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Abstract: Hepatocellular carcinoma (HCC) is a major health concern worldwide. A better under-
standing of the mechanisms underlying the malignant phenotype is necessary for developing novel
therapeutic strategies for HCC. Signaling pathways initiated by neurotransmitter receptors, such as
a5-nicotinic acetylcholine receptor (CHRNADS), have been reported to be implicated in tumor pro-
gression. However, the functional mechanism of CHRNADS5 in HCC remains unclear. In this study, we
explored the role of CHRNAS in HCC and found that CHRNADS expression was increased in human
HCC tissues and positively correlated with the T stage (p < 0.05) and AJCC phase (p < 0.05). The KM
plotter database showed that the high expression level of CHRNAS was strongly associated with
worse survival in HCC patients. Both in vitro and in vivo assays showed that CHRNAS regulates the
proliferation ability of HCC by regulating YAP activity. In addition, CHRNAS promotes the stemness
of HCC by regulating stemness-associated genes, such as Nanog, Sox2 and OCT4. Cell migration
and invasion assays demonstrated that CHRNADS significantly enhanced the metastasis of HCC by
regulating epithelial-mesenchymal transition (EMT)-associated genes. Furthermore, we found that
CHRNADS regulates the sensitivity of sorafenib in HCC. Our findings suggest that CHRNAD5 plays a
key role in the progression and drug resistance of HCC, and targeting CHRNAS may be a strategy
for the treatment of HCC.
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1. Introduction

HCC, one of the most common fatal tumors with an increasing incidence rate, is
the fourth most common cause of cancer-related death worldwide [1]. Various factors,
including chronic hepatitis B virus (HBV) infection, alcohol consumption, and type 2
diabetes, are regarded as triggers for HCC development [2,3]. Although great efforts
have been made in developing innovative therapeutic strategies for HCC, the five-year
survival rate remains low, mainly due to the high rates of drug resistance, tumor metastasis,
and recurrence [4]. Sorafenib is a well-known treatment agent for HCC. By targeting
several tyrosine kinases, such as VEGFR, PDGFR, and RAF, sorafenib can suppress the
proliferation and angiogenesis of tumors [5]. However, limited benefits were observed
in HCC patients receiving sorafenib treatment, mainly due to the development of drug
resistance [6]. HCC cells that survived long-term treatment with sorafenib exhibited
enhanced stemness properties and an EMT phenotype, which were closely associated with
the resistance of various anticancer therapies and cancer remission [7]. Thus, deciphering
the mechanisms underlying stemness properties and sorafenib resistance is essential for
HCC treatment.
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The Hippo signaling pathway plays a crucial role in regulating organ development,
tissue hemostasis, and regeneration [8]. Dysregulation of the Hippo signaling pathway has
already been observed in multiple tumors, including HCC [9]. Yes-associated protein (YAP)
and tafazzin (TAZ), two core transcriptional coactivators in the Hippo signaling pathway,
are regulated by a series of kinase cascades consisting of the serine/threonine kinases
mammalian sterile 20-like kinase 1 and 2 (MST1 and MST2) and large tumor suppressor 1
and 2 (LATS1 and LATS2) [10]. YAP and TAZ were retained in the cytoplasm and deprived
of transcriptional activity after being phosphorylated by LATS1/2. Inactivation of the
Hippo signaling pathway leads to increased YAP activity, contributing to the enhanced
malignant phenotype of tumor cells. In HCC, Hippo signaling can inhibit HCC formation,
and activation of YAP transcription activity is critical for HCC proliferation [11]. The
contribution of YAP to drug resistance in HCC was also reported, and manipulating YAP
activity may be a plausible therapeutic strategy for HCC.

Nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels that are mainly
expressed in the plasma membranes of certain neurons on the postsynaptic side of the
neuromuscular junction, are also expressed in some non-neuronal cells [12]. nAChRs can
be activated to mediate fast signal transmission at synapses by the endogenous neurotrans-
mitter acetylcholine (ACh) or by the exogenous tertiary alkaloids nicotine and tobacco
alkaloid [13-15]. nAChR-based targeted therapies for nervous system disorders, including
Alzheimer’s disease, depression, Parkinson’s disease, Tourette’s syndrome, and nicotine ad-
diction, have been investigated [15,16]. Recently, numerous studies revealed that nAChRs
also play significant roles in cancer progression [17]. For example, 7-nAChR was found to
be associated with cancer cell proliferation and migration, exhibiting the potential to serve
as a therapeutic target for tumors [18]. «5-Nicotinic acetylcholine receptor (CHRNAD) is a
member of the nicotinic acetylcholine receptor superfamily. CHRNAS was initially recog-
nized as an important regulator in nicotine addiction and nicotine-dependent lung cancer
development [19,20]. CHRNA5-mediated Ca?* influx was found to activate MAPK and
VEGEF signaling pathways, thereby contributing to tumor progression in lung cancer [21].
Recently, several studies identified the critical role of CHRNAS in several other cancers.
CHRNAD5, upregulated in breast cancer, was identified as the secondary estrogen signaling
network and exhibited prognostic value in breast cancer [22]. In melanoma, CHRNAS5
was reported to modulate cancer growth by regulating the Notchl signaling pathway [23].
Another study found that CHRNAS could promote radioresistance via regulating E2F
transcription factor activity in oral squamous cell carcinoma [24]. However, the role of
CHRNAS5 in HCC remains largely unknown. Here, our study focused on revealing the role
of CHRNADS in HCC progression. We found that CHRNAS contributes to HCC progression
through the YAP-dependent modulation of proliferation ability, the EMT phenotype, and
stemness properties. Our study demonstrates the clinical and biological significance of
CHRNADS in HCC, and CHRNADS5 might serve as a promising prognostic biomarker and
therapeutic target for HCC.

2. Materials and Methods
2.1. Cell Culture

Human HCC cell lines Huh?7 and PLC/PRFE/5 (PLC) were obtained from Shanghai
Cell Bank, Chinese Academy of Sciences. All cell lines were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, HyClone, Logan, UT, USA) supplemented with 10% fetal bovine
serum (FBS; Gibco, Carlsbad, CA, USA) and penicillin/streptomycin (1%; Gibco, Carlsbad,
CA, USA). Cells were maintained in a humidified incubator with 5% CO, at 37 °C.

2.2. Patient Samples

In total, 70 paired HCC samples and adjacent normal counterparts were obtained
from Huashan Hospital from November 2015 to December 2016. Diagnoses were made by
two pathologists independently. All specimens were fixed with formalin and embedded
in paraffin. Written informed consent was provided by all patients. The methods and
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experimental protocols performed in this study were approved by the Human Research
Ethics Committee of Huashan Hospital.

2.3. RNA Interference and Plasmid Transfection

When the cells reached 70% confluence, transfection was carried out according to the
lipofectamine 3000 (Invitrogen, Waltham, MA, USA) instructions. Lentiviral short hairpin
RNA (shRNA) targeting CHRNAS5 (CCGGGCTCGATTCTATTCGCTACATCTCGAGATG-
TAGCGAATAGAATCG AGCTTTTTG for shl, and CCGGCCTGATGACTATGGTGGAAT-
ACTCGAGTATTCCACCATAGTCATCA GGTTTTTG for sh2) and control vectors (sh-NC)
obtained from Sigma-Aldrich were loaded into the PLKO plasmid. The CHRNAS5 CDS
sequence was loaded into the PCDH plasmid for CHRNAS overexpression in HCC cells.

2.4. Cell Viability Assay

CCKS test kits were employed to test cell viability following the manufacturer’s
instructions. After being seeded in 96-well plates, cancer cells were incubated with DMEM
containing 10% CCKS for 2 h, and the absorbance was measured at 450 nm.

2.5. TdT-Mediated dUTP Nick-End Labeling (TUNEL) Assay

To detect sorafenib-induced apoptosis, we conducted a TUNEL assay according to the
manufacturer’s instructions (Beyotime Biotechnology, Shanghai, China). DAPI was used to
stain the nucleus. Cells were imaged with a fluorescent microscope.

2.6. cDNA Synthesis and gRT-PCR Assay

Trizol reagent (Invitrogen, Waltham, MA, USA) was used to extract total RNA, and
NanoDrop2000 was used for RNA quantification. The total RNA was reverse-transcribed
into cDNA for qRT-PCR analysis following the manufacturer’s instructions for Prime-
Script RT Reagent Kit (TaKaRa, Otsu City, Shiga Prefecture, Japan). Then, quantita-
tive real-time PCR assays were conducted using the ABI7500 system according to the
protocol. The primer sequences for gRT-PCR were as follows: CHRNAS5-Forward: 5'-
GCCAGAGTGCCAGTGAGAAG-3', CHRNA5-Reverse: 5'-CGAGGCCAGCTGAGCAA-3';
GAPDH-Forward:  5- TCGGAGTCAACGGATTTGGT-3/, GAPDH-Reverse: 5'-
TTCCCGTTCTCAGCCTTGAC-3'.

