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Abstract

Background: Oligonucleotide signatures (signatures) have been widely used for studying microbial diversity and
function in wet-lab settings, but using them for accurate in silico identification of organisms from high-throughput
sequencing (HTS) data is only a proof of concept. Existing signature design programs for sequence signatures
(signatures matching exactly one sequence) or clade signatures (signatures matching every sequence in a
phylogenetic clade) are not able to identify all possible polymorphic sites for sequences with high similarity and
perform poorly when handling large genome sequencing datasets.

Results: We introduce cluster signatures: subsequences that match perfectly and exclusively any group of sequences
in a data set. Cluster signatures provide complete recall for primer/probe design and increased discrimination
between sequences beyond that of clade signatures. Using cluster signatures for in silico identification of HTS targets
achieves good precision/recall and running time performance. This method has been implemented into an open
source tool, the Automated Oligonucleotide Design Pipeline (adop), included in supplementary material and
available at: https://bitbucket.org/wenchen_aafc/aodp_v2.0_release.

Conclusions: Cluster signatures provide a rapid and universal analysis tool to identify all possible short diagnostic
DNA markers and variants from any DNA sequencing dataset. They are particularly useful in discriminating genetic
material from closely related organisms and in detecting deleterious mutations in highly or perfectly conserved
genomic sites.
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Background
Biodiversity research and survey require accurate iden-
tification of organisms from the environment, especially
those of public concerns, e.g. quarantine species and
select agentsmonitored by national biosafety and biosecu-
rity programs. Identifying the sequences, e.g. DNA mark-
ers or genome regions, of concern in ecosystems is the
fundamental strategy [1], especially in the metagenomics
era which requires high-throughput processing without
compromising accuracy and sensitivity.
A widely used strategy for taxonomic assignment of

shotgun metagenomes or metabarcodes is to bin [2, 3]
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or cluster [4, 5] sequencing reads followed by compar-
ing with reference databases using string search algo-
rithms, which, as reviewed previously [6] either depend
on alignment-based phylogenetic distances (homology-
search), such as BLAST [7] and HMMER [8–13] or k-
mer frequency profile (composition) comparison, such as
USEARCH [4, 14–20]. These algorithms are implemented
in "off-the-shelf" suites for classification of HTS data,
such as ShortBRED [21], PanPhlAn [22], MIDAS [23] and
mOTU [24], developed for taxonomic classification or for
identifying gene homologs from HTS data.
Aligners using BLAST to map reads are very precise,

but with high computational cost, while composition-
based programs and aligners using suffix-prefix tries are
fast but can be imprecise, compounding errors present
in most HTS techniques. For example, the average clas-
sification accuracy for all fragments of 16S rRNA genes
longer than 100 bp was 70% using the Ribosomal Database

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2363-3&domain=pdf
http://orcid.org/0000-0003-1105-3223
http://orcid.org/0000-0003-2956-5462
https://bitbucket.org/wenchen_aafc/aodp_v2.0_release
mailto: mz@alumni.sfu.ca
mailto: Wen.Chen@arc.gc.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Zahariev et al. BMC Bioinformatics          (2018) 19:395 Page 2 of 14

Project (RDP) Classifier, a text-based Bayesian classifier
[17]. A recent study using the same classifier could classify
metabarcodes of the 16rRNA genes to family and genus
levels with accuracy 75% or lower [25]. Sigma [6] and
Pathoscope [10, 26] are systems developed for subspecies
and strain-level inference of metagenomics data, but are
not applicable to metabarcoding data, since DNA bar-
codes are known to lack discriminating power for many
taxon lineages [27–30]. For instance, the internal tran-
scribed spacer 1 (ITS1) of Tilletia indica, a quarantine
pathogen in many countries, and T. walkeri which is not
regulated by most countries except for South Korea, differ
only by two bases.
The Minimum Entropy Decomposition (MED) algo-

rithm implemented in OligoTyping [31, 32] identifies
information-rich polymorphic sites and iteratively par-
titions a set of metabarcodes to homogeneous opera-
tional taxonomic units (OTUs), until the Shannon entropy
profile of a given node is converged or below a given
threshold.
Eren et al. [31] stated that MED was able to dis-

criminate taxa with less than 1% sequence variance
and is computationally efficient. While MED is excel-
lent in identifying distinct subgroups of a taxon adapted
to specific environmental niches, it works best on
abundant OTUs/taxa observed across diverse ecosys-
tems, while many pathogens present as rare taxa in
the environment. In addition, alignment is required
prior to MED when differences in sequence length do
not represent biologically meaningful variation, which
can be a main constraint on efficiency when process-
ing HTS reads not of the same length, e.g. quality
trimmed Illumina data or 454 pyrosequencing data.
While the discriminating positions identified by MED
have the potential for strain-typing microoganisms,
MED does not directly extract oligonucleotide signa-
tures associated with these positions that may be used
as primers or probes for the development of molecular
diagnostic assays.
Oligonucleotide signatures (signatures) are short

sequence strings (λ-mers) of fixed length (signature
length λ), normally 18 to 100 bp, that match exactly and
exclusively one or more targeted sequence(s) (targets) in
a given genetic data set, usually from the same region of
the genomes of targeted taxa. Most existing approaches
only design sequence signatures, i.e. signatures for single
sequences1 [33–35] or a single group of sequences per
run [36, 37] as reviewed previously [38–40].
A few applications were developed to design signatures

for pre-defined groups of genomes [41, 42], gene families
[43] or clade signatures2, i.e. signatures for a single phy-
logenetic clade3 [38]. However, these applications either
suffer from memory and runtime issues, or are part of
larger, special purpose systems [39].

