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THE BIGGER PICTURE As large biobanks increasingly expand their measurements of health data from ge-
netic to behavioral information, there is a growing need for tools to help analysts annotate and enhance the
discovery of the links between these various data types. While there are databases that automatically
deliver findings to investigators, they are ‘‘one size fits all’’ and do so without input or hypotheses from
the user. To address these limitations, we developed PYPE, an open-source, one-stop shop optimized
for identifying and interpreting genotypic and phenotypic relationships from large-scale biomedical bio-
banks. PYPE also only requires basic familiarity with a command line interface for use, ensuring that it is
accessible to a wide range of researchers and hypotheses.
SUMMARY
Phenome-wide association studies (PheWASs) serve as a way of documenting the relationship between ge-
notypes and multiple phenotypes, helping to uncover unexplored genotype-phenotype associations (known
as pleiotropy). Secondly, Mendelian randomization (MR) can be harnessed to make causal statements about
a pair of phenotypes by comparing their genetic architecture. Thus, approaches that automate both
PheWASs and MR can enhance biobank-scale analyses, circumventing the need for multiple tools by
providing a comprehensive, end-to-end tool to drive scientific discovery. To this end, we present PYPE, a Py-
thon pipeline for running, visualizing, and interpreting PheWASs. PYPE utilizes input genotype or phenotype
files to automatically estimate associations between the chosen independent variables and phenotypes.
PYPE can also produce a variety of visualizations and can be used to identify nearby genes and functional
consequences of significant associations. Finally, PYPE can identify possible causal relationships between
phenotypes using MR under a variety of causal effect modeling scenarios.
INTRODUCTION

While genome-wide association studies (GWASs) have been

critical for determining the relationship between genetic

variants along the genome and a phenotype, phenome-wide as-

sociation studies (PheWASs) allow investigators to explore the

relationship between phenotypes along the ‘‘phenome’’ and a

genetic variant.1 PheWASs have been shown to replicate known

GWAS results2 and to improve upon GWASs by helping to iden-

tify shared biological mechanisms across phenotypes (known as

pleiotropy), reveal previously unknown associations between

phenotypes, and identify new associations.3,4 The development

of tools that can take advantage of biobank-scale data sources

for performing PheWASs is thus a prerequisite for interpreting

and contextualizing genotype-phenotype associations.
Patterns 5, 100982,
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Prior PheWAS software includes R PheWAS,5 PyPheWAS,6

and DeepPheWAS,7 the latter of which uses Plink2, a popular

open-source association analysis toolset,8 to accelerate their

analyses. Packages also exist for visualizing PheWAS results,

such as PheWAS-View9 and PheWeb.10 While these tools are

useful for quick lookups, they are not suitable for ‘‘bespoke’’

analysis or in a wide variety of use cases where analysts are re-

analyzing a subset of the population, such as subsets of the pop-

ulation with image or multi-omics data (e.g., https://www.

ukbiobank.ac.uk/enable-your-research/approved-research). In

these research studies, no PheWAS results may exist.

In summary, none of these tools by themselves provide an end-

to-end pipeline for running a PheWAS, visualizing the results, and

interpreting potential causal effects. To this end, we developed a

Python-based implementation of a PheWAS tool, including
June 14, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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downstream functionality that annotates the significant results

with nearby genes and functional relevance according to external

variant information databases and can natively run Mendelian

randomization (MR), a method that uses genetic variants

to approximate a randomized control trial to make causal infer-

ences about the relationship between an exposure and an

outcome.11 While packages for MR exist, such as Mendelian

Randomization12 and TwoSampleMR,13 none of them are incor-

porated into any previous PheWAS workflow, even though it is a

very typical analysis to run along with PheWASs. To this end,

we present PYPE, a computational tool optimized for UK Biobank

(UKBB) data that is designed to accelerate PheWASs at every

step of the process.

RESULTS AND DISCUSSION

Overview of PYPE and features
PYPE facilitates the threemain components of a typical PheWAS

analysis. First, the user inputs a file containing the independent

variables (which may be a set of genotype or phenotype files),

a file containing the dependent variables (the set of phenotypes

provided by the UKBB), and any other optional arguments (e.g.,

covariates) and runs the PheWAS analysis. Next, the user can

choose to visualize the PheWAS results in a variety of plot types,

highlighting significant associations that were found in the

PheWAS. Finally, the user can explore the functional conse-

quences of the significantly associated variants and the genes

these variants are physically close to, as well as runMR analyses

to uncover possible causal relationships for the phenotypes of

interest.