2.7. Western Blot

The protein concentration was determined using a BCA kit after cells were lysed in
radioimmunoprecipitation assay (RIPA) buffer. Then, the proteins were boiled with loading
buffer at 100 °C for 15 min. Polyacrylamide gel electrophoresis and membrane transfer
were carried out as previously described [25]. The membrane was incubated with primary
antibodies against CHRNAS5 (Thermo Fisher Scientific, Waltham, MA, USA), E-cadherin
(CST, Danvers, MA, USA), N-cadherin (CST, Danvers, MA, USA), vimentin (CST, Danvers,
MA, USA), YAP (CST, Danvers, MA, USA), OCT4 (Abclonal, Wuhan, Hubei, China), Nanog
(Abclonal, Wuhan, Hubei, China), Sox2 (Abclonal, Wuhan, Hubei, China), histone H3
(CST, Danvers, MA, USA), and GAPDH (CST, Danvers, MA, USA) at 4 °C overnight.
Then, the membrane was further incubated with secondary antibody for one hour at room
temperature, and enhanced chemiluminescence (ECL) reagent was used to visualize the
protein bands using a Gel Doc EZ Imager. GAPDH was used as an internal reference.

2.8. Colony Formation Assay

Transfected Huh7 and PLC cells (1000 cells/well) were seeded into 6-well plates and
cultured for 2 weeks. Finally, colonies were counted after being fixed with 4% paraformalde-
hyde and stained with 0.1% crystal violet.
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2.9. Cell Migration and Invasion Assay

Cells at the logarithmic growth phase were harvested and resuspended in serum-free
medium to be seeded in transwell chambers for detecting their migration ability. For the
invasion assay, cells were seeded in transwell chambers containing Matrigel. After 24 h or
48 h, the transwell chambers were collected. Cells were fixed with 4% paraformaldehyde
and stained with crystal violet. The numbers of invading and migrating cells were counted
under a light microscope.

2.10. CHRNAS Expression and Clinical Information from the Cancer Genome Atlas (TCGA)

The RNA-sequencing-based gene expression data of 374 HCC tumor samples and 50
normal samples were downloaded using the “TCGADbiolinks” package (TCGADbiolinks: an
R/Bioconductor package for integrative analysis of TCGA data). The clinical data of the
corresponding 374 HCC patients were downloaded from The Cancer Genome Atlas (TCGA,
https:/ /portal.gdc.cancer.gov/, last date for accession: 15 August 2021). We used “R” to
normalize the original RNA-sequencing data to transcripts per million reads (TPM) [26].
After excluding the samples lacking mRNA expression or clinical information, we included
370 HCC patients for the clinical and prognosis analysis.

2.11. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Enrichment Analysis

The genes correlated with CHRNAS were confirmed using “corr” packages in R. To
assess the biological function of CHRNAS5-correlated genes, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed
using the R package “clusterProfiler”, and values with p < 0.05 were considered to be
statistically significant [27]. All statistical data analyses in this study were performed using
R software (version 4.1.1).

2.12. Animal Study

PLC-NC, PLC-sh CHRNAS5, Huh7-CMV, and Huh7-CHRNAS5 OE cells (2 x 10°) were
injected subcutaneously into the left flank of 3—4-week-old male nude mice kept in the SPF
animal laboratory. Tumor weight was measured after sacrificing the mice by anesthesia at
the end of the experiment. Every nude mouse received humane care in accordance with
the National Institutes of Health guidelines (NIH Publications No. 8023). The animal study
was performed following the protocols approved by the Institutional Animal Care and Use
Committee of Fudan University.

2.13. Statistical Analysis

For statistical analysis, experiments were repeated three times. All data were analyzed
by SPSS 21.0 (Chicago, IL, USA) and GraphPad Prism 8.0.1 (La Jolla, CA, USA). x2-Tests, two-
tailed Student’s t-test, Spearman’s rank correlation, and Kaplan-Meier analysis were used
according to the data type. Values with p < 0.05 were regarded as statistically significant.

