þð
�T1 �

�T2Þ
T

and ΣW ¼
P

g¼1;2

P
ti2Tg
ðti � �TgÞðti � �TgÞ

T
are the between

class and within class scatter matrix of the score matrices T1 and T2 and �T1;
�T2 are the mean of

T1 and T2 respectively. ti is the score vector of an individual i. The offset value in the PCDA
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model equals b0 ¼
� 1

2
ð�T1 þ

�T2Þ
Tβ. Individuals with ti

Tβ> β0 are predicted to belong to group

1, and when ti
Tβ< β0 they are predicted to belong to group 2. β contains the weights for each

principal component to provide the best classification. To obtain information on weights in

terms of the originally measured metabolites this direction is pre-multiplied by the loadings P,

bPCDA = Pβ.

2.2. Simultaneous component analysis

Simultaneous component analysis (SCA) [16,17], an extension of PCA, is capable of combin-

ing multiple data blocks such that similar individual characteristics contained in different data

blocks can be unveiled. If K data blocks Xk share the same object mode with I individuals and

Jk variables, then the SCA decomposition is as follows:

Xk ¼ TPT
k þ Ek ðEq 3Þ

with T (I x R) the score matrix for R components shared by all K data blocks, Pk (Jk x R) the

loading matrices, one for each data block, and Ek (I x Jk) error matrices. The loadings and

score matrices are obtained similar to normal PCA, when all K data blocks are fused into one

concatenated data block Xc = [X1 . . . Xk . . . XK], with size ðI x
PK

k¼1
JkÞ, with the accompa-

nying loading matrix Pc ¼ ½P
T
1

. . .PT
k . . .PT

K�
T
, of size ð

PK
k¼1

Jk x RÞ. This specific approach of

combining multiple blocks in a simultaneous component model is called the SCA-P model

[18].

The scores T of the SCA can be used in an LDA step similar as was presented for the PCDA

model. This method is called simultaneous component discriminant analysis (SCDA).

As PCA focuses on describing maximum variance of the complete data, the scores and

loadings in an SCDA model clearly depend on the variances and sizes of the different data

blocks. Methods such as block scaling can be used to reduce the effect of variable block size

and sum of squares per data block [19].

2.3. Correcting for measurement error

An underlying assumption of PCA and SCA is that the errors have equal variance throughout

the whole data matrix. In an SCA model for multiple data sets obtained from different plat-

forms, this assumption extends to the situation that each data block has measurement errors

around the true values that are considered of the same size, i.e. the homoscedastic measure-

ment error variance assumption. In many cases this assumption is not valid and various

approaches have been used to correct for this issue.

2.3.1. Transformation. Log-transformation is a popular and quick method to reduce the

large error variance for large values, however, it has the tendency to inflate the variance of val-

ues near zero [20]. The generalized log (glog) transformation stabilizes measurement variance

over the full range of the data, while it takes into account that for low values the measurement

errors are constant but increases for higher intensities [21]. Rocke and Lorenzato [10] assume

that the intensity level can be modelled as:

x ¼ meZ þ ε ðEq 4Þ

where x is the measured concentration, μ is the true concentration level, and η and ε are nor-

mally distributed error terms, with mean 0 and variance s2
Z

and s2
ε, respectively. So at high val-

ues of μ, the measurement error variance increases as a function of μ. At low concentrations,

when μ approaches zero, the variance is stable at s2
ε. This kind of data can be transformed

using the generalized log (glog) transformation. Moreover, Purohit et al.[13] showed that glog

Fusing metabolomics data sets with heterogeneous measurement errors
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transformation of metabolomics data makes multivariate classification more effective. For

glog-transformation, the measured intensity level x is transformed as follows

gðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxÞ2 þ l

q

Þ ðEq 5Þ

, with λ being a tuning parameter that can be optimised using repeated measurements with a

maximum likelihood method [22]. The addition of the λ parameter in the glog function

reduces the measurement error variance for low values of x to make the error close to

homoscedastic.

Additionally, the square root transformation of the data is explored, since it is known to

help in problems where the measurement errors increase with increasing intensity [12]. The

square root transformation expects a smaller increase of error variance than the log transform.

Furthermore, it gives fewer problems for very small values and zeros in the data.