Automating PheWAS analysis
The UKBB is a large-scale medical database that provides in-

depth genetic, health, and lifestyle data for around half a million

UK residents, allowing for a wide variety of exploratory analyses

that facilitate biological discovery.14With this in mind, we decided

to focus PYPE’s compatibility with this widely used resource to

provide the most useful tool for most researchers. With the data

provided by the UKBB, users can input either genotype or pheno-

type data as the independent variables and phenotype data as the

dependent variables in the PheWAS. Users can also specify cova-

riates such as age, sex, genetic principal components, or other

phenotypesprovidedby theUKBBforuse in thePheWAS.Further-

more, PYPE scrapes the UKBB website to annotate the specified

phenotypes with description and categorization information, al-

lowingusers to specify broad classes of phenotypesdirectly using

a link from the UKBB showcase. Although PYPE is best suited for

use directly with the UKBB, it is important to note that data from

other sources can also be used to run PheWASs in PYPE. As

long as the genomic data are stored in the widely used BED/

BIM/FAM file formats and the phenotypes are located in one file

with an IDcolumn linking the two,PYPEcanbe runonanydataset.

Further information on how to run the pipeline with alternate data

sources can be found at the provided GitHub repository (https://

github.com/TaykhoomDalal/pype/tree/main?tab=readme-ov-

file#non_ukbb).

When working with data from the UKBB, there are more than

7,000 phenotypes available to run the PheWAS with, encom-

passing a wide array of health-related outcomes including clin-
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ical diagnoses, physical measurements, and biochemical

markers.15 The data are present in a variety of formats, including

binary, continuous, and unstructured formats, which provide the

end user with ample resources for investigating the relationships

between the target genetic variants and phenotypes and

revealing potential shared biological mechanisms. This breadth

of data is well suited for running PheWASs and is the reason

why PYPE provides several UKBB-specific features to accel-

erate and detect associations that may not have been previously

explored. Furthermore, unlike several existing tools, PYPE also

does not exclusively focus on running PheWASs using ICD diag-

nosis codes (which are used as proxies for disease status) but

rather provides the user the ability to utilize any type of trait,

which could even include creating new phenotypes from existing

ones to use for the PheWAS analysis.

PYPE currently uses the default linear regression model from

statsmodels in Python to run the mass multivariate regressions

(with added support for parallel processing), with phenotypes

as the dependent variables and genotypes (or phenotypes) as

the independent variables, outputting p values, beta coefficients,

and standard errors. Here, the beta coefficients that are pro-

duced for each variant-phenotype association indicate whether

having the variant increases or decreases the phenotype’s value,

a fact that can be used to interpret the biological impact of the

variant on the target phenotype. PYPE also allows the user to

specify the maximum allowed missingness rate or minimum

sample requirements for the phenotypes included in the

PheWAS to ensure that the analyses are based on enough

data. This helps mitigate the effects of data incompleteness,

which could otherwise affect the accuracy of the regression re-

sults and the subsequent interpretation of the associations. To

correct for the occurrence of false positives, users can also

specify multiple testing correction methods including Bonferroni

correction, false discovery rate correction, Sidak correction, or

simple p value correction methods. For each of these multiple

testing correction methods, the total number of association tests

run is used as an estimation for the space of tests. To verify the

accuracy of our code, we ran our PheWAS method and R

PheWAS on the data used in the exploratory analysis section

below and got the same results. The output can be found in

Tables S1 and S2.

Enabling customizable PheWAS visualizations
PYPE also provides a script to generate a variety of visualizations

once the PheWAS has been run. Users can choose between

generating traditional Manhattan plots, category enrichment

plots, and volcano plots. When generating Manhattan plots,

users can specify custom groupings for the phenotypes or use

the categories provided by the UKBB, include annotations for

the significant associations, alter plot features such as color

maps and transparency, and plot aggregate-level Manhattan

plots (Figure 1) or individual categories with significant associa-

tions (Figure 3). Users can also generate category enrichment

plots as in Figure 2, plotting the enrichment of significant associ-

ations per category in a barplot. Finally, users can generate vol-

cano plots for each independent variable, displaying the signifi-

cant associations between the variable and the dependent

phenotypes, with the ability to annotate the most significant as-

sociations as well, as shown in Figure S1.
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Figure 1. Manhattan plot of aggregate

PheWAS results across abdomen, liver, and

pancreas age for each of the condensed cat-

egories of phenotype fields used in the UKBB

from Table S3

Manhattan plot of aggregate PheWAS results

across abdomen, liver, and pancreas age for each

of the condensed categories of phenotype fields

used in the UK Biobank from Table S3, where the y-

axis represents the negative logarithm (base 10) of

the p values, illustrating the statistical significance

of each association.