3. Results
3.1. CHRNADS Is Significantly Overexpressed in Hepatocellular Carcinoma and Correlated with
Poor Prognosis of HCC Patients

To investigate the expression pattern of CHRNAS in HCC tissues, we analyzed data
from the TCGA database and found that the mRNA expression level of CHRNAS5 was
significantly higher in HCC tissues compared with that in adjacent normal liver tissues
(p <0.05) (Figure 1A). We further detected the CHRNAS5 protein level and also found
increased CHRNAS expression in HCC tissues (Figure 1B,C). The correlation between
CHRNADS expression and the corresponding clinicopathological parameters was analyzed
using data from the TCGA database. The results suggested that there was a close association
between the CHRNA5 mRINA expression level and tumor stage (Figure 1D), suggesting
that CHRNAD plays a role in tumor progression. We further explored the relationship
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between the CHRNAS expression level and the clinical characteristics of HCC patients,
including gender, age, T stage, distant metastasis, AJCC phase, and vascular invasion.
The results revealed significant correlations between the CHRNADS expression level and T
stage (p < 0.05) and AJCC phase (p < 0.05) (Table 1). Using the GEPIA database to analyze
the prognostic value of CHRNAS in HCC, we found that HCC patients with a higher
mRNA expression level of CHRNADS exhibited poorer disease-free survival and overall
survival after surgery (Figure 1E,F). These results indicate that CHRNAS contributes to
cancer progression and poor prognosis in HCC patients.
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Figure 1. Increased expression of CHRNAS5 in HCC. (A) Increased mRNA expression of CHRNADS5 in
HCC compared with that in normal liver tissue; (B,C) increased protein expression of CHRNAS in
HCC compared with that in normal liver tissue; (D) CHRNA5 mRNA expression level in HCC at
different stages; (EF) relationship between CHRNAS expression and the prognosis of HCC patients.
*p <0.05.

Table 1. The association between CHRNA5 mRNA expression and clinicopathological characteristics
in HCC.

CHRNAS5 Expression
Characteristics p Value
High Low
Age
<65 66 65
>65 34 38 0.7963
Gender
Male 57 78
Female 43 25 0.0072
T stage
T1 46 68
T2-4 54 35 0.0074
Metastasis
MO 97 102
M1 3 1 0.3639
AJCC phase
I 46 66
II-1v 54 37 0.0112
Vascular Invasion
No 63 73 029

Yes 37 30
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3.2. CHRNAS Promotes Proliferation of HCC Cells

To explore the cellular functions of CHRNAS5 in HCC, we generated a CHRNAS5-
overexpressing Huh? cell line and a CHRNA5-silencing PLC cell line based on the basal
expression level of CHRNAS5 in Huh?7, PLC, and 97H (Figure 2A—C). The CCKS assay
revealed that silencing CHRNAS markedly inhibited the proliferation ability of PLC cells,
and CHRNADJ overexpression improved the proliferation ability of Huh? cells (Figure 2D,E),
suggesting that CHRINAS plays a critical role in promoting HCC cell proliferation. We
carried out a colony formation assay to further observe the long-term effect of silencing or
overexpressing CHRNAS on the proliferation of HCC cells. As expected, the number of
colonies was significantly reduced after silencing CHRNAS in the PLC cell line and was
markedly increased after CHRNAS overexpression in the Huh? cell line (Figure 2EG). To
investigate the growth-promoting effect in vivo, we developed subcutaneous xenograft
models of PLC-NC, PLC-shCHRNAS5, Huh7-CMYV, and Huh-CHRNAS5 OE cells in nude
mice. The results revealed that CHRNADS silencing significantly inhibited tumor growth,
and CHRNAS overexpression markedly promoted tumor growth in vivo (Figure 1H,I),

further suggesting that CHRNAS plays a critical role in promoting the proliferation ability
of HCC cells.
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Figure 2. CHRNADS regulates the proliferation ability of HCC cells. (A) The protein expression level
of CHRNAS in HCC cell lines, including MHCC-97H, Huh?, and PLC cells; (B) real-time qPCR and
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Western blot analysis of the knockdown efficiency of CHRNADS5 in PLC cell lines; (C) real-time qPCR
and Western blot analysis of the overexpression efficiency of CHRNAS5 in Huh7 cell lines; (D) CCK8
assay of PLC-NC and PLC-sh CHRNADS cell lines; (E) CCK8 assay of Huh7-CMV and Huh7-CHRNAS5
OE cell lines; (F) colony formation assay of PLC-NC and PLC-sh CHRNAS cell lines; (G) colony
formation assay of Huh7-CMV and Huh7-CHRNAS OE cell lines; (H) image of tumors from PLC-NC
and PLC-sh CHRNADS cell lines subcutaneously injected into mice and tumor weight; (I) image of
tumors from Huh7-CMV and Huh7-CHRNADJ OE cell lines subcutaneously injected into mice and
tumor weight. * p < 0.05.

