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Abstract

Quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides estimates of physiologically
relevant parameters related to tissue blood flow, vascular permeability, and tissue volume fractions which can then be used
for prognostic and diagnostic reasons. However, standard techniques for DCE-MRI analysis ignore intra-voxel diffusion,
which may play an important role in contrast agent distribution and voxel signal intensity and, thus, will affect
quantification of the aforementioned parameters. To investigate the effect of intra-voxel diffusion on quantitative DCE-MRI,
we developed a finite element model of contrast enhancement at the voxel level. For diffusion in the range of that expected
for gadolinium chelates in tissue (i.e., 161024 to 461024 mm2/s), parameterization errors range from 258% to 12% for
Ktrans, 29% to 8% for ve, and 260% to 213% for vp over the range of Ktrans, ve, vp, and temporal resolutions investigated.
Thus the results show that diffusion has a significant effect on parameterization using standard techniques.
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Introduction

Dynamic contrast enhanced magnetic resonance imaging

(DCE-MRI) involves the serial acquisition of images before,

during, and after the injection of a paramagnetic contrast agent

into a peripheral vein. As the contrast agent is exchanged between

the vascular space and the extravascular extracellular space (EES),

it interacts with the surrounding tissue water molecules, shortening

the tissue’s native T1 relaxation time and resulting in a quantifiable

increase in the signal intensity (SI) on a T1-weighted sequence. By

considering the time series data, a SI time course is formed which

can be analyzed with an appropriate pharmacokinetic model to

estimate biologically relevant parameters describing, for example,

tissue blood flow, vessel permeability, and tissue volume fractions.

The pharmacokinetic models most commonly used to describe

the contrast agent kinetics within a tissue were adapted from the

model developed by Kety which described the exchange of an

inert gas between two compartments within a tissue [1]. These

‘‘standard models’’, as applied to DCE-MRI, account for active

delivery of the contrast agent via the vasculature and exchange of

the contrast agent between the vascular space and the EES [2,3,4].

Generally speaking, the models used in DCE-MRI analysis neglect

any diffusion of the contrast agent that may occur within the tissue

between well and poorly vascularized areas. The effect of contrast

agent diffusion may not be trivial in pathologic conditions where

spatial heterogeneity of the vasculature is routinely observed, as is

the case, for example, in tumors [5]. Thus, in tissues in which

diffusion of the contrast agent contributes substantially to the

observed dynamic signal enhancement, it is possible that the

established models – which are not designed to account for

diffusion of contrast agent – may estimate pharmacokinetic

parameter values with reduced reliability. As these are the same

model parameters that have been shown to assist in both diagnosis

[6,7,8,9,10] and prognosis [11,12,13,14,15,16,17,18,19,20], it is of

great import to accurately (and precisely) assign their values.

Previous studies have hypothesized that diffusion of contrast agent

within the tissue of interest may introduce errors when utilizing the

standard models for analyzing DCE-MRI data [21,22,23,24,25].

Though the potential for contrast agent diffusion effects may be

recognized, literature investigating the effect of diffusion is limited.

Pellerin et al. used a finite difference model to study the effect of

diffusion in DCE [21]. The work presented a diffusion-perfusion

(DP) model which incorporated voxel to voxel diffusion into the

standard model. Using assumed diffusion coefficients from the

measurement of the water apparent diffusion coefficient (ADC),

model optimization resulted in assignment of Ktrans and ve for each

voxel. The work showed a quantitative improvement in the
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parameter assignment on a voxel basis using the DP model as

compared to the standard model both in simulated cases where a

distinct delineation between well and poorly perfused regions

existed, and in a xenograft tumor which showed evidence of

diffusion in which unphysiological values of ve were assigned by

the standard model. Fluckiger et al. further analyzed this situation,

modifying the DP model to make the voxel diffusion coefficients

independent of the other voxels, yielding a more computationally

tractable model; they termed this model the diffusion compensated

Tofts-Kety model (DTK) [22]. With this model, the authors were

able to show an increase in accuracy of parameter assignment over

the standard model, both quantitatively in simulated data, and

qualitatively in preclinical experimental data. Jia et al. calculated a

contrast agent diffusion coefficient (CDC) in colorectal liver

metastases [23]. To visually assess the effect of diffusion, the

authors applied an onion-peeling algorithm to generate pixel-wide

layers within the lesion, and then visualized the SI curves of each

layer. The shape of the curve during the extravascular phase

demonstrated the effect of diffusion on the contrast agent

concentration within the lesion. The CDC was quantified by

evaluating the rate of gradient decrease in the signal intensity

within the region as described by a monoexponetial decay. Fitting

the decay equation to the imaging data resulted in a decay factor,

which, through a defined relationship, was used to calculate the

CDC. The authors found the CDC to be a repeatable value that

described the heterogeneity of the lesions.

More recently, Sourbron [24] has proposed a field theory for

tracer-kinetic studies in medical imaging. In this work, the author

develops a more general framework that employs the specific

structure of the data available from dynamic imaging studies. In

particular, the relevant (desired) tissue parameters are functions of

space which can be measured by analyzing the temporal and

spatial patterns in the time dependent concentration time courses.

The theory allows for the rigorous examination of the effects of

convective or diffusive exchange between voxels.

It is important to note that all of the above efforts focused on

inter-voxel diffusion of contrast agent; the literature focusing on

intra-voxel diffusion is even more limited. Pannetier et al.
performed an investigation of the effect of intra-voxel contrast

agent diffusion on magnetic field perturbations and susceptibility

and the parameterization error of kep (;Ktrans/ve) and blood

volume fraction (BVF) [25]. The authors found that contrast agent

diffusion did have an effect on both permeability estimates and the

plasma tissue fraction. Additionally, both parameters were also

strongly influenced by scan parameters, particularly the echo time.