Algorithm 1: Sequence matching algorithm using Tλ,
a table of clusters from a given training set: signature of
length λ → cluster (set) of matching sequences.
Data: Tλ ; // signature → cluster of sequences
Input: Q ; // query sequence

� ← ∅ ; // list of matching clusters
1 for q ∈ Q subsequence of length |q| = λ do

� ← �
⋃

Tλ[ q] ; // add cluster Tλ[ q]
� ← ∅ ; // kernel of matching sequences

2 for ω ∈ � do
η ← 0 ; // portion of Q covered by ω

3 for q ∈ Q where ω
⋂

Tλ[ q] �= ∅ do
ω ← ω

⋂
Tλ[ q]

η ← η + 1
if η/|Q| ≥ γ then � ← �

⋃
ω ; // constant γ = 0.75

4 for ψ ∈ � do
5 α(ψ ,Q) ← align(ψ , Q) ; // pairwise aligment

Output: 
 = argmaxψ∈� α(ψ ,Q)

; // all sequences ψ ∈ � that maximize α(ψ ,Q)

In addition, phylogenetic clades and other a priori
groupings can be very restrictive to the identification of
viable signatures, which may be caused by conflicting
phylogenetic signals among loci shared by different taxo-
nomic domains [44] as found in our own studies [45, 46].
This restrictiveness is further compounded by additional
experimental constraints, such as primer/probe melting
temperature [47] or Kane’s conditions [48–50].
Signatures have wide applications in the biological

field, such as being used as primers and probes in PCR
and DNA-hybridization [40, 46, 51–53] or lab-on-a-chip
detection methods, as well as in targeted enrichment
methods for focused high-throughput sequencing (HTS)
[54, 55]. Kallisto [56] uses signatures (of length k: k-
mers) from RNA-Seq reads to create k-compatibility
classes, whose intersection represents the set of possi-
ble sequences matching a given read. Similarly, Salmon
[57] builds equivalence classes over fragments of reads
(in effect signatures), from which it infers statistically
the relative abundance of transcripts. Kraken [58] infers
the taxonomic classification for HTS reads by building a
database of phylogenetic lowest common ancestors using
clade signatures. We show further that a significant num-
ber of signatures cross clade boundaries. We also show
that while signatures work very well on perfectly pre-
served reads, they are brittle to errors introduced by the
HTS process.
Signatures have also been used to detect pathogenic

microbes from metagenomics sequencing data. This the-
oretical approach, termed Electronic probe Diagnostic
Nucleic acid Analysis (EDNA) [59, 60], shows promis-
ing research and diagnosis direction (75% precision on
a mock database) using shotgun metagenomics data, but
relies on a priori groupings of the training data set (ref-
erence genomes), and a priori differentiation against false
positives identified using near neighbor comparisons in a
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reference database. EDNA also depends on an exter-
nal program for signature design, the Tool for Oligonu-
cleotide Fingerprint Identification (TOFI) [42], which
introduces runtime efficiency constraints. A system that
can streamline this process would be ideal as a regulatory
tool in pest detection and management.
We present here a research tool for unrestricted design

of signatures that can be used for the detection of any
kind of groups (mutants, species/subspecies, or any a pri-
ori groupings) in a wide range of molecular biology assays
or DNA sequence data for in silico probing.

Methods
The usefulness of signatures is based on the low probabil-
ity of accidental match between a signature and unrelated
genetic material. The probability p of an accidental match
(collision) between two 4-base nucleotide strings of length
λ (4λ possibilities) in a data set of size N can be modeled
by the birthday formula [61]:

p = 4λ!
4λN (

4λ − N
)
!
� 1 − e−

N2
2·4λ forN � 4λ (1)

Accidental matches between portions of nucleotide
strings occur in random genetic material when there
is no taxonomic or functional relationship between the
query and testing sequences. For example, it is likely to
encounter the subsequence of length λ = 4 “ACGT”
multiple times in different sequences in any given large
reference database. The birthday formula quantifies the
probability of such accidental matches.
Assuming an uniform distribution of nucleotides and

signature length λ = 36, p < 10−4 applies for data sets
withN < 2.94×1010 nucleotides4 (approximately 274 GiB
of unaligned FASTA files5). In practice, data sets of taxo-
nomically related DNA have a higher degree of similarity
between sequences, which increases the probability that
any two identical subsequences have a taxonomic or func-
tional relationship between them and do not represent
accidental matches. Unless explicitly specified, signatures
of length λ = 36 are used for analyses in this study.

Clusters
We introduce an extension of clade signatures: for a given
set of sequences, a cluster is a group of sequences for
which at least one signature (cluster signature) can be
found, that matches all sequences in the group but does
not match any sequences not in the group.
Notably, clusters are not required to represent the same

groups as those in phylogenetic clades; they are any
groups of sequences for which signatures can be found, as
opposed to clade signatures for predefined phylogenetic
groups. Any subsequence of length λ of any sequence is a
signature for exactly one cluster, i.e. a cluster signature.

