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We describe here the Drosophila gene hydra that appears to have originated de novo in the melanogaster subgroup
and subsequently evolved in both structure and expression level in Drosophila melanogaster and its sibling species. D.
melanogaster hydra encodes a predicted protein of ;300 amino acids with no apparent similarity to any previously
known proteins. The syntenic region flanking hydra on both sides is found in both D. ananassae and D. pseudoobscura,
but hydra is found only in melanogaster subgroup species, suggesting that it originated less than ;13 million y ago.
Exon 1 of hydra has undergone recurrent duplications, leading to the formation of nine tandem alternative exon 1s in
D. melanogaster. Seven of these alternative exons are flanked on their 39 side by the transposon DINE-1 (Drosophila
interspersed element-1). We demonstrate that at least four of the nine duplicated exon 1s can function as alternative
transcription start sites. The entire hydra locus has also duplicated in D. simulans and D. sechellia. D. melanogaster
hydra is expressed most intensely in the proximal testis, suggesting a role in late-stage spermatogenesis. The coding
region of hydra has a relatively high Ka/Ks ratio between species, but the ratio is less than 1 in all comparisons,
suggesting that hydra is subject to functional constraint. Analysis of sequence polymorphism and divergence of hydra
shows that it has evolved under positive selection in the lineage leading to D. melanogaster. The dramatic structural
changes surrounding the first exons do not affect the tissue specificity of gene expression: hydra is expressed
predominantly in the testes in D. melanogaster, D. simulans, and D. yakuba. However, we have found that expression
level changed dramatically (; .20-fold) between D. melanogaster and D. simulans. While hydra initially evolved in the
absence of nearby transposable element insertions, we suggest that the subsequent accumulation of repetitive
sequences in the hydra region may have contributed to structural and expression-level evolution by inducing
rearrangements and causing local heterochromatinization. Our analysis further shows that recurrent evolution of both
gene structure and expression level may be characteristics of newly evolved genes. We also suggest that late-stage
spermatogenesis is the functional target for newly evolved and rapidly evolving male-specific genes.

Citation: Chen ST, Cheng HC, Barbash DA, Yang HP (2007) Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila
melanogaster. PLoS Genet 3(7): e107. doi:10.1371/journal.pgen.0030107

Introduction

Much of the genetic novelty that accompanies speciation
and organismal evolution is driven by reutilization of pre-
existing genetic information. In an influential essay, Francois
Jacob likened evolution to a process of tinkering [1]. After the
primordial evolution of truly new macromolecules and
mechanisms of replication, Jacob suggested that much of
phenotypic novelty arises from reusing, recombining, and
altering the function of available genes.

This view of evolution is strongly supported by studies of
new-gene evolution. The vast majority of newly evolved genes
can be attributed to duplication of pre-existing genes. These
duplication events can range from single-gene events to
duplications of entire genomes [2,3]. Much of protein
evolution also conforms to Jacob’s view, as new proteins are
often generated from shuffling pre-existing protein domains
[4].

The tinkering view of evolution does not rule out the
occasional generation of novel protein sequences. One
question then is whether and by what mechanisms such novel
proteins evolve. Presumably novel proteins derive from
noncoding sequences that acquire appropriate transcrip-

tional and translational regulatory sequences. Experimental
evolution studies suggest that random sequences of proteins
can acquire biological functions at frequencies that are,
surprisingly, greater than miniscule [5]. A recent study
reported the exciting finding of several such candidate de
novo genes in Drosophila that may be functional, based on
RNA expression analysis [6]. A large number of new exons
have also been identified in rodents that appear to have
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derived from incorporation of intronic sequences into
mRNAs [7].

A large fraction of eukaryotic genomes is composed of
transposable elements (TEs). Because the TE component of
genomes can evolve rapidly, TEs have a major impact on
genome evolution [8–10]. TEs are widely considered to be
selfish parasites that are deleterious to their host’s fitness [11],
and most are likely eliminated quickly by natural selection.
However, accumulating evidence has also shown that TEs can
serve as an important source of genetic variation and
genomic novelty [8,12–14].

TEs can generate genetic novelty by at least five different
mechanisms. First, the reverse transcriptase enzyme from
retrotransposons can generate duplicated retroposed genes
[15–17] or generate chimeric fusion genes [15,18–21]. Second,
TEs can change expression patterns of adjacent genes by
providing novel regulatory elements or by disrupting host
gene regulatory functions [14,22–26]. Third, coding regions
from TEs such as envelope proteins and transposase enzymes
can be incorporated by the host species to modify or even
create new host protein-coding genes [13,27]. Fourth, TEs can
contribute to noncoding regions (untranslated regions
[UTRs]) of genes [12,24,28–30]. Fifth, TE insertions create
multiple highly homologous sites throughout the genome that
can cause duplications by ectopic recombination [9,31].

Comparisons between genomes have proven to be a
powerful way to identify new genes [32] and to reconstruct
the early history of new-gene evolution [2]. This approach has
provided new data for models and mechanisms leading to
new-gene evolution [6,20,33–35].