ll
OPEN ACCESSDescriptor
Enhancing PheWAS studies with downstream
annotations and MR
If inputting genotype variables, then PYPE provides downstream

annotations for the significant associations that are found in the

PheWAS. Specifically, PYPE provides three main downstream

functions. First, if the user specifies a gene file (which contains

information about the location of genes on each chromosome)

and the number of kilobases downstream and upstream to

look for genes, PYPE can be used to annotate each variant

with which genes are close to it on the chromosome. Secondly,

users can choose whether to generate summary files for the sig-

nificant variants using MyVariantInfo, and MyGeneInfo (RESTful

API) queries to a variety of databases that contain functional

variant annotations and their clinical significance (such as

ClinVar, dbSNP, CADD, etc.) for information about the given

variant and its associated genes.16 PYPE will then use this

information to create files for each unique, significant variant,

describing its functional consequence and the function of the

genes it is close to (if this information exists). Lastly, the user

can choose to run a two-sample MR using the genotype data

against a second dataset of GWAS results that is either user

specified or, if no dataset is provided, queried from the Open

GWAS Project using their RESTful API.17,18 Similar to the

TwoSampleMR package, the user has a choice between a vari-

ety of MRmethods, including inverse-variance weighted regres-

sion, Egger regression, various median- and mode-based

methods, and the pleiotropy residual sum and outlier method,

providing the ability to assess causal relationships as well as

identify bias due to pleiotropic effects.19,20 To verify the accuracy

of our code, we have provided a comparison between the output

of our MR methods and the outputs from TwoSampleMR in

Tables S4–S19. This comparison is based on the data used in

the following exploratory analysis.

Applying PYPE for an exploratory analysis
To demonstrate the functionality of our tool, we applied PYPE on

the results of abdomen biological age predictors,21 exploring the

genetic architecture of these predictors with cardiometabolic

diseases such as type 2 diabetes on an out-of-sample dataset

from the UKBB. Using the 16 genetic variants implicated in
accelerated abdomen, liver, and pancreas

aging, we ran the PheWAS against several

broad classes of phenotypes found in the

UKBB, including physical lab measure-

ments, self-reported medical conditions,
linked health outcomes, blood biochemistry, blood count (pa-

rameters), and infectious disease antigens. These classes were

then manually split into 20 categories based on their labeling in

the UKBB, providing a condensed classification of the many

phenotype data fields, which can be found in Table S3. This

condensed classification can be tweaked by the user to either

further condense the categories, change the categories alto-

gether, or leave them as is, directly from the UKBB website.

We ran the PheWAS with sex, age, ethnicity, and all 40 genetic

principal components as covariates, generating 15,082 total as-

sociations and 290 significant associations (p < 3.32e�06 Bon-

ferroni corrected with original alpha = 0.05). The significant re-

sults can be found in Table S20. Finally, we ran MR to assess

the possible causal relationship between accelerated abdomen,

liver, and pancreas aging and other phenotypes that have been

linked to cardiometabolic diseases.

Figure 2 highlights the percentage of significant associations

per category, illustrating which phenotypic categories have the

greatest percentage of significant associations. We observe

the greatest number of significant associations in the body cate-

gory, a category that was defined to encapsulate many of the

physical lab measures that have to do with adiposity, height,

and weight phenotypes. Furthermore, other top categories

include breathing and circulating biochemistry, where circulating

biochemistry chiefly contains information about cardiometabolic

biomarkers such as alanine aminotransferase (ALT), aspartate

aminotransferase (AST), gamma-glutamyl transferase, etc. For

this demonstration, we will focus on the circulating biochemistry

category results for the accelerated-liver-aging-associated vari-

ants listed in Table S21, as many of the mentioned enzymes are

liver specific.

Out of the various associations in Figure 3, we observed signifi-

cant associations for high-density lipoprotein cholesterol (HDL-C),

AST, and ALT. Here, the association between variant rs13107325

and HDL-C indicates that decelerated aging is associated with

lower HDL-C. Using the downstream functionality of PYPE, where

the base-pair position of the variant on the chromosome is used to

map variants to nearby genes (basedon user-specified distances),

we see that the associated gene for this variant is SLC39A8.

Another significant association was found between AST and
Patterns 5, 100982, June 14, 2024 3



Figure 2. Percentage of each category in

terms of the number of significant associa-

tions

The number of total associations found is labeled

above each category.
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variant rs13107325, with the PheWAS results indicating that with

decelerated aging, AST levels are higher. Lastly, the PheWAS

found a significant association between the variant rs370844658

and ALT, suggesting that with accelerated aging, ALT levels in-

crease. Using the variant-gene mapping functionality, we find

that the associated gene for this variant is EIF2S2. The full list of

these results can be found in Table S22.