However, the authors’ investigation did not focus on the inclusion

of cells in the extravascular space, which can be highly variable in

various tissue pathologies and would presumably further empha-

size the effect of contrast agent diffusion, thus making it an

important point of consideration.

The aim of the present effort is to evaluate the propensity of

intra-voxel diffusion to affect the parameterization of the tissue

parameters via the extended (Tofts) models. To do so, we

generated a finite element model (FEM) of a representative tissue

domain that utilized both active delivery to the voxel, which was

represented by means similar to the standard model, and passive

diffusion within the voxel, which was represented by the classical

diffusion equation. The FEM generated a tissue concentration

distribution which could then be utilized to calculate a dynamic

tissue SI time course. The tissue’s dynamic SI was evaluated at

various values of contrast agent diffusion to assess the effect of

intra-voxel diffusion on the measured SI within the voxel. Given

the assumption of well-mixed compartments of the common DCE-

MRI models, we hypothesize that at high coefficients of diffusion

(which allow sufficient mobility of the contrast agent) these

methods will accurately model the domain. We further hypoth-

esize that error in pharmacokinetic parameter estimates will

increase with decreasing coefficients of diffusion, as the assumption

of a well-mixed domain becomes invalid. This contribution

investigates the effect of varying distributions of the tissue volume

fractions, specifically including cellular and vascular structures,

and provides a systematic characterization of the effect of diffusion

on the accuracy of the frequently used DCE-MRI modeling

approaches.

Methods

Theory
The most commonly used approach for quantitative analysis of

DCE-MRI data is the so-called standard model which utilizes a

two-compartment model to describe the concentration change of

the contrast agent within the tissue:

dCt(t)

dt
~KtransCp(t){

Ktrans

ve

Ct(t), ð1Þ

where Ct(t) and Cp(t) are time courses of the concentration of

contrast agent in the tissue and blood plasma (the arterial input

function, or AIF), respectively, Ktrans is the volume transfer

constant, and ve is the extravascular extracellular volume fraction

[26]. The standard model only considers the contrast agent in the

EES and neglects the portion of tissue that is composed of

vasculature. However, in some cases, the plasma fraction of the

tissue is not insignificant and may introduce error into the

parameterization of the standard model [27,28]. Thus, investiga-

tors have amended the standard model to include the contribution

of the plasma space within the tissue:

Ct(t)~Ktrans

ðt

0

Cp(u) exp
Ktrans

ve

(t{u)

� �
duzvpCp(t), ð2Þ

where vp is the vascular volume fraction within the section of tissue

under investigation. With measured Cp(t) and Ct(t) time-courses,

either the standard model or the extended model can be fit to the

data to estimate the parameters Ktrans, ve, and, in the case of the

extended model, vp.

In order to investigate the effect of intra-voxel contrast agent

diffusion on the ability to accurately estimate DCE parameters

using the extended model, we developed a two-dimensional finite

element model (FEM) describing perfusion and diffusion within a

tissue domain. The FEM was developed using the Galerkin

approach [29] with the standard Lagrange polynomial inter-

polants [30], and a Crank-Nicholson [31] scheme for the time

domain. While details of this approach are provided elsewhere

[29,30,31], we now discuss the salient features for the sake of

clarity in our particular application.

In FEM analysis, the solution, C(x,y) (which, in this work, is the

contrast agent concentration at the nodal indices), is approximated

by a coefficient expansion using a set of basis functions:

C(x,y)&ĈC(x,y)~
XN

j~1

Cjwj(x,y), ð3Þ

where ĈC(x,y) is the approximate solution, Cj are the unknown

coefficients, and wj(x,y) are the spatially dependent basis

functions. Additionally, the weighted residual method requires
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that the residual error between the approximate and analytical

solutions vanishes over a weighted integral, and thus a set of

weighting functions is required:

SR,WiT~0, ð4Þ

where R is the resultant residual of the approximation of C(x,y),
Wi (i = 1:N) is the set of N weighting functions, and S%T
indicates integration over the problem domain. Selection of the

basis functions and weighting functions allows for the determina-

tion of the unknown coefficients, Cj; in the Galerkin method, the

weighting functions and the basis functions are the same. The

Lagrange polynomial is commonly utilized as the basis and

weighting functions; this family of polynomials is C0 continuous,

and the ith polynomial,wi(x,y), is defined such that the polynomial

is equal to unity at node i and is 0 at all other nodes. Thus, by

definition, the unknown coefficients become the desired nodal

solutions.

To address the time stepping of the solution, a Crank-Nicolson

approach was used. Temporal integration can be approximated

by:

ðkz1

k

rdt~Dt(hrkz1z(1{h)rk), ð5Þ

where r is the integrand, k and k+1 are the two time steps, h is a

weight, and Dt is the time between sequential steps (i.e., k and k+
1). When h is assigned a value of 0, the standard forward Euler

approximation to integration is achieved, while a value of 1 yields

the standard backward Euler approximation. Assigning h a value

of 0.5 results in the trapezoidal integration approximation, or what

is also referred to as the Crank-Nicolson approach. The Crank-

Nicolson scheme is an implicit temporal differencing method

which, with h = 0.5, assigns equal weighting to the previous and

current steps. The advantage to this approach is the increased

temporal accuracy relative to the other approaches coupled with

the unconditional stability of the dynamic system [29].