It is not obvious how to predict the number of clus-
ters expected for a given data set of taxonomically related
sequences. For example, S identical sequences of length
Li > λ where 1 ≤ i ≤ S, will generate exactly 1 clus-
ter. Since any subsequence of length λ from any sequence
can be found in every other sequence, the single cluster
will contain all sequences. By contrast, a data set with
size N � 4λ containing S sequences randomly gener-
ated using a uniform distribution of nucleotides will have
S clusters of signatures of length λ. Each such cluster will
contain one sequence, since it is very likely that every
subsequence of length λ in any sequence is a sequence sig-
nature: it will not be found anywhere else in the data set
p < 10−4 (Eq. 1).

The automated oligonucleotide design pipeline
We have built an open source tool, aodp, the Auto-
mated Oligonucleotide Design Pipeline (aodp v.2.5 is
included in the supplementary material), which generates
efficiently signatures for sequences, clades and clusters by
enumerating all λ-mers (signatures) for each sequence in
a given data set. The list of originator sequences is col-
lected for each enumerated signature. All distinct sets of
originator sequences for all signatures form the list of
clusters for the data set. Facilities for enumerating and
cross-referencing signatures and clusters are provided.
Furthermore, aodp can be used to find the clos-

est matching sequences from a training set to a query
sequence, assumed to be an imperfectly recovered portion
of an unknown sequence (such as an HTS read) by com-
puting the union of all sequences in all clusters matching
any portion of the HTS read and then heuristically elim-
inating all but sequences that explain the largest portion
of the HTS read. All remaining sequences are then com-
pared to the HTS read and only the ones with the highest
overlap score are kept.
More formally, the matching algorithm 1 works as fol-

lows: first, compute a set of matching clusters � for each
query sequence Q (loop 1): we observe later (Table 3) that
the set of all training sequences contained in all matching
clusters � has average size � < S smaller than the size of
the training set; second, minimize a subset (kernel) � of
� (loop 2): we observe that the average size of the kernel
� � S is much smaller than the size of the training set;
and, finally, compute the sequence similarity of each train-
ing sequence in the kernel � against the query sequence
(loop 4) using a global alignment algorithm [62].
The result (the set of mapped HTS reads) is the subset

of sequences of � which maximize the alignment score to
the query sequence.
The main objective of the algorithm is to minimize the

number of computationally expensive global alignments
(step 5). The complexity has no direct dependency on the
size of the training set: loops 1 and 3 have complexity
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O(|Q|) linear in the size of the query sequence and loop
2 has complexity O(|�|) linear in the number of clus-
ters matching the query sequence, which can be further
reduced at the implementation level through the elimina-
tion of repeated set operations in loop 3.
A general limitation of algorithms for matching HTS

reads (including our method) is that metabarcoding
regions used inHTS do not always have sufficient discrim-
inating power to differentiate very closely related species
[28] represented by clades in a training dataset contain-
ing almost identical sequences, which, however, belong to
multiple valid species. In this case, all matched reference
sequences are given to a query sequence, and it should be
the users’ decision if alternative DNA markers or wet lab
molecular diagnostic assays should be used to confirm or
validate the existence of targeted taxa of interest.

Data sets
Data sets for four important mycotoxin genera
(Alternaria, Aspergillus, Claviceps and Penicillium)
were built using the following methodology: internal
transcribed spacer rDNA region (ITS) data sets were
compiled from GenBank [63] using ex-type sequences
as backbone when available and building up the
database from additional trustworthy taxonomic reviews
[64, 65, 65–68]. The data sets were aligned in MAFFT v.
7.305b [69], using the G-INS-i algorithm and trimmed
manually in Geneious v. 8.1.8. Neighbour-Joining trees
were calculated in PAUP* v. 4.0b10 [70].
Reference ITS sequences for fungi (Anisogramma,Cera-

torhiza, Ceratocystis,Colletotrichum,Coniella,Diaporthe,
Fusarium, Elsinoe, Talaromyces, Tillletia), oomycetes
(Peronospora), as well as the 16S rRNA genes of a bac-
terium (Pectobacterium) were downloaded from Gen-
Bank. The ITS dataset Phytophthora was obtained from
[46]. The sequences for each dataset were aligned
using the G-INS-i algorithm in MAFFT [69], and
trimmed manually in BioEdit v.7.2.5 [71]. The approxi-
mate maximum likelihood trees were reconstructed using
FastTree v.2.1.8 [72].
Each data set contains DNA sequences and a phyloge-

netic tree with the sequences as leaf nodes. The data sets
were combined into a sequence database 17DataSets, pro-
vided as supplementary material. Sequences with more
than five ambiguous bases were removed from each data
set. The characteristics of each data set are summarized in
Table 1.
The distribution of cluster size and number of clus-

ter signatures was also studied on a much larger
dataset (Unite; included in the supplementary material)
of 271,017 sequences fully identified down to the species
level and which include an authoritative Latin binomial
name for each species. The data set was extracted from
the UNITE+INSD database released by the User-friendly