3.3. CHRNAS Promotes Invasion and Migration of HCC

Furthermore, silencing CHRNAS5 markedly inhibited the migration and invasion
ability of PLC cells (Figure 3A,B) and downregulated the expression of EMT-associated
markers, such as N-cad and vimentin (Figure 3C). Accordingly, CHRNAS5 overexpression
significantly increased the migration and invasion ability of Huh7 cells by upregulat-
ing EMT-associated genes (Figure 3D-F). These results revealed that CHRNAS5 was also
involved in the migration and invasion of HCC cells by regulating the EMT phenotype.
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Figure 3. CHRNAS promotes HCC migration and invasion via regulating EMT phenotype.
(A,B) Effects of silencing CHRNA5 on HCC migration and invasion were determined by transwell as-
says; (C) effects of silencing CHRNADS on expression of EMT-associated markers in HCC; (D,E) effects
of CHRNADS overexpression on HCC migration and invasion were determined by transwell assays;
(F) effects of CHRNADS overexpression on expression of EMT-associated markers in HCC. * p < 0.05.

3.4. CHRNAS Promotes Stemness Properties of HCC

From the TCGA database, we observed that CHRNAS was positively correlated with
stemness-associated genes, such as Sox2, CD133, and OCT4 (Figure 4A—C). The tumor
spheroid formation assay is a commonly used method to detect the stemness properties
of cancer cells [25]. To further determine whether CHRNAS plays a regulatory role in
maintaining the stemness properties of HCC, we carried out a spheroid formation assay.
The results showed that silencing CHRNAS inhibited the tumor spheroid formation ability
of PLC cells (Figure 4D,E), and CHRNAS5 overexpression increased the tumor sphere
formation ability of Huh? cells (Figure 4FE,G), indicating that CHRNADJ has a regulatory
role in maintaining the stemness properties of HCC cells. In addition, Western blot analysis
revealed that CHRNAD participated in regulating stemness-associated genes, such as OCT4,
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Nanog, and Sox2 (Figure 4H,I). These results indicate that CHRINA5 maintains stemness
properties by regulating stemness-associated genes in HCC.
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Figure 4. CHRNAS promotes HCC spheroid formation ability via regulating stemness-associated
genes. (A-C) Correlation between CHRNA5 mRNA expression level and stemness-associated
genes in TCGA database; (D,E) effects of CHRNADS silencing on HCC spheroid formation ability;
(F,G) effects of CHRNAS5 overexpression on HCC spheroid formation ability; (H) effects of CHRNAS5
silencing on the expression of stemness-associated genes; (I) effects of CHRNAS5 overexpression on
the expression of stemness-associated genes. * p < 0.05.