For this work, the domain of interest was a square (i.e., a 2D

voxel) with one (or multiple) null region(s), representing the

perfusing region(s) (i.e., the vascular space, vp), and multiple

elliptical voids representing packed cells (i.e., the extravascular

intracellular space, 1-ve-vp) into which the contrast agent could not

diffuse (Fig. 1). The remainder of the domain consisted of the EES

(ve) into which the contrast agent could diffuse. The FEM utilized

the standard diffusion equation throughout the domain to describe

the contrast agent diffusion within the tissue:

dC(x,y,t)

dt
~+:D+C(x,y,t), ð6Þ

where D is the coefficient of diffusion for the contrast agent and

C(x,y,t) is the dynamic, spatially dependent contrast agent

concentration. Eq. (6) is only applied within the ve space of the

tissue, so, when the entire domain is considered, C in the general

diffusion equation becomes Ce relative to the extended Tofts

model.

The vessel boundaries, and hence the input of contrast agent

into the domain, were handled through the boundary integral that

can be introduced into the Galerkin weak form of the equation by

means of the second order differential. The Galerkin weak form of

the equation (before expanding C) is:

SdC

dt
,wiT~SD+2C,wiT: ð7Þ

This second order differential can be integrated by parts, and

the boundary integral introduced via the divergence theorem:

S+2C,wiT~
þ
+C:n,wids{S+C:+wiT: ð8Þ

Substituting (8) into (7) gives an alternate weak form of the

diffusion equation; in this format, the appearance of the boundary

integral allows for consideration of the movement of the contrast

agent across the closed boundaries of the domain. At the cell

boundaries and the external boundaries of the extended domain

(discussed below), the integral was set equal to 0 to dictate no flux

of the contrast agent at those boundaries. However, at the vessel

boundaries, flux will occur, and the normal derivative at the

boundary can be described by the difference in the concentration

between the plasma and the tissue domain, and a transfer

coefficient (similar to the standard equation above), as:

+C:n~P(Cp(t){C(t)), ð9Þ

where P describes the transfer coefficient between the plasma and

the tissue and Cp is as previously defined. P is related to Ktrans by:

P~
Ktrans:V

S
, ð10Þ

where S is the surface area of the vessels and V is the volume of the

voxel [32]. Since the simulation is presented in 2D, S is the length

of the vessel boundaries and V is the area of the voxel. This

relation was chosen so that at high D (i.e., D.1023 mm2/s), the

amount of contrast agent in the EES was the same as that

predicted by the standard model. In generating the FEM, the

condition defined in (9) was substituted for +C:n at the boundaries

of the perfusing regions (i.e., around all vessels within the domain)

to provide the flux of the contrast agent at the vessel boundaries.

Thus, the simulations consisted of introduction of the contrast

agent to the system at the vessel boundaries via (8), and then

diffusion throughout the appropriate regions of the domain as

described by (6). This system simulated the three compartment (ve,

veis, and vp) model described by (2) while allowing the additional

consideration of contrast agent distribution, due to diffusion away

from the delivery regions, in the voxel domain.

Simulations
A representative voxel domain utilized in these simulations is

shown in Fig. 1. The domains were generated by selecting an

appropriate two-dimensional slice from a three-dimensional

structure containing packed ellipsoids generated utilizing an

ellipsoid packing algorithm [33,34]. Each domain consists of three

components: the extravascular intracellular space (EIS, 1-ve-vp),

which is impermeable to the contrast agent, the EES (ve), into

which the contrast agent will diffuse, and the vascular space (vp)

which provides the delivery of the contrast agent to the domain. In

Fig. 1, the EIS is represented by the white ellipsoids, the EES is the

gray region, and the vascular space is denoted by the red regions.

Thus, the volume fractions typically identified in quantitative

DCE-MRI analysis were physically defined within the domain. In

generating the mesh of the system, only the EES was meshed (i.e.,
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filled with triangular elements) while the EIS and vascular spaces

were left as voids. This is appropriate for the case in which the

contrast agent cannot enter the EIS (as is true for the common

gadolinium chelates frequently employed in DCE-MRI), and thus

all that is required is an impermeable boundary at the borders of

the cells. Additionally, the concentration in the plasma space is

considered uniformly defined by the AIF, and therefore again the

interaction at the boundary between the vascular space and the

EES is the only area of concern in regard to delivery of the

contrast agent to the system.

The domain size utilized in this work was selected to be a region

250 mm on a side, which is a common voxel size for a preclinical

study. The average edge length of the triangular elements in the

domain mesh is 2 mm. The time step (Dt, Eq. (11)) was calculated

for each simulation based on mesh parameters and D, and was

checked to ensure that the simulation was discretized in a manner

that specifically retained the peak and other pertinent features of

the AIF. Simulations were run for various combinations of Ktrans,

ve, and vp in order to analyze the effect of each on parameter-

ization error. The Ktrans, ve and vp values were [0.1 0.4 0.7]

min21, [0.25 0.39 0.55] and [0.01 0.03 0.06], respectively. While

changes in Ktrans were implemented by simply varying the values

input into the simulation, changes in ve and vp required changes in

the voxel domain itself. Increasing or decreasing ve meant

removing or adding cells, respectively, while increasing or

decreasing vp meant increasing or decreasing, respectively, the

number of vessels in the voxel domain. The average cell diameter

utilized in the domains was approximately 14 mm and the average

vessel diameter was approximately 8 mm. For the simulations, an

extended domain, which was larger than the voxel of interest, was

generated in order to allow for boundary conditions at the edges of

the voxel of interest that were realistically defined. Specifically, the

(250 mm)2 voxel was surrounded by eight other identical (250 mm)2

voxels, yielding an extended domain size of (750 mm)2. When the

values for voxel contrast agent concentration and voxel SI were

calculated, they were calculated only for the central (250 mm)2

voxel of interest. In this way, artificial boundary conditions were

not assigned at the edge of the voxel, but rather contrast agent was

allowed to diffuse between voxels, as would happen physiologi-

cally.