Nordic ITS Ectomycorrhiza Database (UNITE, version
7.16), [73]. A phylogenetic tree was automatically built
from the Unite taxonomy using tax2nwk, a companion
utility of aodp.
The sequence matching functionality was evaluated

using a training set of 1,338 mycotoxin sequences
(4Mycotoxins; included in the supplementary material)
by combining the data sets Alternaria, Aspergillus,
Claviceps and Penicillium. Sequences from each data set
not classified to the principal genus of the data set and/or
with more than five ambiguous bases were eliminated.
The precision and recall of the matching algorithm

were evaluated using a testing set 4MicotoxinsBootstrap
bootstrapped from 4Mycotoxins: subsequences of exactly
|Q| = 100 bp starting at a random position were extracted
from each sequence. In each subsequence, each nucleotide
was modified to another nucleotide or a gap. Individ-
ual modifications were made at one of six error rates:
ε ∈ {0.00, 0.01, 0.02, 0.03, 0.04, 0.05}. For each sequence
and each error rate, 10 subsequences were generated. A
total of 80, 280 = 1, 338 × 6 × 10 query sequences were
generated. All random choices were drawn from uniform
distributions driven by a Mersenne twister [74], seeded
with a high resolution timestamp.
The efficiency of the matching algorithm was evaluated

on a testing set 97AerobiotaSamples containing 4,713,791
sequences (sequence length |Q| ≈ 436bp ± 55; only
sequences at least 325 bp long are selected) from a data
set deposited in the Sequence Read Archive (SRA) under
project accession number PRJNA358221. The error rate
assigned to the data set was ε = 0.01 [75].

Comparisons with other algorithms
We have compared the computational efficiency of
our matching algorithm with BLAST+ v.2.6.0 [7] and
USEARCH v10.0.240_i86linux32 [4] testing on the
97AerobiotaSamples data set and using the 4Mycotoxins
reference data set. All test runs were conducted on a
system with Intel Core i7-3632QM CPU 2.20GHz ×8
running Ubuntu 16.04.
The following parameters were used for BLAST:

“-word_size 11 -outfmt 6 -num_threads 8 -evalue 10 -
max_target_seqs 100”.
The following parameters were used for USEARCH:

“-usearch_global -strand plus -id 0.98 -maxaccepts 256
-maxrejects 1024 -wordlength 8 -blast6out”.
In all instances, output was ignored (redirected to

/dev/null) in order to eliminate I/O contention.
Separately, we compared precision and recall (Eqs. 2

and 3) of our matching algorithm with USEARCH, on
the 4MycotoxinsBootstrap dataset using the 4Mycotoxins
reference set.
For USEARCH we used the following parameters:

“-usearch_global -strand plus -wordlength 8 -blast6out”.
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Table 1 Data sets included in database 17DataSets

Data set N S i n L̄ ± σ(L) n∗ c c/n n∗/n s0 ss sn sc δc

Anisogramma 15248 28 26 54 545 94 33 139 2.6 61% 1 4% 24 86% 27 96% 28 100% 4%

Pectobacterium 72624 37 42 79 1671 290 43 258 3.3 54% - - 25 68% 28 76% 35 95% 19%

Ceratorhiza 24645 37 35 72 647 60 36 137 1.9 50% 7 19% 24 65% 25 68% 34 92% 24%

Coniella 23078 48 46 94 481 64 45 143 1.5 48% 7 15% 32 67% 37 77% 48 100% 23%

Talaromyces 54964 88 86 174 625 220 126 626 3.6 72% - - 87 99% 88 100% 88 100% -

Elsinoe 79740 132 63 195 586 146 54 199 1.0 28% 1 1% 37 28% 40 30% 43 33% 2%

Claviceps 77453 140 139 279 553 45 92 376 1.3 33% 16 11% 58 41% 63 45% 82 59% 14%

Ceratocystis 112291 193 179 372 582 205 115 631 1.7 31% 52 27% 74 38% 82 42% 149 77% 35%

Phytophthora 201815 253 238 491 798 24 319 1103 2.2 65% - - 149 59% 166 66% 184 73% 7%

Diaporthe 213202 399 338 737 530 99 196 1008 1.4 27% 149 37% 140 35% 150 38% 266 67% 29%

Peronospora 428994 513 400 913 824 377 349 1984 2.2 38% 64 12% 200 39% 222 43% 310 60% 17%

Alternaria 280418 551 550 1101 509 11 187 734 0.7 17% - - 78 14% 86 16% 101 18% 3%

Aspergillus 547127 1032 1032 2064 530 39 591 2331 1.1 29% 19 2% 285 28% 313 30% 414 40% 10%

Colletotrichum 691867 1198 918 2116 576 297 477 2010 0.9 23% 562 47% 379 32% 397 33% 667 56% 23%

Tilletia 743335 1200 915 2115 618 259 574 2666 1.3 27% 394 33% 376 31% 403 34% 649 54% 20%

Penicillium 743954 1438 1437 2875 517 12 597 2675 0.9 21% 57 4% 310 22% 325 23% 413 29% 6%

Fusarium 1604775 2946 2261 5207 533 133 1165 4417 0.8 22% 1492 51% 969 33% 1001 34% 1778 60% 26%

N: size of data set (nucleotides), S: number of sequences (other than sequences with more than 5 ambiguous bases), i: number of internal clades in the phylogenetic tree, n:
total number of phylogenetic clades n = S + i, L̄: average length of sequences in the data set (rounded to closest integer), σ(L): corrected sample standard deviation for the
sequence length (rounded to closest integer). n∗ : number of signable clades, c: number of clusters (λ=36) identified by aodp, c/n: ratio between clusters and phylogenetic
clades, n∗/n: ratio between signable clades and phylogenetic clades, s0: number of sequences that are not included in any signable clades, ss : signable sequences (also
unique signable sequence patterns), sn : unique signable clade patterns, sc : unique cluster patterns, δc = sc − sn : discrimination increase attributable to clusters (difference
between unique cluster patterns and unique signable clade patterns)

Additionally, the “-id” parameter was set to 1 − 2ε to cor-
respond to the error rate of the data set, “maxaccepts” χ

was varied for different runs χ ∈ {4, 16, 64, 256, 1024} and
“maxrejects” was set to 32 × χ .
For both USEARCH and aodp, the match between a

query sequence and a training sequence was considered
correct if it is returned by the tool, and it has the high-
est percentage overlap compared to all other matching
training sequences.