Such a comparative approach is used here to investigate
the evolutionary history of a recently evolved gene in
Drosophila. We report the characterization of the gene hydra,
located in the pericentric region of the X chromosome in D.
melanogaster. hydra was originally reported as predicted gene
CG1338 [36]. We show that hydra originated in the melanogaster
subgroup of Drosophila and subsequently experienced dra-
matic changes in its gene structure, including the formation
of multiple alternative first exons, most of which are
associated with the transposon DINE-1 (Drosophila inter-
spersed element-1). We also investigate the history and
impact of these gene-structure changes at both the DNA

sequence and RNA expression levels by comparison among
species of the melanogaster subgroup. We suggest that new
genes will tend to evolve rapidly in coding sequence (CDS),
gene structure, and gene-expression level. We also suggest
that TE accumulation can cause local heterochromatinization
that can in turn have a major impact on the evolution of gene
structure and gene expression.

Results

The hydra Gene Is Restricted to the melanogaster
Subgroup
CG1338 is located near the pericentric region of the X

chromosome in D. melanogaster (cytological region 19E1). We
first became interested in CG1338 during a genome-wide
analysis of the transposon DINE-1 in the D. melanogaster
genome. We present evidence below that CG1338 contains
nine duplicated first exons in D. melanogaster. Because of these
nine duplicated exon 1s (see Figure 1A), we propose to
rename this gene hydra, after the nine-headed monster slain
by Hercules.
We found that the gene region surrounding hydra in D.

melanogaster contains dense repeats of DINE-1 (Figure 1A).
DINE-1, also named INE-1 or DNAREP1_DM, is a highly
abundant transposon that is predominantly found in the
heterochromatic regions of the D. melanogaster genome [37,38]
and is believed to have invaded the Drosophila genome before
the diversification of the melanogaster subgroup [37–40].
Further analysis showed that hydra is flanked by two blocks
of tandem repeats, with duplicated fragments of DINE-1 in
the 59 end and an undefined 500-bp repeat in the 39 end.
Using available genomic contigs from various Drosophila
species (http://flybase.net/blast), we found that the ;7-kb
region surrounding hydra, including the adjacent gene
CG1835, only exists in species of the melanogaster subgroup,
but not in other species outside of the subgroup. BLAST
searches using unique sequences from hydra identified no
similar sequences in other regions of these genomes. We
suggest that hydra evolved recently in the species of the
melanogaster subgroup (Figure 1B). This conclusion was
confirmed by Southern hybridization under low stringency
using hydra exons 2–4 from D. melanogaster as the probe with
DNA extracted from D. melanogaster, D. simulans, D. yakuba, D.
erecta, D. ananassae, D. pseudoobscura, and D. virilis. Hybrid-
ization signals were only detected in flies of the melanogaster
subgroup (i.e., D. melanogaster, D. simulans, D. yakuba, D. erecta),
but not in the other species (unpublished data). TBLASTN
searches to the nonredundant (nr) or whole-genome shotgun
(wgs) databases found no hits to non-melanogaster subgroup
Drosophila species with E values , 0.001.

Evolution of the Gene Structure of hydra
According to the Flybase genome annotation (http://

www.flybase.org), hydra of D. melanogaster contains four exons,
and two types of transcripts (type A and type B), which are
transcribed using alternative first exons. Our analysis of the
hydra gene region suggested that there are seven additional
putative first exons similar to the two annotated first exons
located in a region of dense DINE-1s in D. melanogaster (Figure
1A; Text S1). These seven additional potential first exons
share similarity with the two annotated exon 1s in their CDSs
(which are nine codons long) and in their 59 upstream
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Author Summary

Similar groups of animals have similar numbers of genes, but not all
of these genes are the same. While some genes are highly conserved
and can be easily and uniquely identified in species ranging from
yeast to plants to humans, other genes are sometimes found in only
a small number or even in a single species. Such newly evolved
genes may help produce traits that make species unique. We
describe here a newly evolved gene called hydra that occurs only in
a small subgroup of Drosophila species. hydra is expressed in the
testes, suggesting that it may have a function in male fertility. hydra
has evolved significantly in its structure and protein-coding
sequence among species. The authors named the gene hydra after
the nine-headed monster slain by Hercules because in one species,
Drosophila melanogaster, hydra has nine potential alternative first
exons. Perhaps because of this or other structural changes, the level
of RNA made by hydra differs significantly between one pair of
species. This analysis reveals that newly created genes may evolve
rapidly in sequence, structure, and expression level.
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regions. The first of these duplicated exons may be nonfunc-
tional because it creates a stop codon when spliced to exon 2,
assuming that it has the same structure and splicing pattern
as the other 8 exons. Alternatively, this first exon 1 may use a
different 39 splice site, although no such evidence was found
in our 59 rapid amplification of cDNA ends (RACE) analysis
described below (Table 1).