For all simulations, an experimentally measured population AIF

was utilized for Cp(t) [35], and the simulated time was 11 minutes.

Simulations were run forward in order to generate a time

dependent distribution of contrast agent within the elements. A

fast exchange limit was assumed in these simulations, and hence

the total voxel R1 was calculated as the weighted sum of the

individual tissue compartment R1 values (EES, vp, and EIS). The

EES R1 was calculated from the dynamic elemental CA

concentrations obtained from the simulations. Specifically, for

each element (which represent the EES), at each time point (k), the

elemental concentration was converted to R1,elm via [26]:

Rk
1,elm~ Aelm=area

� �
r1
: CA½ �kelmzR10,elm

� �
, ð11Þ

where R10,elm is the baseline relaxation rate of the elemental tissue,

[CA]k
elm is the concentration of the contrast agent in the element

at time point k, r1 is the contrast agent-specific relaxivity (in units

of mM21s21), Aelm is the elemental area, and area is the total voxel

area. For the simulations presented here, r1 was set to be

4.7 mM21s21 (appropriate for 7T, [35]) and R10elm was 0.5 s21.

The ratio of Aelm/area is introduced so that the contribution of

each element to the total voxel R1 is weighted based on the area of

the element relative to the whole domain; that is, 2.061026 mm2/

0.0625 mm2, or 3.261025. The vascular component of the voxel

R1 will also change with time, and thus requires a similar dynamic

calculation:

Figure 1. A Representative Voxel Domain. a.) The simulated compartmental domain. The gray area represents ve, the white voids represent cells
(1-ve-vp), and the red spaces indicate vessels (vp). This domain has a ve of 0.39 and a vp of 0.03. Each side of the voxel is 250 micrometers. b.) An
example of the triangular mesh (corresponding to the black dashed line in panel a) which fills ve.
doi:10.1371/journal.pone.0108726.g001
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Rk
1,blood~r1

: Cp

� �k
zR10,blood , ð12Þ

where Cp is defined by a population AIF as above, R10,blood is set to

0.5 s21, and r1 remained the same as before. In this case, it was

not necessary to weight R1,blood by a subdivided area since the

contrast agent is assumed to be uniformly distributed within the

vessel; instead, the area weighting of the entire vp region is handled

in Eq. (13). The total voxel R1 is then simply the weighted sum of

the R1 contribution from each of the three tissue fractions: the

EES, the vascular space, and the EIS. Note that the EIS R1 does

not change with time as contrast agent is assumed not to enter the

cells; thus R1,eis was the same for each time step and was set to

0.5 s21. The composite voxel R1 was calculated by:

Rk
1,voxel~SRk

1,elmz(1{ve{vp):R1,elmzvp
:Rk

1,blood : ð13Þ

The total voxel SI at each time step k could then be calculated

utilizing the standard gradient echo equation:

SIk~S0
:
sin a:(1{ exp ({TR:Rk

1,voxel))

1{ cos a: exp ({TR:Rk
1,voxel)

, ð14Þ

where we have assumed the echo time (TE) is much less than the

apparent transverse relaxation time (T2*), TR is the repetition

time for the scan, a is the flip angle (25u), and S0 is the baseline

signal intensity. For simplicity, we set S0 = 1 for all calculations.

Additionally, the repetition time was selected to be 5 ms for all

calculations.

Performing this calculation for each time step, k, over the

simulation resulted in a dynamic SI for the whole voxel.

Simulations were run for various D ranging from 361025 to

361023 mm2/s. These values were chosen to give a sufficient

range of diffusion coefficients around in vivo measurements of

gadolinium diffusivity, which has been reported as a mean D of

2.08 6 1024 mm2/s (range: 1–3.461024 mm2/s) [36]. This

specific range of D was evaluated for gadoterate meglumine

(Gd-DOTA). A similar D value was calculated for gadopentetate

dimeglumine (Gd-DTPA, 2.661024 mm2/s) [37], which has a

comparable molecular weight. It is noted that other Gd chelates

may have a different range of average D values; however, the

range evaluated in this work covers two orders of magnitude and

hence encompasses typical D values for a variety of gadolinium

based-contrast agents. The permeability coefficient, P, was also

varied, to achieve the aforementioned Ktrans values of 0.1, 0.4, and

0.7 min21.

Assessing the effect of temporal resolution on the parameter-

ization error was accomplished by means of sampling the dynamic

voxel SI data at the different intervals. We selected temporal

resolutions covering a range of those commonly encountered in

preclinical and clinical studies: 1.6, 3.2, 6.4, 12.8, and 25.6 s. The

resulting SI data sets were then fit using the extended Tofts model

(2) to extract Ktrans, ve, and vp. The fitting procedure consisted of

fitting the SI data using the standard conversion procedure

(standard gradient echo equation coupled with the fast exchange

limit assumption) and utilizing a non-linear least squares

approach, with initial guesses of [0.1 min21, 0.1, 0.01] for Ktrans,

ve, and vp, respectively. These values could then be directly

compared to Ktrans assigned during the simulation, and the ve and

vp values defined by the domain to assess parameterization error

due to diffusion and temporal resolution. The parameterization

error was calculated as:

%Error~
Paramopt{Paramactual

Paramactual

� �
:100, ð15Þ

where Paramopt is the optimized parameter value obtained from

fitting the extended model (i.e., Eq. (2)) to the data and Paramactual

is the parameter value assigned in the simulation.