2.3.2. Filtering. Maximum likelihood scaling (MALS) [14] is a two-step procedure that

filters out heteroscedastic noise using a weighted PCA (maximum likelihood PCA). The

weighted PCA weights each observation proportional to the reciprocal of its measurement

error variance, i.e. it minimizes the weighted residual sum of squares S2,

S2 ¼ minTR ;PR

PI
i¼1

PJ
j¼i

ðxij � x̂ ijÞ
2

s2
ij

¼ min
TR ;PR
kW � ðX � X̂Þk2

ðEq 6Þ

where X̂ ¼ TRPR
T, for R principal components, and W is the weight matrix with wij ¼

1

sij
, and

s2
ij the variance of the measurement error for metabolite j at the level measured for individual

i. After this filtering step is performed on each data block separately, the second step, namely

(auto-)scaling can be done without the risk of noise amplification and increase of heterosce-

dasticity of the data.

2.3.3. Modelling with Maximum Likelihood Fusion. SCA assumes a homoscedastic

error-function. To ensure compatibility with metabolomics data, for which measurement

error variances are known to depend on measurement levels, and to overcome non-constant

error variance of the different metabolites, a maximum likelihood version of SCA is used here.

This approach weights each observation proportional to the reciprocal of its measurement

error variance, i.e. it minimizes the weighted sum of squares S2 of all K data blocks simulta-

neously,

S2 ¼ minTR;PRk

PK
k¼1

PI
i¼1

PJk
j¼1

ðxijk
� x̂ ijk

Þ
2

s2
ijk

 !

¼ minTR ;PRk

PK
k¼1
kWk � ðXk � X̂kÞk

2
ðEq 7Þ

where X̂k ¼ TRPRk
T, for R principal components, and Wk is the weight matrix with wijk

¼ 1

sijk
,

and s2
ijk

the variance of the measurement error of individual i for metabolite j of data block k.

Minimization of the weighted sum of squares can be accomplished using the MILES maxi-

mum likelihood principal component analysis algorithm of Bro et al. [23], which is also used

in the filtering step. The difference between the filtering and the modelling method is that the

filtering is performed on each data block separately before fusion, thus SCDA is performed on

the ’noise-free’ data. In the modelling method, the data blocks are fused and additionally

weighted within the SCDA.
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2.4. Measurement error structure model

Both in the filtering as well as in the modelling procedure a weight matrix has to be deter-

mined, which exists of the reciprocal of the measurement error variance for measurement

on each metabolite. To correct for differences in measurement error variance, an optimal

estimated error variance structure is essential. In metabolomics data the measurement

error typically increases with measured intensity level [11]. This typical error structure is

best described by the Rocke-Lorenzato model [10], which assumes a constant error vari-

ance for small intensities and a multiplicative variance for higher intensities. Here, we fol-

low the approximation by van Batenburg et al. [11] of that error model which has a

constant part and a part depending on the concentration. The measurement error vari-

ance s2
ijk

is defined as:

s2
ijk
¼ ðsAdd jk

Þ
2 if mijk

� aMult jk

s2
ijk
¼ ðsAdd jk

Þ
2
þ ðsMult jk

Þ
2
ðmijk
� aMult jk

Þ
2 if mijk

> aMult jk

ðEq 8Þ

For different values of aMult jk
, both ðsAdd jk

Þ
2

and ðsMult jk
Þ

2
are estimated in a two step proce-

dure. In the first step ðsAdd jk
Þ

2
is estimated for values that are smaller or equal to the cut-off

aMult jk
, i.e. mijk

� aMult jk
. In the second step ðsMult jk

Þ
2

is estimated for data where mijk
> aMult jk

,

with ðŝAdd jk
Þ

2
obtained from step 1. The best model (with optimal aMult jk

’s, ðsAdd jk
Þ

2
’s and

ðsMult jk
Þ

2
’s) is the one that minimizes the sum of the squared difference between the estimated

and measured variance, that is
PI

i¼1

PJk
j¼1
ðs2

ijk
� ŝ2

ijk
Þ

2
. To reduce the effect of large outliers, the

model parameters are estimated via robust regression using the Matlab robustfit function with

the ‘huber’ weight function and the default tuning constant.

The Rocke-Lorenzato model is estimated per metabolic group g (g = 1, . . ., G; the amine

and 9 lipid groups). Thus sAddg
; sMultg

and aMultg
are estimated from s2

djk
and mdjk

for d = 1,. . ., D
duplicates in the study using all variables jk that belong to group g.