Our further analysis of multiple lines of D. melanogaster (and
D. simulans) with Southern hybridization detected substantial
length variation in the gene region, presumably due to length
variation in the exon 1 region (Figure 2). Although we have
not determined the sequence structure of these alleles, the
length variation observed is consistent with the hypothesis
that the number of alternative first exons varies in D.
melanogaster. In contrast, there is only a single exon 1 in the
orthologous region of hydra from the species D. yakuba and D.
erecta (Texts S5 and S6), and there is no length polymorphism
in this region in D. yakuba (unpublished data). This suggests
that the dramatic gene structure change by duplication of
exon 1 in hydra occurred within ;5–13 million y, after the
divergence of D. melanogaster and D. yakuba [41,42].

By comparing the orthologous sequences of hydra using the
released assembled genomic sequences of D. simulans and D.
sechellia, we found that this region has undergone local
duplications in both species (Figure 1B; Texts S2–S4).
Determining the precise structure of the hydra region in D.
sechellia will require further sequence analysis due to low
sequence coverage of this region. We have, however,
confirmed by Southern analysis that D. simulans does have
two copies of hydra (Figure 2C). In D. simulans, we find that one
of these copies has two potential exon 1s. In D. sechellia, we
identified two unlinked contigs containing hydra-homologous
sequences (Figure 1B). Scaffold 8 contains the syntenic genes
run and cyp6v1 flanking a single copy of hydra. This copy of
hydra contains two putative exon 1s. Scaffold 600 contains two
tandem copies of hydra, each of which contains two or three

putative exon 1s. These data suggest the possibility that D.
sechellia has three copies of hydra, although further analysis
will be required to determine the relative locations of these
apparent duplicated copies that are on different scaffolds.
Despite this uncertainty, we were able to investigate the
phylogenetic relationship of these copies of hydra. Using
either the sequence between exons 2–4, inclusive (Figure 3A;
Text S7) or of intron 1 (unpublished data), we obtained
similar phylogenetic trees that suggest that hydra duplicated
independently in D. simulans and D. sechellia. Because both
gene regions produce the same phylogeny and these
sequences span over 1,300 bp in all species, we consider it
unlikely that this phylogenetic signal of independent dupli-
cations could be due to gene conversion.
Upon further investigation of the intronic sequences next

to exon 1, we found that seven out of the nine duplicated
exon 1s in D. melanogaster and several of the duplicated exon
1s in both D. simulans and D. sechellia are immediately followed
by DINE-1 sequences, while in other species of the melanogaster
subgroup, including D. yakuba and D. erecta, there are no DINE-
1s in this region. We thought it likely for two reasons that
insertion of DINE-1 adjacent to hydra exon 1 occurred in the
common ancestor of D. melanogaster, D. simulans, and D.
sechellia. First, it seems highly unlikely that a TE would insert
independently at the same location in different species.
Second, DINE-1 is thought to have been active and then to
have become transpositionally inactive before these species
diverged [38,40].
To test this hypothesis and to understand the evolutionary

history and mechanism that resulted in the exon 1 duplica-
tions of hydra, we performed phylogenetic analysis of all the
available exon 1s (Figure 3B; Text S8). We found that D.
simulans S2 and D. sechellia C3 are outgroups to all other exon
1s. Both of these exons are flanked by DINE-1 sequence, which
is consistent with our above suggestion that DINE-1 insertion
in this region is ancestral (at time B in Figure 1B). If this

Table 1. Relative Usage of Different Exon 1s of hydra, Determined by 59 RACE

Group A Group B

1 5 2 or 3 Total in Group A 6 9 6 or 9 4, 7, or 8 4, 6, 7, 8, or 9 Total in Group B

Number of clones 0 0 22 22 7 2 2 9 16 36

Percentage of total clones 0 0 37.9% 37.9% 12.1% 3.4% 3.4% 15.5% 27.6% 62.1%

All clones could be assigned to group A or B based on polymorphisms described in the Results. Alternative first exons 2 and 3 are identical, as are 4, 7, and 8, and thus cannot be
distinguished. Three further subgroups of first exons in group B can be distinguished in longer clones by additional polymorphisms in their 59 UTRs (subgroups 6, 9, and 4/7/8). In shorter
clones from group B, these subgroups could not be uniquely distinguished and were thus classified as either 6 or 9, or as 4, 6, 7, 8, or 9.
doi:10.1371/journal.pgen.0030107.t001

Figure 1. Evolution of hydra in Drosophila Species

(A) The hydra region of the X-chromosome of D. melanogaster, based on FlyBase genome browser release 4.3. The hydra gene was previously annotated
as producing two alternative transcripts, RA and RB, derived from alternative exon 1s. The proposed annotation of seven additional exon 1s is based on
evidence presented here.
(B) Evolution of hydra region and hydra gene structure in seven Drosophila species. hydra and the flanking gene CG1835 are located in a recently
expanded region between run and cyp6v1. hydra originated in the common ancestor of the melanogaster subgroup (arrow A). In D. melanogaster, this
region between run and cyp6v1 is ;32 kb (10 kb from the 39 end of hydra to cyp6v1 and 17 kb from the 59 end of hydra to run), but is only ;26 kb apart
in D. ananassae and D. pseudoobscura, where both hydra and CG1835 are missing. hydra has gone through multiple cycles of duplication and
rearrangement in D. melanogaster and its sibling species, and accumulated insertions of the transposon DINE-1 and other repetitive sequences (arrow
B). CG1835 is on the opposite strand from all other genes, as indicated by its leftward-pointing arrow. Three copies of hydra are found on two unlinked
scaffolds in D. sechellia. Note that the distances are not to scale.
doi:10.1371/journal.pgen.0030107.g001
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inference of the ancestral state of exon 1 in these three
species is correct, it is interesting to note that DINE-1 does
not flank every exon 1. Our data would then suggest that
either DINE-1 was lost next to some duplicated exon 1s or
that some exon 1s duplicated without duplicating the
adjacent DINE-1.