3.5. CHRNAS Regulates YAP Activity in HCC

We used the online analysis tool LinkedOmics to identify genes that were significantly
correlated with CHRNAS5 in HCC. Genes negatively correlated with CHRNAS (Figure 5A,B)
and positively correlated with CHRNAS (Figure 5C,D) were incorporated into KEGG and
GO analyses. The results reveal that CHRNADS is associated with many important cancer-
related signaling pathways, such as cell cycle regulation, DNA replication, mismatch repair,
and the Hippo signaling pathway in HCC. YAP is an important component of the Hippo
signaling pathway and plays a critical role in pro-proliferation and anti-apoptosis [28]. To
further check whether CHRNADS can regulate the Hippo signaling pathway in HCC, we
detected the YAP expression level after silencing or overexpressing CHRNADS. The results
revealed that YAP expression was significantly downregulated after silencing CHRNAS
and markedly upregulated after overexpressing CHRNAS5 in HCC cells (Figure 5E,F). The
transcriptional activity of YAP was closely associated with its subcellular localization.
Therefore, we further detected the YAP expression level in the cytoplasm and nucleus after
CHRNADS knockdown or overexpression. The results revealed that silencing CHRNAS5
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significantly inhibited the nuclear accumulation of YAP in the PLC cell line, and CHRNAS5
overexpression markedly augmented YAP nuclear accumulation in the Huh? cell line
(Figure 5G,H), further suggesting that CHRNADS has a critical role in regulating YAP activity.
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Figure 5. CHRNADS regulates YAP activity in HCC. (A) KEGG analysis of genes negatively correlated
with CHRNAS5 in HCC; (B) GO analysis of genes negatively correlated with CHRNA5 in HCC;
(C) KEGG analysis of genes positively correlated with CHRNAS5 in HCC; (D) GO analysis of genes
positively correlated with CHRNAS in HCC; (E) Western blot analysis of YAP in PLC-NC and PLC-sh
CHRNAS cell lines; (F) Western blot analysis of YAP in Huh7-CMV and Huh7-CHRNAS OE cell lines;
(G) Western blot analysis of YAP expression in cytoplasm and nucleus from PLC-NC and PLC-sh
CHRNADS cell lines; (H) Western blot analysis of YAP expression in cytoplasm and nucleus from
Huh7-CMV and Huh7-CHRNAS5 OE cell lines.

3.6. YAP Plays an Essential Role in the Contribution of CHRNAS to Malignant Phenotype of HCC

To uncover whether YAP plays an essential role in the contribution of CHRNAS to
the HCC malignant phenotype, we overexpressed YAP in CHRNADb5-silencing PLC cell
lines and silenced YAP expression in CHRNAS5-overexpressing Huh? cell lines. The re-
sults revealed that YAP overexpression partially reversed the inhibitory effect of silencing
CHRNADS on the migration ability and expression of EMT-associated markers (Figure 6A,B).
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Furthermore, the inhibitory effects of silencing CHRNAS on the tumor spheroid forma-
tion ability of PLC cell lines and the expression of stemness-associated genes were also
attenuated after overexpressing YAP (Figure 6C,D). Accordingly, the opposite effect was
observed after silencing YAP in CHRNAS5-overexpressing Huh? cell lines (Figure 6E-H).
These results suggest that CHRNADS can regulate the malignant phenotype of HCC cell
lines by modulating YAP activity.

v [
LE-cad |#Ws sy S
N-cad . — L —
vim [———

pe oF

PLCAhCHRNAS  PLCshCHRNAS' YAP OF
N
s S\\cﬂ?‘
;
i
c-*‘“ck\
%

‘{

€ D

Nanog, - -

Sox2 .

OCT4 o

w
aaror | 1
7 rew =

PLC-NC PLC-shCHRNAS PLC-shCHRNAS+ YAP OE

YAP -

N-cad [F gy

VIm| soen @ o

& Lt A T L e e el
Huh7-CMV Huh7-CHRNAS OF Huh7-CHRNAS OE +siYAP GAPDH
oW o8 Y
‘c\\‘\‘ \\\@P; oe®
« oty
G H ‘\“\ﬂ

Nanog ”
¢ GAPDH| wmm iy e

#

Number of tumor spheroid (/400)
= @
=] =]

& &
1uh7-CMV IUh7-CLIRNAS O Lluh7-CLIRNAS OL 1siYAP & & o 50 S0
& pe 0 \n\a “@h oy
S ¥ c\c\ Pé
< ;,é‘ ! \,\?:\'\
Q;'*‘ \“\\1

Figure 6. YAP plays an essential role in the contribution of CHRNAS5 to malignant phenotype of
HCC. (A) YAP overexpression partially rescued the inhibitory effect of silencing CHRNAS on the
migration ability of HCC cells; (B) YAP overexpression partially rescued the inhibitory effect of
silencing CHRNAS on the expression of EMT-associated markers; (C) YAP overexpression partially
rescued the inhibitory effect of silencing CHRNADS on the spheroid formation ability of HCC cells;
(D) YAP overexpression partially rescued the inhibitory effect of silencing CHRNAS on the expression
of stemness-associated genes; (E) the inhibitory effect of silencing CHRNAS on the migration ability
of HCC cells was attenuated after overexpressing YAP; (F) the inhibitory effect of silencing CHRNAS5
on the expression of EMT-associated markers in HCC cells was attenuated after overexpressing YAP;
(G) the inhibitory effect of silencing CHRNADS on the spheroid formation ability of HCC cells was
attenuated after overexpressing YAP; (H) the inhibitory effect of silencing CHRNAbS on the expression
of stemness-associated genes in HCC cells was attenuated after overexpressing YAP. * p < 0.05.
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3.7. CHRNAS Regulates Sorafenib Sensitivity in HCC