Besides the Rocke-Lorenzato model we also used the median error variance per metabolite

to weigh the residuals independent of their measured intensity, to study the effect of the weight

matrix in the maximum likelihood fusion model.

2.5. Data

The data contains a total of 61 individuals that can be subdivided into 3 groups:

a) 30 lean controls

b) 16 healthy obese individuals, on the list for gastric bypass

c) 15 diabetic obese patients, measured before and 1 to 4 months after gastric bypass

Within each group a number of sample replicates were measured, 4 in the control group

(a), 4 in the healthy obese group (b), and 7 in the diabetic obese group with paired data (c), of

which 3 before and 4 after treatment (though not from the same individual). A pooled quality

control (QC) sample is used to monitor possible instrumental drift.

For each individual 43 amino acids were measured (LC-MS) and their intensity levels are

determined by means of an internal standard. Not each metabolite had a unique internal stan-

dard; some internal standards were used to standardize multiple metabolites. Injection repli-

cates were averaged. Only a single measurement batch was needed to obtain the data, in which

also 19 quality control samples were measured.

Fusing metabolomics data sets with heterogeneous measurement errors
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In addition to the amino acids, 185 lipids were measured (LC-MS). Here a single internal

standard was used per lipid-class. There are nine lipid-classes: triradylglycerolipids (TG), dira-

dylglycerolipids (DG), ceramides (Cer), sphingomyelins (SM), glycerophosphocholines (PC),

glycerophosphoethanolamines (PE), lysophosphatidylethanolamine (LPE), lysophosphatidyl-

choline (LPC), and cholesteryl ester (CE). No injection replicates were determined. A single

measurement batch was sufficient to measure all samples and additionally 11 quality control

samples.

For both the amino acid and the lipid platform, QC samples were used to correct for poten-

tial instrumental drift using the QC correction approach [24]. Intensity levels under the limit

of detection were replaced by their QC corrected value. Finally, variables had to have at least

80% measured values above the lower level of detection within one of the before or after groups

of data (c). The final data set contained 43 amino acids and 165 lipids.

The goal of this research was to explore the different approaches of correcting for noncon-

stant measurement errors in the fusion of metabolomics data from different platforms, and

whether such a correction can contribute to a more precise discrimination. Therefore, we

selected a small part of the data, i.e. the 16 healthy obese patients (group b) and the 15 diabetic

obese patients before gastric bypass (group c), both measured at the lipid and amino acid plat-

forms. For the determination of the measurement error structure and the GLOG-transforma-

tion all 15 sample replicates were used of group (a), (b), and (c); i.e., we assume that the

measurement error model does not depend on the group of individuals.

2.6. Pre-processing of the data

For each of the three methods, the data was pre-processed. For the transformation methods,

the data was either centered or autoscaled after the transformation. Then blockscaling was

applied by scaling each block to a Frobenius norm equal to 1. MILES [23] with a centering step

was used for the weighted PCA in MALS and also in the Maximum Likelihood Fusion model.

After MALS filtering, the data was either only centered or autoscaled, after which again a

blockscaling was applied to give blocks equal weight after filtering. In the transformation and

filtering method, the blockscaled data were next subjected to a SCDA. In the Maximum Likeli-

hood Fusion modelling, the two data sets were autoscaled and blockscaled before the model-

ling step.

2.7. Prediction of class membership for new samples

The class prediction for new samples and also in a cross-validation context (see section 2.8)

depends on the method used. Therefore, there is a training set of which scaling parameters

(e.g. mean and standard deviation of each metabolite) and model parameters (e.g. discrimina-

tion coefficients for each metabolite) are obtained and a test set on which these scaling and

model parameters are applied.

For the transformation methods, new data is first transformed before it is subjected to the

model of the transformed data. Transformations such as log and square root transformations

are performed on the data directly and do not need information from the training set. Except

for the glog transformation,

gðxnewÞ ¼ lnðxnew þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxnewÞ
2
þ l

q

Þ

where the λ value for each metabolite is obtained from the glog fitting of the training data.

Then g(xnew) can be used in the model obtained from the training data.

Fusing metabolomics data sets with heterogeneous measurement errors
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For scaling methods and centering, scaling parameters are obtained from the training set

and applied to the test set.