The relationships among the remaining D. simulans and D.
sechellia exon 1s suggest that exon 1 duplicated before the
speciation of D. simulans and D. sechellia to generate the exon 1
groups S1/S3 and C1/C4/C6, with another duplication event
generating exon 1 group C2/C5/C7 (Figure 3B). Both this tree
and the one made using the rest of the locus (Figure 3A)
suggest that after these exon 1 duplications, the entire locus
duplicated independently in D. simulans and D. sechellia.

Figure 3B also suggests that exon 1 duplicated independ-
ently in D. melanogaster. Based on the sequence similarity of
predicted exon 1 sequences, the duplicated first exons of D.
melanogaster can be divided into three groups: group A,
containing the first, second, third, and fifth duplicated exon
1s; group B, containing the fourth, seventh, eighth, and ninth
duplicated exon 1s; and group C, containing the sixth

duplicated exon 1. The first and the ninth exon 1s are the
previously annotated exon 1s for transcript types RA and RB,
respectively. Our phylogenetic analysis showed that exon 1s
adjacent to each other are generally more closely related
(Figure 3B). These results suggest that both the exon 1s and
their flanking DINE-1s were duplicated together, and that
unequal crossing-over is the major mechanism generating the
tandemly duplicated exons.

hydra Is Expressed Predominantly in Adult Testes
RT-PCR analysis demonstrated that hydra is expressed in

adult male testes in all three species tested: D. melanogaster, D.
simulans, and D. yakuba (Figure 4). This result demonstrates
that the expression pattern of hydra is conserved despite
having a very different gene structure in these species. In one
out of two stocks of D. melanogaster that we examined, we also
detected a low level of expression in the male carcass from
which testes were removed (Figure 4B). This expression
pattern is consistent with D. melanogaster EST data: among ten
ESTs in GenBank that match hydra, nine are from testis cDNA
libraries, and one is from a larval fat-body library. We further

Figure 2. Length Variation of the Exon 1 Region of hydra in D. melanogaster

(A) Location of the probes (thick black lines) and restriction enzyme SacII cutting sites in hydra of D. melanogaster (top) and D. simulans (bottom). Note
that the region homologous to the probe is duplicated in D. simulans.
(B–C) Southern hybridization of genomic DNA extracted from multiple lines of D. melanogaster (B) and D. simulans (C). D. melanogaster lines are all from
Zimbabwe, Africa. D. simulans lines 1–4 are from California, United States; lines 5–7 are from Zimbabwe, Africa; and lines 8–14 are from Madagascar,
Africa.
doi:10.1371/journal.pgen.0030107.g002
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investigated the pattern of expression of hydra in D.
melanogaster by in situ hybridization. We found that hydra is
expressed most intensely in the proximal region of the testis
(Figure 5), where mature sperm are formed, suggesting that
hydra functions in late stages of sperm development.

Functional Consequences of the Evolving Gene Structure

of hydra
To study the impact of exon 1 duplication on gene

expression, we asked if each of the duplicated exons could
function as a transcriptional start site. To determine whether
each putative exon 1 is functional in D. melanogaster, we
needed to use a technique that could distinguish these very
similar potential transcripts. We therefore performed 59

RACE analysis using RNA extracted from adult male testes of
D. melanogaster and analyzed the sequences of 58 clones. The
previously described Ra and Rb transcripts differ by three
nucleotides at positions�21 to�23 in their 59 UTRs as well as
by a nonsynonymous polymorphism in their second codon.

We designate alternative first exons 1, 2, 3, and 5 as class A
(similar to Ra), and alternative first exons 4, 6, 7, 8, and 9 as
class B (similar to Rb).
Some of these sequences can be further distinguished by

additional polymorphisms further 59 in the 59 UTRs. Six
different groups of alternative transcripts could be poten-
tially distinguished, with two of these groups containing two
or three identical first exons (Table 1). Among our 58 59

RACE clones, four out of six of these groups were represented
at least twice, demonstrating that at least four different
alternative first exons in hydra are functional.
We also analyzed to see if each duplicated first exon

contains core promoter sequences known to be important for
the initiation of transcription of Drosophila genes [43]. We
looked specifically for the TFIIB recognition element (�37 to
�32 bp, GGGCGCC or CCACGCC), TATA box (�31to�26 bp;
TATAAA); initiator (�1 to þ4 bp; TCA(G/T)T(T/C)), and
downstream promoter element (þ28 to þ32 bp; (A/G)G(A/
T)(G/T)(G/A/C)). We found that almost all duplicated exon 1s