Results

The results of the simulations are shown in Figs. 2, 3, 4, and 5

below. Fig. 2 shows a representative example of the domain EES

contrast agent concentration and the spatial domain EES contrast

agent distribution as a function of coefficient of diffusion at various

times along the dynamic acquisition. The results are shown for

Ktrans of 0.4 min21, ve of 0.39, and vp of 0.03. The top graph in

the figure shows the overall voxel EES contrast agent concentra-

tion (i.e., the sum of the amount of contrast agent in each element

divided by the total ve area) as a function of time for three

representative coefficients of diffusion utilized in the simulations.

The panels in the figure illustrate the spatial variation of the

contrast agent concentration within the voxel EES as a function of

diffusion coefficient, with D increasing from top row to bottom

row, and time increasing from left to right. The time represented

by each of the four panels is indicated by the vertical black lines in

the top voxel concentration plot; specifically, 0.88 minutes (the

time of the peak of the AIF utilized in the simulations), 2 minutes,

3.5 minutes, and 8 minutes. These times were chosen to sample

the early, dynamic period of the wash in and wash out, as well as a

later time point when the contrast agent is more homogeneously

distributed. The figure illustrates the effect of diffusion on both the

total voxel CA concentration, as well as the distribution of the CA

in the voxel domain over time. At early time points, when the

difference between the CA concentration in the vasculature and

that in the domain is high, CA moves into the domain in the

regions at the vessel boundaries, as indicated by the distinct peaks

in the left column of panels. In the case of a low D (top left panel),

the CA remains proximal to the vasculature. However, as D
increases, the CA disperses into the domain. This behavior is

observed by comparing the panels in the left column, wherein the

peaks surrounding the vessels become less distinct as D increases.

Note, though, that while the peaks decrease, the total amount of

CA in the domain EES increases with increasing D; this can be

seen in the concentration curves shown in the top panel. For

example, for the earliest time point indicated, the median CA

concentration in the EES is 761024 mM for D = 361025 mm2/

s, 0.0026 mM for D = 161024 mm2/s, and 0.0047 mM for

D = 361024 mm2/s. Thus, with increasing D the CA traverses

further from the vascular periphery, which allows more CA to

move into the domain while also increasing the domain

homogeneity.

Figs. 3, 4, and 5 show the results for parameterization error.

The simulations were run with various domains in order to vary ve

and vp. Additionally, the input value of Ktrans and D were varied,

as was the temporal resolution. Each figure shows the result of

parameterization error as it depends on D and temporal

resolution. In all figures, the rows represent (from top to bottom)

parameterization error for Ktrans, ve, and vp, and x2 (to measure

goodness of fit). Additionally, D is indicated by the x-axis of each

panel (log scale), and the temporal resolution is indicated by the

five different curves on each panel. Fig. 3 shows the effect of Ktrans,

which increases in each column from left to right. Similarly, Fig. 4

demonstrates the effect of ve while Fig. 5 shows the effect of vp. In
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all cases, the parameterization error trends toward 0 for the

highest temporal resolution with increasing D. This corresponds

with the assumption of instantaneous CA distribution in the

domain; as D increases and the instantaneous distribution is

approached, the accuracy with which the extended model is able

to represent the simulated data increases. Temporal resolution

demonstrates a strong effect on parameterization error in all three

figures. In general, decreasing temporal resolution introduces error

in parameterization due to the inability to detect highly dynamic

features of the curve, such as the wash-in features and the quick

peak concentration in the vasculature. Thus, in most cases,

decreasing temporal resolution causes an increase in parameter-

ization error.

The extended model parameterization errors for Ktrans ranged

from –58% to 12% over the range of D expected for gadolinium

chelates in tissue (i.e., approximately 161024 to 461024 mm2/s),

temporal resolutions, Ktrans, ve, and vp evaluated. With increasing

Ktrans, the parameterization error for all three parameters

increases. This is due to the fact that Ktrans reflects permeability

in our model, and an increase in Ktrans results in an increased

amount of CA moving into the system at the periphery of the

vessels, thus increasing the disparity between concentration at the

vessel periphery and concentration in the further regions. The

magnitude of the errors associated with the parameterization of ve

is relatively small when compared to the errors in Ktrans; for ve the

errors ranged from 29% to 8% over the same range of D.

Increasing ve causes a slight decrease in error across the three

parameters. This can be attributed to the fact that increasing ve

decreases the barriers to CA diffusion (i.e. decreases the number of

cells), thus allowing the CA to more rapidly approach a

homogenous distribution within the domain. Finally, errors for

vp in the appropriate range of D encompassed 260% to 213%.

Increasing vp causes a distinct decrease in parameterization error

for Ktrans, ve, and vp. As vp increases, the vessel density increases,

thus decreasing the distance between any given tissue region and

its nearest source of perfusion. Consequently, increasing vp serves

to decrease the heterogeneity of the CA distribution and

subsequently decreases parameterization error.