For the MALS filtering a weighted PCA is applied on the training data using weights for

each sample i for variable jk defined as wijk
¼ 1

sijk
, i.e. the weight for each element in the data is

defined to be the inverse of the standard deviation for that specific element. The standard devi-

ation can come from the Rocke Lorenzato model of the error variance for each metabolite or

they are defined as the median error variance for each metabolite. The weighted PCA model

parameters are then applied to the test set to filter the heteroscedastic variance from the data.

The MALS filtering is also applied in a cross validation approach such that the filtering of each

sample is based on weighted PCA model estimates obtained from the other samples. The

MALS filtered data are used in a normal PCDA cross validation procedure as discussed in sec-

tion 2.8. After filtering a PCDA model is applied to the data in a cross model validation

approach to prevent overfitting.

Finally, for the modelling approach a weighted PCDA modelling is applied in a cross model

validation approach. The model parameters are obtained from the training set and applied to

the test set for prediction of class membership.

In all approaches the number of components was not optimized in each cross validation

round but always fixed to 3, 5, or 7 components as can be found in Table 1. In this way we can

also learn how much the model is effected by the number of selected components.

2.8. Validation

Cross-validation is used to define the classification errors for each of the approaches used. The

data was split in 8 parts, where each part contained 2 healthy obese and 2 diabetic obese indi-

viduals (except for the last part that only contained a single diabetic obese individual). 7 parts

(training set) are used to train the SCDA model which is then used to predict the class of the

last part (test set). This is repeated until each individual has been left out in the test set once.

The number of incorrectly predicted samples is calculated. A cross model validation procedure

was used to prevent overfitting of the classification models. In cross model validation, a subset

Table 1. Average number of misclassifications.

Method LV = 3 LV = 5 LV = 7

Raw Center 10.7 10.9 10.7

Raw Auto 9.8 9.2 9.1

SQRT Center 11.2 9.4 8.1

SQRT Auto 9.9 9.1 9.9

Log Center 11.8 13.0 10.8

Log Auto 10.0 8.9 9.9

Glog Center 10.2 11.8 9.9

Glog Auto 9.7 8.4 9.4

MALS RL Center 14.7 14.7 12.3

MALS RL Auto 10.8 10.0 9.9

MALS MED Center 12.2 13.0 13.3

MALS MED Auto 11.5 13.6 11.7

Weighted MED 11.9 9.6 11.8

Weighted RL 12.9 10.0 11.2

Average number of misclassifications using (W)SCDA methods with different methods for measurement error

variance stabilization methods.

https://doi.org/10.1371/journal.pone.0195939.t001
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of the data is left out and in no way used to define the model. The remainder of the data is

used to define the model with all model parameters such as the number of components. Only

the final model is used to predict the class membership of the left out samples. This is repeated

until each sample has been left out once. This procedure is known for its unbiased classifica-

tion error. If an optimal number of PCDA components is required then this should also have

been performed in a cross model validation approach where the training set is used to find the

optimal model dimension and the final model parameters.

This cross validation procedure is repeated 25 times with each time different combinations

of test set samples, to make sure the results are consistent and not due to chance effects. The

average number of misclassifications is given as the result of the classification for a specific

pre-processing, filtering or modelling approach.

Within the cross validation procedure, the transformations did not have to be repeated for

each new training set as the transformation does not depend on other samples. For the MALS

filtering, a new MALS filtering is applied for each training-set as the MALS filter depends on

the specific samples in the training set. This model is then used to estimate the scores for the

test set samples. Similarly, the weighted SCA model is also calculated newly for each training

set.

In this cross validation procedure, we compared the performance for models with 3, 5 or 7

components. The importance of each metabolite is averaged based on the 8x25 models.

2.9. Software

Correction of potential instrumental drift using the QC measures [24], was performed in

MatLab [25]. Further analysis was performed in Matlab, for PCA the svd command is used,

linear discriminant analysis was performed using the classify function; block-scaling was

applied by scaling each matrix by its Frobenius norm. Robust regression was performed using

robustfit with Huber weight function with default tuning constant. GLOG-transformations

were estimated using the Matlab toolbox described in Parsons et al. [21] Weighted PCA is per-

formed using the MILES Toolbox for Matlab [23].

Results

3.1. Determination of error structures and the effect of transformations

For further analysis the measurement error structure and the optimal GLOG transformations

of the data have to be determined. This was done on the 15 sample replicates. Fig 1 shows the

error structure of the amines and a selected number of lipids classes (TG, PE, and LPC). In the

first row (raw data) are the estimated error variances on the y-axis as a function of the mean

concentration (x-axis) for the amines and the three indicated lipid classes. In each subplot, dif-

ferent colours indicate different metabolites (amines or lipids). As 15 samples were used for

the estimation of the error variance model, 15 circles of each colour are observed. For each

sample the estimated variance is plotted versus the mean of the two replicates. It can be seen

that the levels of the amines and the lipids is rather different, even within their specific classes.