Figure 3. Phylogenetic Trees of hydra

Trees are based on (A) exon 2–4 sequences and (B) exon 1, including putative 59 UTR sequences. The trees were built using the neighbor-joining
method according to the Jukes-Cantor substitution model. Branch lengths are proportional to the number of nucleotide substitutions. Percentage
bootstrap values are shown at each node (500 replicates). In (B), sequences mel 1–9 correspond to the alternative exon 1s of D. melanogaster shown in
Figure 1B. Sequences Ra and Rb are from the annotated transcripts of D. melanogaster hydra in FlyBase. D. simulans and D. sechellia exon 1s are labeled
as shown in Figure 1B. Note that mel 6 is part of group B but clusters with group A, presumably because of having a divergent 59 UTR.
doi:10.1371/journal.pgen.0030107.g003
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contain all four core promoter sequences, with two ex-
ceptions: the sixth and the ninth duplicated exon 1s do not
contain the downstream promoter element and the TATA
box, respectively. Since both of these exons are used (Table 1),
our results suggest that these two elements are not essential
for transcription of hydra.

Using the sequences of the clones from 59 RACE, we also
mapped the sites for transcription initiation. We found that
most transcripts of hydra do not use a fixed site for
transcription initiation. Instead, ‘‘slippery promoters’’ were
found to be used in different exon 1s, as described for other
Drosophila genes by Yasuhara et al. [44].

We also tested whether hydra structural evolution might

lead to expression-level differences between sibling species by
quantifying hydra expression levels in five wild lines of D.
melanogaster and in four wild lines of D. simulans (Figure 6).
Strikingly, hydra was expressed at a substantially higher level
in all D. simulans lines compared with all D. melanogaster lines.
Among all pair-wise comparisons, the fold increase in D.
simulans ranged from ;4 to ;150, with the mean fold
difference being ;22. These data indicate that hydra has lower
expression in D. melanogaster, despite having multiple alter-
native transcription start sites.

Nonneutral Evolution of hydra
hydra contains an intact reading frame in all melanogaster

subgroup species, encoding a predicted protein of 302, 280,
and 308 amino acids in D. melanogaster, D. simulans, and D.
yakuba, respectively. We calculated Ka/Ks ratios of the coding
region of hydra among species in the melanogaster subgroup
(Table 2). The ratio is ,1 in all comparisons, suggesting that
hydra is evolving under some degree of functional constraint.
To gain further insight into the evolution of hydra, we

collected population samples from D. melanogaster and D.
simulans, which have the highest interspecific Ka/Ks ratio of
0.75 (Texts S9 and S10). We found that the nucleotide
diversity at both synonymous (ps) and nonsynonymous (pa)
sites in D. melanogaster is similar to the average of other
functional genes, with about ten times more polymorphism at
synonymous sites relative to nonsynonymous sites (Table 3).
In contrast, there is not much difference between ps and pa in
D. simulans, where ps is much lower than the average of other
genes for this species [45]. In order to further investigate
whether this unusual pattern of nucleotide diversity (similar
levels of synonymous and nonsynonymous polymorphism) in
D. simulans is lineage specific, we studied polymorphism in D.
yakuba. ps and pa of hydra in D. yakuba are similar to those of D.
melanogaster, and ps is similar to the average value (0.0127) of
six X-linked loci in D. yakuba [46], suggesting that the unusual
pattern of nucleotide diversity of hydra is restricted only to D.
simulans. The approximately equal values of ps and pa in D.
simulans may suggest that hydra is under reduced functional

Figure 5. In Situ Hybridization of DIG-Labeled Antisense RNA (A) and Sense Control RNA (B) of hydra to Testes of D. melanogaster

Expression is strongest in the proximal region of testes. ag, accessory glands; ed, ejaculatory duct.
doi:10.1371/journal.pgen.0030107.g005

Figure 4. Expression of hydra detected by RT-PCR

(A) D. melanogaster, D. simulans, and D. yakuba.
(B) Canton S line of D. melanogaster.
M, DNA kb size marker; G, genomic DNA; T, adult testis RNA; O, RNA from
whole body of males with testis removed;þ, positive control for cDNA O
using primers for the gene GAPDH; �, negative PCR control. RNA was
extracted from strain ORC of D. melanogaster (A), California strain w54 of
D. simulans, and Tai18E2 of D. yakuba. Note that expression of hydra in D.
melanogaster is specific to testis in the ORC strain (A), but slight
expression was detected in other tissues in the Canton S strain (B).
doi:10.1371/journal.pgen.0030107.g004
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constraint in D. simulans. Two findings suggest, however, that
hydra is not a pseudogene in D. simulans. First, it has an intact
open reading frame, and second, hydra is expressed in D.
simulans and has a similar expression pattern to other species
(see above).