When considering the average diffusion coefficient value

measured for gadolinium chelates (approximately 261024 mm2/

s), the errors for Ktrans ranged from 244% to 10%, the errors for

ve ranged from 25% to 8%, and the errors for vp ranged from

Figure 2. Voxel EES Contrast Agent Concentration Distribution as a Function of the Coefficient of Diffusion. The concentration
distributions and overall voxel EES concentration are shown for the central voxel of interest for the simulation with ve = 0.39, vp = 0.03, and Ktrans =
0.4 min21. The top figure shows the overall voxel EES concentration for three representative coefficients of diffusion (D). The lower panels
demonstrate spatial voxel contrast agent concentration distribution as a function of diffusion (increasing from top to bottom) and time (increasing
from left to right). The four time points are indicated by the black vertical lines on the voxel concentration plot. Note that at a high D value
(461024 mm2/s), the contrast agent concentration is nearly uniform throughout the domain at each time point. However, at lower (and more
physiologically relevant) D, there is substantial heterogeneity within the domain, especially during the early times points during which the vascular
concentration is highly dynamic. Additionally, it is important to note that although the peaks become less distinguished with increasing D at the
earliest time point, the overall domain EES CA concentration increases with increasing D. This is due to the fact that with increasing D, the CA is able
to diffuse away from the vessel periphery and into the domain. Specifically, the median concentration in the ve domain space is 761024 mM,
0.0026 mM, and 0.0047 mM for each D value shown (from lowest to highest).
doi:10.1371/journal.pone.0108726.g002
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260% to 152% over the implemented Ktrans, ve, and vp values and

over the range of temporal resolutions investigated. Specifically,

for the highest temporal resolution (1.6 s) the errors for Ktrans

ranged from 244% to 24%, ve errors ranged from 24.8% to

20.2% and errors for vp ranged from 1.6% to 146%. For all three

parameters, the largest parameterization error is noted in the

simulation domain with a vp value of 0.01, and the error is quickly

minimized with increasing vp. This again reiterates the large

impact of vp on CA delivery, which ultimately also affects domain

CA homogeneity and hence parameterization error.

The quality of fit of the extended model for each simulated

voxel SI is quantified by x2, which is shown in the bottom row of

panels in Figs. 3, 4, and 5. The x2 values for the simulations

ranged from 3.2861025 to 2.6161029, and in all figures the x2

values are plotted on a log scale in order to emphasize differences

between temporal resolutions. In each simulation, and for all

temporal resolutions, the magnitude of x2 decreases with

increasing D, indicating that as D increases, the extended model

is better able to fit the simulation data. This is expected, as

increasing D reduces the heterogeneity in the domain and results

Figure 3. Parameterization Error as a Function of Contrast Agent Diffusion, Temporal Resolution, and Ktrans. Voxel SI was calculated
from each concentration distribution for the appropriate combination of parameters, and SI curves were generated using a range of temporal
resolutions. The resulting curves were fit using the extended model. The panels show percent error from input value for (from top to bottom) Ktrans,
ve, and vp, and goodness of fit as measured by x2. The columns indicate input Ktrans value, increasing from left to right. The simulation utilized ve =
0.39 and vp = 0.03.
doi:10.1371/journal.pone.0108726.g003
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in a more ‘well-mixed’ voxel, as is assumed in the extended model.

Additionally, in most cases the value of x2 indicates a better fit

with increasing temporal resolution. This is again expected, as the

increased temporal resolution allows for identification of salient

dynamic features of the SI curve, such as the rapid uptake.

Discussion

The simulations utilized for this work aim to evaluate the effect

of intra-voxel contrast agent diffusion on measured voxel signal

intensity time courses, which will subsequently affect the ability of

the extended Tofts model to estimate the pharmacokinetic

parameters characterizing the voxel. These simulations consider

physically realistic voxels, with cell and vessel distributions

included via ve and vp. Additionally, realistic temporal resolutions

are utilized to most closely approximate how dynamic data would

be acquired in a typical in vivo experiment. The results of the

simulations indicate that diffusion plays a large role in the

distribution of contrast agent within the domain and hence on the

Figure 4. Parameterization Error as a Function of Contrast Agent Diffusion, Temporal Resolution, and ve. Voxel SI was calculated from
each concentration distribution for the appropriate combination of parameters, and SI curves were generated using a range of temporal resolutions.
The resulting curves were fit using the extended model. The panels show percent error from input value for (from top to bottom) Ktrans, ve, and vp,
and goodness of fit as measured by x2. The columns indicate input ve value, increasing from left to right. The simulation utilized Ktrans = 0.4 and vp =
0.03.
doi:10.1371/journal.pone.0108726.g004
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total domain SI. Notably, the maximum concentration of contrast

agent within the domain EES is affected by the distribution of

contrast agent within the domain, and this distribution is

determined by diffusion. This can be seen in the top plot of

Fig. 2, where the shape and maximum voxel concentration are

dependent on diffusion. Specifically, there is a noticeable

difference in the slope of the wash-in portion of the curves, which

is dependent not only on D but also on the Ktrans and the voxel vp.

In considering the concentration distributions in the lower panels

of Fig. 2, it is apparent that D has a distinct effect on the amount

of contrast agent in the system as well as the distribution of the

contrast agent within the voxel. In particular, the distributions in

the first column display noticeable peaks of concentration around

the vessels, as would be expected. However, these peaks are

exaggerated in the lower D case, as the contrast agent does not

diffuse away into the domain. As D increases, and the contrast

agent diffuses further away from the vessels, the concentration

within the overall domain becomes larger, and the peaks around

the vessels are reduced. In all cases, however, the contrast agent

eventually distributes within the total voxel domain; this is

indicated by the curves converging during the later time points

Figure 5. Parameterization Error as a Function of Contrast Agent Diffusion, Temporal Resolution, and vp. Voxel SI was calculated from
each concentration distribution for the appropriate combination of parameters, and SI curves were generated using a range of temporal resolutions.
The resulting curves were fit using the extended model. The panels show percent error from input value for (from top to bottom) Ktrans, ve, and vp,
and goodness of fit as measured by x2. The columns indicate input vp value, increasing from left to right. The simulation utilized Ktrans = 0.4 and ve =
0.39.
doi:10.1371/journal.pone.0108726.g005
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as well as the more uniform appearance of the last column of

contrast agent concentration distribution plots.