Several studies have already uncovered that YAP activity is closely associated with
sorafenib resistance in HCC [29,30]. In addition, stemness properties were also reported
to share a close association with sorafenib sensitivity in HCC [31]. Therefore, we further
evaluated the effect of CHRNAS5 on HCC sensitivity to sorafenib. From the TCGA database,
we observed that a higher expression level of CHRNAS5 was correlated with a worse OS
in HCC patients receiving sorafenib treatment (Figure 7A), suggesting that CHRNAS
might be associated with sorafenib sensitivity in HCC. An in vitro assay also revealed that
silencing CHRNADS significantly decreased the IC50 of HCC cells (Figure 7B,C), which
was markedly increased when CHRNAS was overexpressed (Figure 7D,E). The TUNEL
assay also revealed that CHRNADS silencing augmented the apoptosis of HCC cells induced
by sorafenib, whereas CHRANS5 overexpression attenuated the apoptosis of HCC cells
induced by sorafenib (Figure 7E,G). These results suggest that CHRNAS5 contributes to
sorafenib resistance in HCC and has the potential to serve as an indicator for predicting
sorafenib sensitivity in HCC patients.
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Figure 7. CHRNADb regulates sorafenib sensitivity in HCC. (A) The effect of CHRNAS on the OS of
HCC patients receiving sorafenib treatment; (B,C) IC50 of sorafenib in PLC-NC and PLC-sh-CHRNA5
cell lines; (D,E) IC50 of sorafenib in Huh7-CMV and Huh7-CHRNAS5 OE cell lines; (F) TUNEL

detection of PLC-NC and PLC-shCHRNADS cell lines treated with sorafenib; (G) TUNEL detection of
Huh7-CMV and Huh7-CHRNAS5 OE cell lines treated with sorafenib. * p < 0.05, * Censored Data.

4. Discussion

CHRNADS, a member of the superfamily of ligand-gated ion channels, is a vital receptor
for nicotine [32]. Thus, previous studies regarding CHRNAS have largely focused on its
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role in nicotine dependence and lung cancer progression [33]. In this study, for the first time,
we investigated the role of CHRNADS in HCC. The results reveal that CHRNAS expression
level is upregulated in HCC tissues and is closely associated with tumor T stage, AJCC
phase, and patient prognosis. These results suggest the involvement of CHRNA5 in HCC
progression. The role of CHRNAD in tumor proliferation was previously reported. In
oral squamous cell carcinoma, CHRNAS was reported to regulate the activity of the E2F
signaling pathway, a critical regulator of cell cycle and stemness properties (33986804),
contributing to tumor growth and treatment resistance [24,25]. Ozlen Konu et al. also
reported that CHRNADS silencing in breast cancer significantly inhibited tumor growth,
which might be attributed to the significant inhibition of cell-cycle-associated genes after
CHRNAS silencing [34]. Their study suggested that CHRNAS might regulate cell cycle
arrest during the G1 phase by modulating the activity of retinoblastoma family proteins
(RB), which regulate E2F1 activity by binding with E2F1 [35]. To further validate the
functional role of CHRNADS5 in HCC, we induced lentivirus-mediated overexpression or
silencing of CHRNAS5. We found that CHRNADS is crucial for the proliferation of HCC cells
both in vitro and in vivo, consistent with the conclusion of previous studies in other types
of cancers. Tumor invasion and metastasis are challenges in the clinical treatment of HCC.
EMT is regarded as a critical step in tumor invasion and metastasis [36]. A previous study
suggested that CHRNAS could regulate the migration and invasion ability of melanoma
cells [23]. Similarly, our study indicated that CHRNAS could enhance the invasion and
metastasis ability of HCC by regulating EMT-associated genes. All of these data suggest
that CHRNADJ plays a critical role in the malignant phenotype of HCC.