Results
Large scale dependencies for the number of clusters were
measured on the data set Unite. Most clusters have a
relatively small number of sequences (Fig. 1): 85% have
less than 100 sequences, 50% have less than 10 sequences
and approximately 15% have one sequence (signable
sequences). Clusters have a relatively small number of sig-
natures (Fig. 2): 65% have less than 10 signatures and
almost 30% have exactly one signature.
Other dependencies for the number of clusters are mea-

sured on the 17DataSets database. The number of clusters
c is found to be comparable with the number of phy-
logenetic clades n = S + i in each of the data sets
(0.7 ≤ c/n ≤ 3.6). Power law dependencies on the size of
the data set N for the number of clusters c and number of

signable clades n∗ are indicated by a log-log plot (Fig. 3).
A power law dependency of the number of clusters c on
the number of signable clades n∗ is indicated by regression
lines.
The dependency of the number of clusters and signable

clades on signature size 12 ≤ λ ≤ 252 (increments of
4 nucleotides) is measured for the data set Penicillium
(Fig. 4). The number of clusters c decreases rapidly with
the signature length λ, because of the further reduction of
the number of signatures in each cluster. The number of
signable clades is relatively stable (slow initial increase).

Clusters for probe design
Characteristics of clusters, signable clades and signable
sequences were calculated in aggregate for all data
sets and reported in Table 1. An incidence matrix for
sequences (vertical axis) against clusters (horizontal axis)
for the Ceratorhiza data set is shown in Fig. 5. Signed
sequences and internal signable are grouped in regions to
the left of the figure.
The number of signable clades is smaller than the num-

ber of clades n∗ < n, in some cases substantially, for
example n∗/n = 17% for Alternaria.
The number of sequences s0 that are not con-

tained in any signable clades can be substantial. This
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Fig. 1 Distribution of number of sequences per cluster (cumulative percentage), data set Unite, λ=36
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Fig. 2 Distribution of number of signatures per cluster (cumulative percentage), data set Unite, λ=36
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Fig. 3 Dependency of the number of clusters (groups of sequences for which at least one signature can be found) and number of signable clades
(phylogenetic clades to which oligonucleotide signatures can be assigned) on number of sequences within each dataset (database 17DataSets,
λ=36)

likely indicates a data set with high degree of sim-
ilarity between sequences in different phylogenetic
clades.
For example, 50% of sequences in the Fusarium data

set are not contained in any signable clade. For the Cera-
torhiza data set, seven sequences (0, 4, 6, 8, 14, 16 and 17)
have no signable clades (18% of the total).
Since every subsequence of length λ of every sequence

is a cluster signature, every sequence is a member of
at least one cluster. In other words, clusters provide
signatures for every sequence of a data set (complete
recall).
Each sequence has an associated cluster pattern (finger-

print) in the sequence-to-cluster incidence matrix (Fig. 5).
This pattern may be unique for the sequence or can be
shared with other sequences. For example, sequence 36
has a unique cluster pattern, but sequences 22, 23 and 24
have identical patterns. We call the number sc of unique
row patterns in the incidence matrix, unique cluster
patterns.
If only sequence signatures are taken into account, all

signable sequences can be uniquely and trivially identi-
fied by a sequence signature (a cluster of size 1). In other
words, the number ss of sequences that can be uniquely
identified using sequence signatures is the number of
signable sequences.

If taking into account signable clades and signable
sequences, additional sequences may be uniquely iden-
tified from their signable clade pattern. For example,
sequence 27 can be uniquely identified using its clade sig-
nature pattern, although it could not be identified using
its sequence signature (it does not have one). We call
the number sn of such sequences, unique signable clade
patterns.
For each data set, the quantities ss, sn and sc were com-

puted and the percent change δc = sc − sn, which we
call discrimination attributable to clusters. For all data sets
except Talaromyces, δc > 0. Substantial gains can be seen,
for example, for Ceratocystis (35%), Diaporthe (29%) and
Fusarium (26%).
For the two data sets with the highest ratio less than

100% of unique signable clade patterns sn: Anisogramma
(sn =96%) and Coniella (77%), the ratio of unique cluster
patterns sc increases to 100%.
Compared to using only phylogenetic clade signatures,

where some sequences do not appear in any signable
clade (s0 > 0 in most cases) recall (Eq. 3) is always
100% when using clusters (since every sequence is a mem-
ber of at least one cluster). Selectivity is also increased
since more sequences can be differentiated through
unique cluster patterns vs. unique signable clade patterns
(δc > 0 in most cases).
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Consequently, the design of wet lab probes based on
cluster signatures can improve recall and selectivity com-
pared to designing only sequence or clade signature
probes.