The system utilized in this work incorporates a parameter P that

dictates the permeability of the vessel at the boundary. Eq. (2)

assumes instantaneous mixing and hence homogeneous distribu-

tion; thus, we opted to assign P so that at high D (i.e. D.

1023 mm2/s, when the contrast agent had sufficient mobility to

distribute uniformly within the domain) the amount of contrast

agent in the domain was the same as defined by the standard

approach for a given Ktrans. Given this stipulation, it should be

noted that even at higher D values, when the amount of contrast

agent in the system is nearing that predicted by the Tofts model,

the distribution of the contrast agent, and thus the voxel SI, will

still vary with D until D is sufficiently high enough to provide an

instantaneously homogeneous distribution throughout the voxel.

This also means that, at lower D, the amount of contrast agent in

the system would be less than that predicted by the standard

approach. We believe that this is an appropriate, and physically

relevant, approach to the system since the amount of contrast

agent entering the EES will be driven by the gradient at the

perimeter of the vessel, and hence if the contrast agent is not

diffusing away from the vessel, then the gradient will be reduced

and less contrast agent will move into the EES. However, we note

that at the highest D value presented in the figures (361023 mm2/

s – more than an order of magnitude higher than the D expected

for the common gadolinium chelates in tissue), the parameteriza-

tion error at the highest temporal resolution is trending toward

(and quite nearly) 0 in all cases.

The results for the percent parameterization error for the

various voxel configurations are shown in Figs. 3, 4, and 5. The

results indicate that, for values in the range of that expected for

gadolinium in tissue, diffusion does indeed have a substantial effect

on the parameterization error. For all parameters, the error

plateaus as the coefficient of diffusion increases. Additionally, in

most cases, the error is reduced as the magnitude of the temporal

resolution is reduced. However, it is interesting to note that in

some cases, the larger temporal resolutions actually result in a

smaller absolute error, or they result in an overestimation of the

parameter. This is likely due to the use of a least-squares regime

for curve fitting as well as the fact that the various temporal

resolutions affect the features of the SI curve that are retained, and

hence can significantly alter the fit. For example, in most cases the

extended model overestimates vp, but for some larger temporal

resolutions the model underestimates vp. This can be attributed to

the fact that the initial steep increase in the contrast agent

concentration in both the plasma and the tissue is not sampled due

to the longer temporal resolution.

Generally speaking, the magnitude of the errors associated with

the parameterization of ve is relatively small when compared to the

errors in Ktrans and vp. This is due to the fact that the assignment

of ve is driven by the shape of the latter portion of the SI curve

during which the plasma concentration, and hence the entire

voxel, is less dynamic. The effect of diffusion is mainly perceived in

the earlier portions of the curve, when the system is highly

dynamic and the movement of the contrast agent into and out of

the voxel is rapid. Diffusion plays a significant role in the larger

errors associated with Ktrans and vp. In a low D situation, the

contrast agent will initially extravasate into the system for a brief

period of time, but the amount of contrast agent that enters the

tissue is limited as the contrast agent does not move away from the

blood vessel boundaries. Hence, there is a brief, quick increase in

the signal intensity caused by movement of contrast agent into the

tissue. This rapid uptake coupled with the plasma contribution to

the total voxel SI is likely what causes the large error of vp.

However, because the rapid extravasation of the contrast agent

does not continue, and the slope of the total voxel SI curve flattens,

the optimized Ktrans is underestimated. Thus, in most cases

investigated, vp is overestimated in order to account for the

increase in SI for which Ktrans cannot account due to the short

duration of the said increase.

Overall, the effect of intra-voxel diffusion on parameterization

error is emphasized by increasing Ktrans and decreasing vp. In

Figs. 3 and 5, the range of percent error for each parameter

increases with increasing Ktrans and decreasing vp. This would be

expected since, physiologically, these two parameters affect the

introduction of the contrast agent to the EES. As Ktrans increases,

which relates to permeability in our simulations, standard analysis

methods (which assume a well-mixed EES) expect the amount of

contrast agent that enters the system to increase. However, since D
affects the amount of contrast agent which can move into the EES,

the SI does not match that predicted by the standard analysis.

Thus, the parameterization errors increase with increasing Ktrans

due to the effect of D on contrast agent amount and distribution.

For similar reasons, as vp decreases, and thus the boundaries at

which the contrast agent can enter the EES decrease, absolute

parameterization errors increase. It is important to note that for

well-vascularized tissue (i.e., higher vp), and moderate temporal

resolutions the parameterization errors are relatively small.

Specifically, for the high vp domain evaluated here (for Ktrans =

0.4 min21, ve = 0.39 and vp = 0.06), and a temporal resolution

of 6.4 sec, the parameterization errors over the range of D values

for gadolinium chelates in tissue for Ktrans, ve, and vp are 22.8% to

2.3%, 1.7% to 2.2%, and 215% to 212.5%, respectively. These

errors are low, and result in Ktrans values ranging from 0.387 to

0.407 min21, ve from 0.397 to 0.399, and vp from 0.051 to 0.053.

Thus, in well-vascularized regions, the effect of intra-voxel

diffusion is minimized.