In general, the error variance increases for amines and lipids with higher levels. For a single

lipid, only the cyan circles in the PE class show a clear increase in error variance for larger

lipid levels. The other rows in Fig 1 show the same data after transformation (SQRT, LOG, and

GLOG) or they show an estimated model of the error variance (Rocke-Lorenzato and Median

error model). The other 6 lipid classes have comparable patterns.

3.1.1.Transformation. Transforming the data using a SQRT or (G)LOG scale is a known

method to reduce the measurement error for higher ratios. Fig 1 shows the effect of SQRT,

log-transformation and g-log-transformation on the amine and lipid classes. For all

Fusing metabolomics data sets with heterogeneous measurement errors
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transformations the variance in the higher ratios decreases. For the LOG transform there is an

increase in variance of the measurement errors for the small ratios. As expected, this effect is

(slightly) less for the GLOG-transformed data. The SQRT transformation seems to transform

the error variances to a more homoscedastic level.

3.1.2. Measurement error structures. For the given data, increased measurement levels

do not seem to result in an observed increase in measurement errors when examining each

metabolite separately. Only the lipid represented by the cyan circle in the PE class shows

increased variance for increasing mean ratio levels. This might be due to low levels or limited

ranges for the measured metabolites. Consequently, a measurement error model with a fixed

variance per metabolite may be a better model for our data set. To reduce the effect of large

outliers, the median variance per metabolite was also taken for the error structure. Thus
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Fig 1. Measurement error variance. Measurement error variance (y-axis) as a function of Mean Ratio (X-axis) for the Amines and three lipid groups (TG, PE, LPC) for

the raw data and after SQRT, LOG and GLOG transformation, and the Rocke-Lorenzato (RL) estimates (in black) of the measurement error variance, and the median

errors. The color in each column represents a metabolite and circles of the same color are obtained from different samples of which the error variance is estimated from

the replicated analyses of that sample.

https://doi.org/10.1371/journal.pone.0195939.g001
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xijk
� Nðuijk

; s2
jk
Þ, the error model is independent of the measured level of individual (i), and it

only depends of the measured metabolite (jk) (Fig 1; row 6, Median). The modelled variance is

indicated with black dots.

For a good estimation of the Rocke-Lorenzato model, sufficient measurements are necessary.

Therefore, we decided to combine all metabolites from the amine platform to estimate the model

parameters. For the lipid platform there is a natural segmentation of the lipids into 9 lipid classes,

indicated earlier. For all lipids in a lipid class the same internal standard was used. We decided to

estimate a Rocke-Lorenzato model for each lipid class, and also for the amine class. As a result,

while unnoticed in the error structure per metabolite, we can now clearly observe an increase in

the measurement error over a larger range due to the increased level (Fig 1; row 5, RL).

3.2. Data exploration

Fig 2 shows the amino acids and lipid profiles of our selected samples; the 15 Diabetic Obese

individuals and the 16 Healthy Obese individuals prior to a gastric bypass operation. In the

amino acids data there are some metabolites with high levels; particularly L-glutamine has

high levels compared to the other metabolites. A two-sided t-test per metabolite to see if there

is a significant difference between the healthy obese and the obese with diabetes, shows that

out of the 208 metabolites, there are 45 that have a p-value smaller than 0.05. Nine of them are

amino acids and the other 36 are lipids. Only 2 metabolites are significant at a Bonferoni cor-

rected limit for multiple testing, one amine and one lipid.

3.3. Effect of measurement error correction on simultaneous component

analysis

3.3.1. Transformation. Fig 3 shows the first two loadings of the SCA after square root

(SQRT), LOG and GLOG transformation. On the left the loadings of the mean-centered (after

Fig 2. Amine and lipid levels. Amine levels and lipid levels for 15 Diabetic Obese individuals and 16 Healthy Obese

individuals. Each color represents a different metabolite. The amine with large values for both groups is L-Glutamine.

https://doi.org/10.1371/journal.pone.0195939.g002
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transformation) data are given and on the right the autoscaled (after transformation) data.