Clusters for high-throughput sequencing
Precision (Eq. 2), recall (Eq. 3) and the F-measure
(Eq. 4) for the matching algorithm 1 were evaluated
using the 4Mycotoxins training set and the bootstrapped
4MicotoxinsBootstrap testing set7 for signature lengths
λ ∈ {8, 16, 24, 32, 40}. Identification was considered cor-
rect if for a query sequence its originator sequence from
the training set is reported among the sequences with
maximum similarity α over a threshold (Eq. 5) dependent
on the error rate ε.

precision = correctly identified
total identified

(2)

recall = correctly identified
total number of terms

(3)

F = 2 × precision × recall
precision + recall

(4)

α ≥ 1 − 2ε (5)

Precision and recall was found to decrease with the
increase of the error rate ε and signature length λ.

Precision was consistently above 0.9 for λ ≥ 16. Recall
degraded below 0.5 for higher error rates.
Imperfect recall is due to two factors: “crowding” of

defects in a query sequence to the point where there
are no preserved subsequences of length λ, and to query
sequences that have more errors, failing the similarity
threshold (Eq. 5).
Imperfect precision is due to errors in the query

sequence leading to accidental matches and higher sim-
ilarity scores (α) for sequences in the training set other
than the originator sequence. This is likely to happen
in training sets with high degree of similarity between
sequences, for example, when an error may coincide with
a single nucleotide polymorphism site.
Precision and recall for the bootstrapped test sets can be

applied to only matching sequences in real test sets, where
a substantial portion of the data may be unrelated to the
training set.
Precision and recall are driven by the size and nature of

the training set and the statistical properties of the error-
introducing mechanism.
Precision and recall were compared on the same data

sets withUSEARCHby varying themaxaccepts parameter
χ ∈ {4, 16, 64, 256, 1024}.
We notice that USEARCH outperforms aodp for

the highest value of χ = 1024 on the com-
bined F measure (Eq. 4), however aodp outperforms
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USEARCH for smaller values of χ and at lower error rates
ε ≤ 0.03. Moreover, the values of χ and the related
USEARCH parameter “maxrejects” must be chosen a pri-
ori. The optimal value of this parameter likely depends
on the degree of similarity of sequences within the
training set. For example, for 4Mycotoxins, the opti-
mal value is in range of the total number of sequences
(1,338).
For aodp, the optimal value of λ can be chosen based

on the error rate of the testing set. The set of match-
ing sequences self-calibrates to the size of the matching
clusters.
The computational efficiency of the matching algorithm

was measured on a realistic test set 97AerobiotaSamples, for
different values of the signature length λ ∈ {16, 24, 32, 40}.
The number μ98 of matching query sequences (query

sequences with similarity α ≥ 1−2ε = 0.98 to at least one
training sequence) is relatively stable for different values

of λ. The matching kernel� ≈ 
 is a close approximation
of the result set.
The set of all training sequences contained in all match-

ing clusters � has average size � < S = 1,338 smaller
than the size of the training set. The average size of the
kernel � � S (average number of alignments) is much
smaller than the size of the training set, which shows that
using clusters and reducing the matching sequence ker-
nel are effective in reducing the number of alignments,
and consequently running time compared to a brute force
approach that would align every query sequence to every
sequence in the training set.
Running time is dependent on the number of align-

ments (�), and to the set of training sequences in match-
ing clusters (�): loop at line 2 in algorithm 1.
Running time degrades to impractical values for lower

values of λ (estimated at over 200h for λ = 8). This is due
to very large values of� (overfitting) from large number of
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clusters in the training set at low signature length (Fig. 4)
and high likelihood of accidental matches between short
signatures and query sequences (Eq. 1).
Running time is also measured for BLAST and USE-

ARCH on the same data sets. aodp outperforms BLAST
by one order of magnitude. Running time is also faster, if
comparable to USEARCH.

Discussion
The number of clusters is larger than the number of
signable clades (Fig. 4), but comparable to the total num-
ber of clades. Within experimental constraints, it is feasi-
ble to design signatures for each cluster in a data set. Clus-
ter signatures offer increased discrimination compared to
sequences or clades signatures.
The number and composition of clusters is an objective

property of a given data set. Conversely, phylogenies can
be subjective when prepared by human taxonomists or
inaccurate when automatically built using specific heuris-
tics, in some cases with subjective parameters.
Most clusters have a small number of signatures (are

brittle to additional experimental constraints) and a small
number of sequences (have focused discrimination). To
achieve optimal discrimination for clusters, signature
length should be chosen as small as practical above the
lower limit imposed by the birthday formula (Eq. 1).
Clusters provide signatures for every sequence in a data

set (complete recall).
This makes it practical to design probes that identify

DNA sequences from data sets with very closely related
material, where some of the sequences may not be repre-
sented in any of the signable clades. Unique cluster pat-
terns associated with sequences (Fig. 5) can help uniquely
identify sequences from a data set, beyond the ability of
unique signature clade patterns, in some cases for 100% of
the sequences.
Cluster signatures can be used as clues for identify-

ing partial, imperfectly copied query sequences (such as
produced by HTS) against a training set of reference
sequences. Combined with a global alignment algorithm
for comparing candidate sequences from the matching
sequence kernel of a set of matching clusters, a matching
algorithm (algorithm 1) achieves good matching precision
and recall for test sets of different quality (Table 2).
Using a set of matching clusters� to the query sequence