The results shown here are presented for a typical voxel size

utilized for preclinical evaluations (250 mm2). A clinically relevant

voxel size would be significantly larger (i.e. on the order of 1 mm2).

Unfortunately, the size of the domain required to simulate a

clinically-sized voxel is computationally restrictive. However, the

results presented here can be utilized in consideration of a larger

domain. Namely, it would be expected that vp and Ktrans will have

a large influence on the effect of diffusion since they affect contrast

agent delivery to the EES. An additional consideration is the

location of the vasculature in the domain. If the vasculature is

spaced across the voxel domain, this will have a different effect

than if the vasculature is clustered in a particular region of the

voxel. In the simulations presented here, the vasculature was

spaced throughout the domain. However, clustering of the

vasculature would presumably affect the simulations, as this would

generate regions of the domain which were not perfused and

hence longer diffusive distances which the contrast agent must

traverse to equilibrate within the domain. This would certainly be

of increased consideration in a larger domain.

A notable limitation of this model is that we assume a constant,

replenished concentration of contrast agent in the vasculature that

is equal to the measured arterial input function from preclinical

studies. Thus, this work did not account for a varying concentra-

tion in the vasculature beyond the dynamically evaluated Cp(t).
Specifically, flow is not considered in this model, and hence Ktrans

in this work represents the permeability-surface area (PS) product

(i.e., the permeability-limited case). Thus, the results presented

may be most applicable in (for example) the brain where

pathological conditions affect the permeability of the normal

blood brain barrier in such a way that the permeability-limited

assumption is valid [4,38]. Future efforts will aim to explore the
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flow-limited case in which a new definition for Ktrans at the

boundary of the vessel would be required. Secondly, we assume a

S0 value of 1 for the entire area of the voxel. This value was

utilized to simplify the calculations of the total voxel domain in

regard to the three tissue components. However, this value would

actually depend on tissue characteristics such as proton density,

and would likely not be uniform across the various components.

The work presented here highlights the potential issues

associated with the typical quantitative approach which ignores

diffusion in DCE-MRI analysis. Through simulations, we have

shown that D in the range of that expected for gadolinium in tissue

may have a significant effect on the voxel SI and hence may be

important to consider in quantitative analysis. However, this paper

does not serve to present a solution to the issue. Additionally, in

regards to intra-voxel versus inter-voxel diffusion, it will likely be

quantitatively difficult to discern between the effects of the two. In

considering a possible solution, a potential approach would be an

inversion problem where the voxel-wise diffusion coefficient could

be quantified; this diffusion value would account for both inter-

and intra-voxel diffusion. Unfortunately, the distribution of the

contrast agent within the voxel is a very difficult problem to

characterize and may not be reasonably quantifiable. However,

the voxel-wise assignment of D is a problem which is manageable

using current inversion techniques, and is a current topic of

interest in our laboratory.

Conclusion

The purpose of this work was to investigate the effect of intra-

voxel diffusion on quantitative DCE-MRI analysis. Utilizing a

FEM of a physiologically relevant voxel domain and assigning D,

Ktrans, ve, and vp, we were able to quantify the effect of diffusion

and temporal resolution on voxel SI. These simulations also

allowed for quantification of the parameterization error attributed

to analysis via the standard and extended models. The results

show that both diffusion and temporal resolution have a

substantial effect on parameterization error, hence indicating that

it may not be reasonable to ignore the effect of diffusion in

quantitative analysis of DCE-MRI data. Future efforts will focus

on methodologies to account for this phenomenon in the analysis

of DCE-MRI data.
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normale (1795). In: Serret JA, editor. Oeuvres VII. Paris: Gauthier-Villars.
pp.183–287.

31. Crank J, Nicolson P (1996) A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type. Advances

in Computational Mathematics 6: 207–226.

32. Tofts PS, Berkowitz BA (1994) Measurement of Capillary Permeability from the
Gd Enhancement Curve: A Comparison of Bolus and Constant Infusion

Injection Methods. Magnetic Resonance Imaging 12: 81–91.

33. Delaney GW, Cleary PW (2010) The packing properties of superellipsoids.

Europhysics Letters 89.

34. Semmineh NB, Xu J, Boxerman JL, Delaney GW, Cleary PW, et al. (2014) An

efficient computational approach to characterize DSC-MRI signals arising from

three-dimensional heterogeneous tissue structures. PLOS One 9.

35. Loveless ME, Halliday J, Liess C, Xu L, Dortch RD, et al. (2012) A quantitative

comparison of the influence of individual versus population-derived vascular

input functions on dynamic contrast enhanced-MRI in small animals. Magnetic

Resonance in Medicine 67: 226–236.

36. Koh TS, Hartono S, Thng CH, Lim TKH, Martarello L, et al. (2013) In vivo

measurement of gadolinium diffusivity by dynamic contrast-enhanced MRI: A

preclinical sutdy of human xenografts. Magnetic Resonance in Medicine 69:

269–276.

37. Gordon MJ, Chu KC, Margaritis A, Martin AJ, Ethier CR, et al. (1999)

Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel

magnetic resonance imaging method. Biotechnology and Bioengineering 65:

459–467.

38. Ferrier MC, Sarin H, Fung SH, Schatlo B, Pluta RM, et al. (2007) Validation of

dynamic contrast-enhanced magnetic resonance imaging-derived vascular

permeability measurements using quantitative autoradiography in the RG2 rat

brain tumor model. Neoplasia 9: 546–555.

Modeling the Effect of Intra-Voxel Diffusion on DCE-MRI

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e108726