Sorafenib is a multitarget molecular drug and is one of the main treatment strategies
for advanced HCC. By suppressing the activity of various receptor tyrosine kinase and
VEGEF/Raf/MER/ERK-mediated multiple signaling pathways, sorafenib can inhibit tumor
cell proliferation and angiogenesis in vivo [37]. Despite the fact that sorafenib can extend
the patient’s overall survival, limited benefits were observed in more than 70% of patients
with advanced HCC as a result of drug resistance. Therefore, it is clinically meaningful
to explore the mechanisms of sorafenib resistance in HCC patients. Our results revealed
that CHRNADS silencing could augment sorafenib sensitivity, and CHRNAS overexpression
could attenuate sorafenib sensitivity, indicating the regulatory role of CHRNADJ in sorafenib
sensitivity in HCC. Accordingly, among patients receiving sorafenib treatment, those with
a higher expression level of CHRNAS exhibited a worse OS compared with those with a
lower expression level of CHRNAS. These results indicate that CHRNADS has a pivotal
role in sorafenib resistance in HCC. There is a growing amount of evidence indicating that
stemness properties, closely associated with cancer initiation and progression, also play a
significant role in treatment resistance [38]. The maintenance of stemness properties relies
on the activation of stemness-associated genes, such as Sox2, OCT4, and Nanog [38]. More-
over, several stemness-associated signaling pathways, such as Wnt/ 3-catenin signaling,
Notch signaling, and JAK/STAT signaling, also greatly contribute to stemness properties
in HCC [39]. In HCC, stemness properties are closely associated with drug resistance,
tumor metastasis, and recurrence [39]. Stemness properties are closely associated with
the EMT phenotype, which was previously reported to contribute to sorafenib resistance
in HCC [40,41]. Several other studies also reported that stemness properties are closely
associated with sorafenib resistance in HCC [42]. Ozlen Konu et al. observed a close associ-
ation between CHRNAS and Wnt/ 3-catenin signaling, from which we can propose that
CHRNADJ5 might also regulate the stemness properties of breast cancer cells [34]. Consistent
with their study, our study also indicated that CHRNAS5 could maintain the stemness
properties of HCC cells by regulating stemness-associated genes, to which the regulatory
role of CHRNADJ in sorafenib sensitivity could be partially attributed. Stemness properties
are also closely associated with chemotherapy resistance and radiotherapy resistance [43].
Thus, it is possible that CHRNAS might also contribute to resistance to chemotherapy
and radiotherapy in HCC, but further experiments are needed to test this hypothesis. In
fact, previous studies have already identified the role of CHRNAS in the resistance to
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chemotherapy in breast cancer and the resistance to radiotherapy in oral squamous cell
carcinoma [24].

YAP, playing an essential role in cancer progression, was reported to be implicated
in modulating various malignant phenotypes of cancer cells, such as cell proliferation,
migration, invasion, apoptosis resistance, EMT phenotype, and stemness properties [44—46].
In this study, data from the TCGA database exhibited a close association between CHRNAS
and the Hippo signaling pathway in HCC. Further in vitro assays revealed that CHRNAS5
could regulate YAP activity, and YAP silencing was sufficient to reverse the CHRNAS5-
mediated tumor-promoting effect. Thus, these results suggest that CHRNAS promotes HCC
progression by modulating YAP activity. Recent studies also suggested the contribution of
YAP to drug sensitivity in HCC through various mechanisms. Yuan Zhou et al. reported that
YAP contributes to chemotherapy resistance via regulating the Rac family small guanosine
triphosphatase 1 (RAC1)—reactive oxygen species (ROS)—mTOR signaling pathway [47].
Darko Castven et al. reported that YAP induced stem-like properties and accounted for the
acquired resistance to sorafenib in HCC cells [48]. Ruize Gao et al. also reported that YAP
could transcriptionally initiate the expression of SLC7A11, a key transporter maintaining
intracellular glutathione homeostasis, causing resistance to sorafenib-induced ferroptosis
in HCC [29]. Consistent with previous studies, our study reveals that downregulation
of YAP activity caused by CHRNADS silencing leads to enhanced sensitivity to sorafenib.
Thus, YAP plays a critical role in the contribution of CHRNADS to stemness properties, EMT
phenotype, and sorafenib resistance in HCC.

5. Conclusions

In conclusion, our study demonstrates that CHRNADS plays a significant role in pro-
moting the malignant phenotype of HCC by regulating YAP activity. Its role in sorafenib
resistance suggests the potential of CHRNAS to serve as an indicator for sorafenib sensitiv-
ity, and targeting CHRNAS might be a strategy for HCC treatment.
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