significantly reduces the number of pairwise comparisons
(� Table 3) compared to the brute force approach. Reduc-
ing to a kernel of matching sequences � further decreases
the number of alignments and provides good running
time performance, with dependence on the number and
size of clusters in the training database, but not on the
actual size of the training database.
Increasing the signature length λ generally increases the

precision and decreases the running time of the matching

Table 2 Precision and recall of our matching algorithm (aodp)
and USEARCH using the 4Mycotoxins training set and the
4MicotoxinsBootstrap testing set

aodp

λ 8 16 24 32 40 8 16 24 32 40

ε Precision Recall

0.05 0.74 0.90 0.91 0.92 0.93 0.71 0.49 0.25 0.15 0.08

0.04 0.78 0.92 0.92 0.92 0.93 0.76 0.64 0.38 0.23 0.14

0.03 0.83 0.95 0.95 0.95 0.96 0.80 0.78 0.55 0.38 0.24

0.02 0.89 0.97 0.97 0.97 0.97 0.84 0.88 0.74 0.57 0.43

0.01 0.95 0.99 0.99 0.99 0.99 0.87 0.91 0.88 0.78 0.68

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

USEARCH

χ 4 16 64 256 1024 4 16 64 256 1024

ε Precision Recall

0.05 0.21 0.40 0.62 0.88 0.98 0.19 0.38 0.60 0.84 0.94

0.04 0.21 0.41 0.63 0.89 0.98 0.20 0.38 0.59 0.83 0.92

0.03 0.21 0.41 0.64 0.89 0.99 0.20 0.39 0.60 0.84 0.93

0.02 0.22 0.43 0.66 0.91 0.99 0.20 0.40 0.61 0.84 0.92

0.01 0.24 0.45 0.67 0.92 1.00 0.21 0.41 0.61 0.83 0.90

0.00 0.28 0.50 0.72 0.95 1.00 0.26 0.50 0.72 0.95 1.00

Rows have a given error rate ε For aodp, columns have a given signature length λ.
For USEARCH, columns have a given value χ for the “maxaccepts” parameter. Cells
where USEARCH outperforms aodp on the F measure are in bold. Cells where
aodp outperforms USEARCH on the F measure for χ ≤ 256 are also in bold

algorithm, but decreases the recall, even to unsatisfactory
values (Table 2) for testing sets with high error rates ε.
However, lower recall values (e.g. at or below 50%) may
be acceptable when the assertion of existence of the tar-
get and not the accuracy in abundance was the objective
of the investigation. Also, sequencing read accuracy at
or above 98% (ε ≤ 0.02) is provided by the majority of

Table 3 Performance of the matching algorithm using the
4Mycotoxins training set (1,338 sequences) and the
97AerobiotaSamples testing set by signature length λ

aodp

λ μ98 
/� � � t

16 1352 0.93 0.317 17.41 17039

24 1353 0.94 0.311 13.27 9720

32 1342 0.95 0.299 11.83 6362

40 1325 0.94 0.298 11.06 3031

USEARCH 32560

BLAST 74335

μ98: number of matching query sequences with similarity α ≥ 1 − 2ε = 0.98, t:
running time in seconds (system description in “Comparisons with other
algorithms” section). Average values (algorithm 1) are reported for: size of the
matching kernel � , number of sequences in all matching clusters �. Ratio 
/� :
average size of the result set to the average size of the matching kernel. Running
times are also reported for USEARCH and BLAST
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HTS techniques, although sometimes through building
consensus [76].
Choosing very small values for the sequence length

(λ < 16) leads to overfitting.
Additional thermodynamic constraints such as the elim-

ination of homopolymer regions and filtering on melting
temperature [47, 77] also apply to the design of signatures
for assay development. Because of the variability of study
objectives and experimental conditions, thermodynamic
constraints have not been taken into account in analyses
in this study, although support is built into aodp.
Results reported in the current study were drawn pri-

marily from a wide variety of fungal groups, with a focus
on plant pathogen and mycotoxin producers. We are con-
fident that these can be generalized to include sequences
from other organisms.
Since clusters do not rely on phylogenetic assumptions,

but may only coincide with phylogenetic clades, there is
no direct dependency of cluster parameters on a specific
phylogeny. The phylogeny independent clusters can be
particularly useful when it it important to follow some
specific DNA sequences such as resistance point muta-
tions or horizontally acquired genes.
A comprehensive study on a variety of data sets with

different length distributions and systematically varied
completeness and diversity may provide further insights
(future research). Power law goodness-of-fit tests such as
the Kolmogorov-Smirnoff statistic [78] for the dependen-
cies of the number clusters and signable clades on number
of sequences using a larger number of data sets may help
quantify results.
Precision and recall were evaluated on a data set