Within the raw data, a scale effect of the variables could be seen; L-glutamine which had the

highest values in the data also got the highest loadings (S1 Fig). This scale effect seems to be

somewhat reduced by LOG- and GLOG-transformation of the data (Fig 3), i.e. L-glutamine

which was an outlier in the raw data, is no longer an outlying metabolite. We would expect to

see more metabolites with higher loadings, since 45 are significantly different using a two-

sided t-test. After transformation this number even increases to 56 (12 amino acids), 59 (12

amino acids), and 60 (12 amino acids) for respectively LOG-, GLOG-, and SQRT transforma-

tion. Note that transformation does not change the order of the individuals for each metabo-

lite, but it does change the within group variance. Since a normal t-test takes this into account,

the results can change.

Autoscaling the data after transformation had a strong effect as this makes the SCA loadings

almost independent of the transformation used. Comparing the autoscaled raw data loadings

with the loadings of autoscaled data after the different transformation shows there is not much

difference. Thus the effect of transformation on the loadings is small if autoscaling is used

afterwards. This can be understood as the transformation does not change the order of the

samples for a given metabolite, it only changes the distances between them, making those

more equal. The autoscaling then centers the data and makes the variance of each metabolite

equal. Only in cases of extreme heteroscedasticity, would one expect larger changes.

3.3.2. Measurement error structures. Correction of unequal measurement error variance

using filtering and modelling before and within the SCA model, respectively, with a maximum

Fig 3. SCA loadings. SCA loading 1 (X-axis) and SCA loading 2 (Y-axis), for centered data (left column) or autoscaled

data (right column) and additionally block-scaled after square root (SQRT) transformation (top row), LOG-

transformation (middle row) and GLOG transformation (bottom row). The amino acids are indicated in red, black are

the lipids. L-Glutamine (highly levelled amino acid) is indicated in all plots.

https://doi.org/10.1371/journal.pone.0195939.g003
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of 7 components was performed. The first two loadings are given in Fig 4. On the top row we

see the loadings of the SCA of block scaled data after MALS filtering and centering for Median

error structure (left) and Rocke-Lorenzato error structure (right). The difference in the two

loading plots is very small, and the difference with the mean centered data without MALS (S1

Fig) is also small meaning that the MALS filtering does not lead to large differences in the

cleaned data. Autoscaling after MALS (second row) has a large effect on the SCA loadings, but

again the type of measurement error model (RL or Median) almost has no effect.

For the modelling method (maximum likelihood fusion), the loadings are similar to the

loadings of the original SCA. This means that the effect of weighing the residuals does not

have a large effect on the estimation of the scores and loadings. In these loading plots L-Gluta-

mine is again the outlying metabolite. The weighted PCA cannot undo the large intensity dif-

ferences in the data. Neither correction with median error structure nor correction with a

Rocke-Lorenzato error structure corrects for the scale differences of the variable.

3.4. Effect of measurement error correction on simultaneous component

discriminant analysis

The predictive performance of discrimination was studied, using 25 repeats of the cross valida-

tion with each time a different combination of test set samples. The number of components

calculated for the training set was set to 3, 5, or 7 (W)PCDA components to study whether

Fig 4. Effect of measurement error on SCA loading after MALS and weighted SCA model. On the X-axis is the

loading of PC1 and on the Y-axis the loading of PC2. After MALS, centering (top row) and autoscaling (2nd row) is

applied. In the bottom row the loadings of the weighted SCA model are presented. In red are the amine loadings and in

black the lipid loadings. Both the median error model (left column) and the Rocke Lorenzato error model (right

column) are explored. L-Glutamine, the amine with large values is indicated in all plots.

https://doi.org/10.1371/journal.pone.0195939.g004
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these models suffer from overfit. The number of components used in the MALS filter was set

to 7. The repeats from which the weights were calculated are different work-ups of the same

sample. The average number of misclassifications of the 25 cross-validations is given in

Table 1. As expected, autoscaling is an important factor in almost all models; i.e. it decreases

the number of misclassifications. When autoscaling is used, most approaches are already opti-

mal with 5 components. When no autoscaling is used, in most cases more components are

needed for lower classification error.

For the MALS filtering and the WSCDA modelling approach the number of misclassifica-

tions is generally higher than for the transformation methods. For the MALS and modelling

approaches, no clear difference between the median error structure and the Rocke-Lorenzato

error structure can be observed while a median error was expected to be a better model as it is

calculated per metabolite.