After running the PheWAS, annotating the significant results

with nearby genes, and visualizing the results in various plot

types, we ran MR for the abdomen and liver variants against

GWAS associations for a variety of phenotypes. The pancreas

variants were not used as there were only 2, and most MR

methods require at least 3. Inverse-variance weighted reg-

ression was used here to estimate the causal effect of the

various age predictors and phenotypes that have known associ-

ations with cardiometabolic diseases, finding an association

(p < 0.05) between accelerated abdomen aging variants and

waist circumference variants, as shown in Table 1. We have

also provided the results for these variants with all of the other

MR methods in Tables S4, S6, S8, S10, S12, S14, S16, and S18.
4 Patterns 5, 100982, June 14, 2024
PYPE simplifies PheWAS studies and enables
researchers to focus on result interpretation
We present PYPE as an easy-to-use, customizable, and

feature-rich tool for running PheWASs from start to finish.

PYPE allows researchers to specify the options they want at

all stages of the analysis pipeline, from execution, to visualiza-

tion, to any downstream analysis. With this tool, we can ab-

stract away many portions of a typical PheWAS, allowing

more time to be spent on validating and exploring the conse-

quences of the results generated, in contrast to the aforemen-

tioned tools.7 However, there are some limitations to the

current implementation. Chiefly, the tool is currently best opti-

mized for the UKBB dataset, and thus some of the functional-

ities of the tool (querying for phenotype information from the

UKBB showcase) are not suited for other datasets. Further-

more, the visualization capabilities are currently limited to static

generation of the plots, and the user has to regenerate the re-

sults when they want to change an attribute of the plot. Howev-

er, with the availability of tools such as PheWEB, the latter

issue is less of a problem, as PYPE output can be adapted
Figure 3. Associations between accelerated

liver aging variants and circulating biochem-

istry biomarkers, where the y-axis represents

the negative logarithm (base 10) of the p

values, illustrating the statistical significance

of each association

Note that the directionality of the arrow indicates the

sign of the effect size of the PheWAS association,

and the color indicates the sign of the effect size of

the variant’s association with the aging phenotype

defined in LeGoallec et al.21 There, a negative effect

size indicated accelerated aging and a positive ef-

fect size indicated decelerated aging.



Table 1. Mendelian randomization (inverse-variance weighted)

results for genetic variants implicated in accelerated abdomen

and liver aging and GWAS from the UKBB (uncorrected for

multiple hypotheses with p < 0.05)

Predictor Phenotype p value Coefficient

Standard

error

Abdomen hemoglobin A1C 0.194 0.027 0.020

Abdomen body mass index 0.958 0.006 0.116

Abdomen glucose 0.254 �0.015 0.013

Abdomen waist circumference 0.001 0.356 0.109

Liver hemoglobin A1C 0.729 0.015 0.044

Liver body mass index 0.921 �0.012 0.123

Liver glucose 0.358 0.007 0.007

Liver waist circumference 0.110 0.251 0.157
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to support interoperability with this tool as well as PheWAS-

View, giving the user a variety of visualization choices based

on their use case. Lastly, the issue of multiple testing correction

of the MR associations is left unaddressed in PYPE, with cur-

rent literature22 indicating that conservative approaches to mul-

tiple testing correction may be too strict, largely due to the low

power of these studies and the fact that the relationships

under investigation typically have prior biological support. We

acknowledge that PYPE is agnostic to biological claims, and

therefore, we recommend that associations are reported with

false discovery and/or family-wise error rate control. Future ver-

sions of PYPE will provide integration with additional data for-

mats and sources, introduce more comprehensive result anno-

tations such as gene pathway involvement and other known

associations to aid in the interpretation of PheWAS findings,

and improve the speed of pipeline components. Furthermore,

we will add new visualization functions and a wider breadth

of MR functions and support more varied association types

(i.e., polygenic risk score-phenotype associations), facilitating

greater customization for the end user. To keep up with up-

dates to the pipeline, be sure to visit our GitHub, where new re-

leases with feature updates will be posted. Tools such as PYPE

are essential for reducing the time researchers spend on

the data analysis stage and increasing focus on the result inter-

pretation, a critical stage in the workflow for PheWASs, as it is

often difficult to differentiate between spurious and true

associations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Dr. Chirag J. Patel can be reached by email (chirag_patel@hms.harvard.edu).

Materials availability

This study did not generate new materials.

Data and code availability

The data used in the example analysis can be obtained from the UKBB, and the

PYPE tool is publicly available in a Github repository (https://github.com/

TaykhoomDalal/pype). PYPE is published under the Apache 2.0 license, and

supporting documentation can be found at the aforementioned link. The

source code is also archived in Zenodo23 (https://doi.org/10.5281/zenodo.

10883968). The hemoglobin A1C, BMI, glucose, and waist circumference var-

iants used in the MR study can be found at the Neale Lab Github (https://

github.com/Nealelab/UK_Biobank_GWAS), and the abdomen, liver, and

pancreas variants can be found in the paper by Le Goallec et al.21
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100982.
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