Results of the McDonald-Kreitman (MK) test [47] among
these three species are shown in Table 4. Neutral evolution of
hydra can be rejected between D. melanogaster and D. yakuba,
which we suggest is caused by the large number of non-
synonymous substitutions between these species. There is also
a large amount of nonsynonymous divergence between D.
melanogaster and D. simulans. We do not, however, reject
neutrality in this case, likely due to the unusually low ps in D.
simulans discussed above (Table 3). Thus, these results suggest
that D. melanogaster is the most likely lineage in which hydra has
experienced positive selection.

To confirm this conclusion, we tested to see if the
nonneutral evolution of hydra occurred in a lineage-specific
pattern by performing polarized substitution analysis with
the MK test (Table 4). Replacements were polarized to each
species lineage using D. yakuba hydra as an outgroup sequence.
The polarized MK test is significant only in the D. melanogaster
lineage.

Discussion

hydra Is a Recently Originated Functional Gene
We identified the gene hydra in D. melanogaster, but could

only identify orthologs within other melanogaster subgroup
species. Using both BLAST searches of full-genome sequences
with the 6-kb region flanking hydra and Southern hybrid-
ization, we were unable to identify hydra from D. ananassae, D.
pseudoobscura, or D. virilis. We were, however, able to identify
the syntenic region in these species (Figure 1B). These data
strongly suggest that hydra originated in the common ancestor
of the melanogaster subgroup.
All available evidence also suggests that hydra is a functional

gene. First, all melanogaster subgroup species contain intact
open reading frames with no stop codons, even though there
are many insertions and deletions in the hydra CDS among
species. Second, Ka/Ks values between all species are less than
1, suggesting that hydra is under functional constraint (Table
2). Third, the level of polymorphism of hydra in D. melanogaster
is similar to known functionally important genes (Table 3).
Fourth, RT-PCR and in situ hybridization show that hydra is
predominantly expressed in male testes (Figures 4 and 5).

Figure 6. Relative Abundance of hydra mRNA Quantified by Real-Time RT-PCR in Various Lines of D. melanogaster and D. simulans

For each line, the abundance of hydra relative to GAPDH was determined. This value was then compared for each line relative to D. melanogaster Canton
S (mel_CS), which is normalized here to a value of 1.
doi:10.1371/journal.pgen.0030107.g006

Table 2. Summary of Ka and Ks Analysis of hydra among Four Species of the melanogaster Subgroup

Species Pair Number of Synonymous Positions Ks Number of Nonsynonymous Positions Ka Ka/Ks

D. simulans/D. melanogaster 170.31 0.17 576.69 0.13 0.75

D. simulans/D. yakuba 169.00 0.37 578.00 0.22 0.58

D. melanogaster/D. yakuba 168.97 0.36 578.03 0.23 0.63

D. simulans/D. erecta 168.00 0.42 579.00 0.21 0.50

D. melanogaster/D. erecta 167.97 0.39 579.03 0.22 0.56

D. yakuba/D. erecta 166.67 0.32 580.33 0.14 0.44

Based on sequences in both coding (exons 2–4) and noncoding (introns 2–3 and 39 UTR) sequences.
Ks, nucleotide divergence at synonymous sites; Ka, nucleotide divergence at nonsynonymous sites.
doi:10.1371/journal.pgen.0030107.t002
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hydra Shares Common Features of New-Gene Evolution
Several other cases of new-gene evolution in Drosophila have

been studied [2,48]. Examples include (1) Jingwei, a chimeric
gene that evolved as a result of the insertion of an Adh
retrosequence into a duplicated locus in the D. teissieri/D.
yakuba lineage [19]; (2) Sdic, which originated through a
complex set of rearrangements, including a gene fusion
between the gene encoding the cell adhesion protein annexin
X and a cytoplasmic dynein intermediate chain (Sdic encodes
a novel sperm-specific dynein found only in D. melanogaster)
[49]; (3) Sphinx, a recently evolved gene apparently created by
both retroposition and exon shuffling, which produces a
novel noncoding RNA gene found only in D. melanogaster [33];
(4) mkg, a gene family generated originally as retroposed
duplicates about 1–2 million y ago that further evolved by
individual members undergoing gene fission and fusion
events [35]; (5) K81, a gene that arose through duplication
by retroposition after the radiation of the melanogaster
subgroup and acquired a new male germline–specific
function [50]; (6) Dntf-2r, a rapidly evolving male-specific
gene in D. melanogaster and sibling species, which originated
from retroposition [34]; and (7) five protein-coding genes
which appear to have originated in D. melanogaster from
noncoding DNA and evolved male-biased expression [6].