Tables 2 and 3 give the top 10 of most influential metabolites on the discriminant perfor-

mance of the different models, for 5 components. When no transformation has been used and

no centering is applied then many of the glyceroPhosphoCholines and triglycerides are

selected. After transformation and centering, the selected metabolites are different. Thus trans-

formation has a clear effect on the selection of important variables. When autoscaling is used

then L-Leucine, Glycine, N6N6N6trimethyllysine, D-L3aminoisobutyric acid, glutamic acid

and others are selected. It can be seen that the selected variables are rather consistent when

autoscaling is used after the transformation. Autoscaling is removing the difference that is

applied by the different error variance stabilization approaches. Many of the same features are

selected after autoscaling has been applied, independent of the transformation applied.

3.5. Selected metabolites

When autoscaling is used then glycine and the branched chain amino acids (BCAA) L-leucine

and L-valine are often selected. Glycine has recently been found to have the strongest (positive)

correlation with insulin sensitivity of all amino acids, even stronger than the (negative) correla-

tion with branched chain amino acids, leucine, isoleucine and valine [26]. This study was per-

formed in subjects with BMI averaging 30–33, which is well below the average BMI in our

subjects of>40 [27]. Since the inclusion criterion for our T2DM subjects was an increased

fasting plasma glucose level (>7 mmol/l), which is a surrogate measure for insulin sensitivity,

this indicates that the correlation of insulin sensitivity with glycine may extend to subjects

with extreme overweight and T2DM. At present, it is unknown whether glycine is causally

related to insulin action. Glutamic acid is both selected in the model with and without auto-

scaling. Glutamic acid and glycine are both neurotransmitters. Whether increased plasma lev-

els reflect changes in, or affect central and peripheral signaling is not known.

Phosphatidylcholine (PC) 36:2 is one of the species of PCs that are structural components of

plasma membranes and the surface of lipid droplets. In plasma, PCs are present on circulating

membrane fragments (micro-particles) and lipoproteins. To what extent the observed changes

in levels of PC36:2 affect biological functions of membrane fragments and lipoproteins is not

known.

Discussion

We have shown that simultaneous component analysis can successfully be incorporated into

principal component discriminant analysis to provide a good tool to investigate underlying

relationships in metabolomics data obtained through multiple platforms. To better understand

the bottlenecks involved in integrating multiple platforms of metabolomics data, we have

Fusing metabolomics data sets with heterogeneous measurement errors
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studied how relevant error structures can be determined, and what the effect is of different

error models, via different ways.

Autoscaling of raw and transformed data improves the predictive performance of the

SCDA models. Furthermore, fewer components are necessary for models on autoscaled data,

and the models are more stable. It seems that biological variation within the samples, i.e. scale-

size differences, have a large influence on the predictive performance. When this is neglected,

the loadings are proportional to the variance, and can possible influence the classification per-

formance. This scale-size effect is not solved by correcting for the measurement errors.

Although for models with large numbers of components, weighted SCA performs equally well

as the autoscaled raw/transformed data.

Data transformations are easily adapted methods to deal with increasing measurement

error. LOG-transformation usually overcorrects the errors for small ratios, while GLOG

assumes a constant error variance for smaller ratios and an increasing error variance for bigger

ratios [13]. In our data, it seems that GLOG-transformation also increases the error for small

intensities. Moreover, all three transformation methods seem to perform quite similar in the

predictive performance and the number of selected components. There seems to be a small

decrease in the number of misclassifications after transformation of the data, especially the

mean-centered square root transformed data has a lower number of misclassifications com-

pared to the raw mean-centered data, although it tends to select a higher number of

components.

The error structures are obtained from the sample replicates, both the sample replicates

from paired data (7 sample replicates) as well as from the other individuals with replicated

samples (8 sample replicates).

The maximum likelihood fusion is incorporated in the SCDA, in the sense that contrary to

MALS it does not stabilize the measurement error variance of the data beforehand. In MALS,

the first step is to filter out noise by using weighted PCA, where each data block is optimized

separately, after that the data is fused and the SCDA is performed on this noise-free fused data.

In maximum likelihood fusion the data is fused and afterwards optimized on the number of

Table 3. Selected variables for MALS methods.