(4MicotoxinsBootstrap) of 100bp sequences with randomly-
introduced errors at given error rates from a source data
set (4Mycotoxins). While this does not account for vari-
able read length generated by different HTS methods or
for non-random defects, such as homopolymer errors or
issues related to palindromic sequences, precision and
recall targeted to specific methods can be modeled into
the defect-introducing mechanism.
On precision and recall (F measure), our matching

algorithm outperforms USEARCH for lower values of
“maxaccepts” (χ ≤ 256) and lower error rates (ε ≤ 0.03).
This likely happens in situations of closely related portions
of training sequences, of which a large number (possibly
overlapping a signature cluster) are equally similar to the
training sequence. By imposing a limit on the size of the
result set, the source sequencemay ormay not be included
in the first χ USEARCH matches. Similar behaviour
can be expected when varying the “max_target_seqs” in
BLAST.
USEARCH outperforms our algorithm for higher values

of χ (in range of the number of training sequences), but
this parameter is dependent on the degree of similarity

of the training set and must be chosen a priori. Always
choosing large values may be impractical, since the
size of the result sets increase dramatically with higher
values of χ .
Precision and recall were only evaluated on the boot-

strapped data set, where introduced errors could be traced
back to the originator sequence (ground truth) for com-
parison with the reported matches. Such a source of
ground truth could not be easily derived for the larger
97AerobiotaSamples data set since the query sequences
are, by definition, unknown and the number of match-
ing terms may be too small to draw statistically sound
conclusions: est. 1,300 vs. 80,280 terms for 4Mycotoxins-
Bootstrap. Future research may look at comparisons on a
real data set with a substantial number of matches with
matches reported by BLAST as a source of ground truth.
An additional complication for such a study may be the
need to choose a high “max_target_seq” parameter to
cover all possible matching training sequences, resulting
in very high running times.
Our matching algorithm outperforms BLAST on run-

ning time by one order of magnitude on a realistic data set,
with a "max_target_seqs" χ = 100. BLAST performance
degrades much further for higher values of χ .
aodp also outperforms USEARCH on running time.

This may be due to the nature of the testing set:
approximately 1,300 matches in about 4.5 million reads,
which may be reasonable for targeted studies of envi-
ronmental samples, but may not hold for other types of
investigations.
On a highly parallel system (80 hardware threads; results

unreported), the difference increases to two orders of
magnitude for BLAST and increses further for USEARCH
because of good multithreading scalability of aodp.
The number and size of clusters are fixed parameters

of a given database and represent the main drivers for
the running time of the matching algorithm. In situa-
tions where short running time is essential without access
to large computational resources, running time may be
shortened by increasing the signature length (λ) at the
expense of recall, e.g. for a preliminary “quick” run, or the
size of the source database can be reduced (which will lead
to a reduction of the number and size of clusters).
Further improvement of the running time for aodpmay

be achieved by a more efficient implementation of the
global alignment algorithm (step 5 in algorithm 1), such
as using nucleotide k-mers, or alignment clues from the
positioning of the matching signatures.
Conversely, cluster signatures could be used in a pre-

processing step to quickly eliminate or identify candi-
date matching sequences, to be further validated using a
matching algorithm with different objectives.
The study of the signability of other groupings such as

gene function may be useful.
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Another promising avenue of future research may be
the study of cluster signatures for genetic variants in
guiding the detection of mutations relevant to evolu-
tion, genetic diseases or rapid comparisons of genomes
between tumors and healthy cells.

Conclusions
In this study, we evaluated the statistical properties of
cluster signatures (oligonucleotide signatures for groups
of sequences in data sets of DNA sequences) and their use
for mass identification by sequencing.
Our method is universal as it can find oligonucleotide

signatures for unique strains, species, higher level phylo-
genetic clades or mutations linked to genetic diseases or
genetic abnormalities. Once diagnostic cluster signatures
are known, rapid analysis tools for detection of high risk
species, strains or mutations can be developed.
Our matching algorithm using signature clusters

increases the efficiency of matching HTS reads against
data sets of reference genetic material compared to string
alignment methods (orders of magnitude faster than
BLAST) and even outperforms high performance k-mer
string search algorithms (such as USEARCH) for realistic
environmental sample studies.
The matching algorithm also maintains good precision

and recall compared to less sensitive string search meth-
ods and even outperforms USEARCH for reasonably high
settings of the “maxaccepts” value on data sets with lower
error rates (ε ≤ 0.03).
The matching algorithm does not rely on a-priory selec-

tion of a parameter limiting the result setlength, such
as “max_target_seqs” for BLAST or “maxaccepts” for
USEARCH, but self-calibrates to the size of the set of
matching clusters of each query sequence.
Using cluster signatures improves recall and accuracy of

existing in vitro methods of identification, especially for
data sets containing closely related genetic material, with-
out needing to rely on a priori hierarchical phylogenetic
grouping.
Cluster signatures and the aodp utility can increase

the sensitivity and accuracy of PCR-based and DNA
hybridization-based experiments compared to tradi-
tional methods based on sequence or phylogenetic
clade signatures. Cluster signatures can also be used
for targeted enrichment-based HTS, developing accu-
rate, sensitive and efficient diagnostic tools for in vivo
or in silico detection of high-risk pathogens or muta-
tion of genes linked to genetic disorders or tumors,
using genomics, genetics and metagenomics sequencing
data.

Endnotes
1Signable sequence: sequence with at least one

sequence signature.

2Signable clade: phylogenetic clade with at least one
clade signature.

3 Following phylogenetic tree terminology, we call
clades with one sequence or with only identical sequences
leaf clades and clades with more sequences internal
clades.

4 Since λ is generally much smaller than the size of each
sequence, the total number of λ-mers can be approxi-
mated by the number of nucleotides in the database.

5 This may represent the union of reference and query
databases covering a single genome, a set of genomes, or
a set of single DNA markers or multiple loci shared by
different taxonomic lineages.

6 https://unite.ut.ee/sh_files/UNITE_public_20.11.
2016.fasta.zip

7The bootstrapped test set 4MicotoxinsBootstrap does
not provide true negative examples.
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