Despite the diverse mechanisms involved in the creation of
these young genes in Drosophila, there are two features
common to most of them: (1) they evolve rapidly in sequence,
including at nonsynonymous sites for protein-coding genes
[19,20,34,49,51,52]; and (2) their expression is often male-
specific, and in many cases testis-specific [6,52]. This

expression pattern was also often found in a large survey of
new retroposed genes [17].
hydra shares both of these characteristics. The Ka and Ks

values between D. melanogaster and D. simulans were substan-
tially higher than the average values of most other genes, and
the Ka/Ks ratio ranged from 0.44 to 0.75 in all species
compared (Table 2). These high values may be explained by
accelerated functional divergence following the origin of new
genes. However, the elevated Ka/Ks ratio could also result
from an elevated mutation rate and reduced selective
constraint. To further investigate the evolution of hydra, we
analyzed the level of polymorphism and divergence among D.
melanogaster, D. simulans, and D. yakuba. Our population
genetics analyses rejected the null hypothesis of neutral
evolution in D. melanogaster (Table 4). This rejection appears
to be due to a significant excess of fixed differences at
nonsynonymous sites in D. melanogaster, suggesting that
positive selection has driven the evolution of hydra in D.
melanogaster.

hydra Is Expressed in the Basal Part of the Testis
The male-specific expression pattern is a second feature

that hydra shares with other new genes. For many newly
evolved genes, male-specific or testis-specific expression has
been demonstrated by RT-PCR, but the spatial expression
patterns are unknown, making it difficult to refine our
knowledge of what aspects of testis development or sperma-
togenesis may be under selection. We determined that hydra is
expressed most intensely in the basal (proximal) part of the
testis in D. melanogaster by in situ hybridization (Figure 5). This
localization pattern suggests that hydramay have a function in
late-stage spermatogenesis or sperm differentiation. We note
that hydra is X-linked, which suggests that it escapes from the
X inactivation that occurs during spermatogenesis [53]. Our
results also stand in contrast to results from genome-wide
studies that suggest that genes with male-biased expression as
well as newly evolved testis-specific genes tend to be
autosomal [17,54,55]. Interestingly, the newly evolved testis-
expressed genes Sdic and CG15323 are also located in
polytene region 19 of the X chromosome [6,49].
Several studies have shown that genes with male-biased

expression have significantly faster rates of evolution than
genes with female-biased or unbiased expression [56,57]. This
difference is caused primarily by a higher Ka in the male-
biased genes. Sexual selection is likely to be driving this
acceleration of male-biased genes, but functional tests will be

Table 4. MK Tests for Nonneutral Evolution of hydra

Species or lineage Divergence Polymorphism MK Test

Nonsynonymous Synonymous Nonsynonymous Synonymous Fisher’s Exact Test p (2-Tailed)

D. melanogaster and D. simulans 60 25 19 14 0.196010 (ns)

D. melanogaster and D. yakuba 113 52 16 19 0.018517 a

D. simulans and D. yakuba 94 52 23 18 0.364027 (ns)

D. melanogaster lineageb 24 10 3 6 0.049294 a

D. simulans lineageb 16 8 10 6 1.00000 (ns)

a0.01, p ,0.05. ns, nonsignificant.
bBased on polarized MK test of D. melanogaster and D. simulans using D. yakuba as an outgroup.
doi:10.1371/journal.pgen.0030107.t004

Table 3. Summary of Polymorphism Data from hydra in D.
melanogaster, D. simulans, and D. yakuba

Species n ps pa

D. melanogaster 12 0.0123 0.0018

D. simulans 16 0.0071 0.0072

D. yakuba 13 0.0161 0.0055

Based on the same gene region of Table 2.
n: number of sequences; ps: nucleotide diversity at synonymous sites; pa: nucleotide
diversity at nonsynonymous sites.
doi:10.1371/journal.pgen.0030107.t003
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required to understand fully the role of selection. Our study
of hydra suggests that late-stage spermatogenesis may be the
key developmental process to investigate further for func-
tional differences between species.

Novel Aspects of hydra: hydra Has Undergone Recurrent
Structural Evolution

Our analysis of hydra reveals several aspects that are
unusual or unique compared with other newly evolved genes.
One novel feature of hydra is that it has experienced recurrent
structural evolution in the lineages leading to both D.
melanogaster and D. simulans (Figure 1). We can infer the likely
occurrence of three independent structural changes to hydra.
One is a duplication of exon 1 in the common ancestor of D.
simulans and D. sechellia. Second is a duplication of the whole
locus in D. simulans and D. sechellia. Although uncertainties
remain about the structure of the hydra region in D. sechellia,
our phylogenetic analyses suggest that hydra duplicated
independently in these two species. Third is the further
duplication of seven additional exon 1s in D. melanogaster. Our
phylogenetic analysis suggests that these additional duplica-
tion events occurred only in D. melanogaster, rather than in the
common ancestor of D. melanogaster, D. simulans, and D.
sechellia, followed by loss in the latter two species. It is
possible, however, that the phylogenetic signal could be
erroneous if homogenization occurred by continual gene
conversion and/or unequal crossing over among these short
duplicated exons.

The duplicated exon 1 in D. simulans and D. sechellia and
most of the additional exon 1 duplications in D. melanogaster
are flanked by partial DINE-1 elements. DINE-1 is not
associated with hydra in D. yakuba or D. erecta. Genome-wide
analyses of DINE-1 suggest that DINE-1 was transpositionally
active and then silenced in the common ancestor of D.
melanogaster and D. yakuba, followed by another round of
activity and silencing in D. yakuba [39]. These findings would
suggest then that DINE-1 inserted ancestrally in hydra,
followed by loss in the D. yakuba lineage but not the D.
melanogaster lineage. An alternative scenario is that DINE-1
may have inserted in hydra during a period of activity in the D.
melanogaster/D. simulans ancestor after divergence from D.
yakuba that was too brief to have a left a genome-wide
footprint.