MALS RL MALS MEdian Modeling

Center Autoscaled Center Autoscaled Median RL

1 TG5.22 Taurine L-proline Taurine PC.36.2 PC.36.2

2 PC.34.2 DL3aminoisobutyric acid TG.52.2 3-methylhistidine PC.34.2 PC.34.2

3 PC.36.2 L-leucine TG.52.3 N6N6N6trimethyllysine L-proline L-proline

4 PC.36.3 N6N6N6trimethyllysine PC.36.4 PCO.36.2 PC.36.3 PC.36.3

5 TG.52.3. L-argenine TG.50.1 TG.55.1 TG.52.2 TG.52.2

6 L-proline Glycine Glycine TG.52.1 PC.36.4 PC.36.4

7 PC.34.1 L-Valine PC.50.2 TG.57.1 SM.

d18.12.31

SM.

d18.12.31

8 TG.50.1 L-alpha-aminobutyric

acid

L-argenine SM.d18.12.31 TG.50.2 TG.50.2

9 TG.50.2 L-Threonine L-serine CE.18.3 TG.52.3 PC.38.4

10 SM.

d18.1.16.0.

L-kynurenine L-

threonine

L-Isoleucine PC.38.4 TG.52.3

Table 3: The top 10 number of selected variables in the 25 cross-validation models, with 5 principal components for

the filtering (MALS) and modeling methods.

https://doi.org/10.1371/journal.pone.0195939.t003
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components that give the best predictive performance, and not as in MALS to get the best

error-free data. Maximum likelihood fusion might therefore be suboptimal, especially in mod-

els where the maximum number of principal components is small.

Correction using the Rocke-Lorenzato error structure per lipids class and all amino acids

seems to be less effective compared to the median error structure per metabolite, especially for

models with fewer components and within the MALS procedure. It seems that an error struc-

ture per metabolite gives a more precise prediction of the underlying error structure than an

error structure per groups of metabolites. Van Batenburg et al.[11] argued that due to different

error sources, each metabolite can have a different error structure, therefore grouping metabo-

lites to determine error structures might underestimate the real complexity of the data.

For an easier understanding of the model, an SCDA model with fewer components is pre-

ferred over a model with more components. Moreover, to reduce computation time, the maxi-

mum number of principal components should be kept low, nevertheless, one should be careful

not to select too few components, as for non-autoscaled methods, the filtering method, and

the modelling method, a smaller number of principal components means a less exact class

prediction.

Weighted PCA, either in the MALS or in the maximum likelihood fusion, does not seem to

contribute a lot to the predictive performance of the model obtained via simultaneous compo-

nent discriminant analysis (SCDA). Faster methods, like square root-, LOG-, and GLOG-

transformation perform equally well. Moreover, square root- and (G)LOG -transformations

do not even require sample replicates. However, an important step in class prediction via

SCDA, additional to potential transformation, is to remove any scale-size effects between vari-

ables via autoscaling.

Supporting information

S1 Fig. SCA loadings of RAW data after mean centering or autoscaling and block scaling

to equal Frobenius norm. The red markers indicate loadings of amines while the black mark-

ers are of lipid metabolites. L-Glutamine is indicated because of its high values in the raw data.

To ensure that the analysis is not completely driven by one metabolite with large values, we

examined the effect of autoscaling on the loadings of the SCA. For this, SCA was performed on

mean centered block scaled raw data and autoscaled block scaled raw data. The first two prin-

cipal loadings are plotted in S1 Fig. In the mean centered analysis, L-glutamine gets high load-

ings, and most likely will drive the analysis. Though, L-glutamine is not-significantly different

between the two classes (double sided t-test p-value = 0.4958). Autoscaling the variables seems

to be a necessary step to make sure that extreme metabolites do not drive the analysis; autoscal-

ing makes the loadings more comparable with each other, such that the scale of the variables

no longer has an influence on the analysis (see S1 Fig right).

(TIF)

S1 File. Amines. The file amines.csv contains the Amine metabolite levels of the patient sam-

ples.

(CSV)

S2 File. QC corrected Amine levels. The file amine_qc.csv contains the amine metabolite lev-

els of the patient samples after QC correction.

(CSV)

S3 File. Lipids. The file Lipids.csv contains the lipid levels of the patient samples.

(CSV)
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S4 File. QC corrected Lipids. The file lipids_qc.csv contains the lipid levels of the patient sam-

ples after QC correction.

(CSV)

S5 File. Patient sample information. The file NMC0913groepen.csv contains information on

the patient samples.

(CSV)
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