Regardless of the timing of the initial DINE-1 insertion into
hydra, the further duplications of exon 1 in D. melanogaster
were unlikely to have occurred by DINE-1 transposition
because alternative exon 1s two through eight contain UTR
and CDSs that are adjacent to rather than within the DINE-1
sequences. As noted above, the phylogenetic relationships
among these alternative exons 1s suggest that they originated
by unequal crossing over. DINE-1 may have promoted these
duplications by increasing the homology among exon 1s.
While we lack evidence for a direct role of DINE-1 in driving
hydra structural evolution, our results do suggest that a
property of transposable elements that is usually considered
to be deleterious—their ability to cause ectopic recombina-
tion and unequal crossing over—may also contribute to
structural evolution of genes. We have observed other cases of
structural variation associated with DINE-1 insertions in the
melanogaster species complex (unpublished data). For most
genes, evolving under strong functional constraint, a DINE-1
insertion that causes structural changes in the locus is likely

to be highly deleterious. However, for a newly evolved gene
like hydra, there may be more flexibility in terms of tolerating
gene structure changes. We also suggest that as a gene evolves
in structure, it may accelerate the rate of CDS evolution.
More generally, our evidence that hydra has undergone

multiple and independent structural changes suggests that
gene structure as well as CDSs may evolve rapidly in new
genes, even without any association with transposable
elements. One other example is the monkey king gene family
in Drosophila, which has undergone rapid structural changes
caused by gene fission [35].

hydra Expression Level Is Evolving
A second novel aspect compared with other studies of

newly evolved genes is that hydra expression level has
dramatically changed between sibling species. Our quantita-
tive RT-PCR results showed that the expression level of hydra
between D. melanogaster and D. simulans is highly different
(Figure 6). hydra in D. melanogaster is expressed at least 20-fold
less on average than in D. simulans. Why is the expression level
so different between these two closely related species?
Two hypotheses may explain the decreased hydra expres-

sion in D. melanogaster. First, it may be caused by competition
or interference among the tandemly duplicated heads during
the transcription initiation stage. In this model, incomplete
transcription initiation complexes would form at multiple
heads. Reduced transcription initiation could result from
either sequestration of transcription factors or direct
interference among promoters. Second, it may be the result
of differences in the degree of heterochromatinization of the
hydra region between D. melanogaster and D. simulans. hydra is
located near the pericentromeric region of the X chromo-
some. This region may be under continuous pressure from
encroachment of the nearby heterochromatic pericentro-
mere, leading to species-specific differences in chromatin
states. Increased numbers of TE insertions are one character-
istic of heterochromatic regions, and the large number of
DINE-1 insertions in D. melanogaster is consistent with the
hypothesis that the hydra region is partially heterochromatic.
Our views on the evolution of genome structure and

function have changed dramatically in the past decade as
more whole-genome sequences have become available in
various species. Repetitive elements are a major cause of
structural changes and instability in genomes. At the
cytological level, chromosome rearrangements often occur
at repetitive sites [31,58,59]. Our identification of the hydra
gene suggests that repetitive elements also contribute to the
formation and evolution of new genes by causing structural
changes in gene organization, driving the evolution of new
exons and transcription start sites, and promoting divergence
in gene expression.

hydra Is a Rare Example of De Novo Gene Creation
One of our most striking findings is that hydra appears to

have been created de novo rather than being a duplicate of a
pre-existing gene. Two pieces of evidence support this
hypothesis. First, hydra (and CG1835) are found only in
melanogaster subgroup species. The surrounding ;26 kb of
DNA is found in other Drosophila species that lack hydra
(Figure 1B). Second, hydra shares no homology with any
known or predicted proteins. Arguing against this hypothesis
of de novo origin is the fact that all forms of hydra contain
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four predicted exons. One might expect that a recently
evolved de novo gene would have a simpler one-exon
structure, as has been observed for several candidate de novo
genes in D. melanogaster [6]. Nevertheless, if hydra does have an
ortholog in Drosophila outside of the melanogaster subgroup, it
must have evolved so rapidly as to share no detectable
similarity with any predicted proteins, including in multiple
Drosophila genomes or other insect genomes that have been
completely sequenced. If there is a highly diverged hydra
parental gene or ortholog in other Drosophila, it also must
have transposed to a novel genomic location in the
melanogaster subgroup. Considering all the available data, we
suggest instead that hydra evolved de novo from DNA
sequence that inserted between run and cyp6v1 in the
common ancestor of the melanogaster subgroup.

The Dynamic Nature of New Genes
The most common fate of newly formed genes is

disappearance. For example, about 85% of the genes
duplicated during the yeast whole-genome duplication have
been lost in Saccharomyces cerevisiae [3,60]. New genes therefore
can be viewed as analogous to mutations, with most being
neutral or deleterious in effect and therefore subject to
elimination. A common characteristic of successful new
exons and new genes is a high rate of CDS evolution [7,20],
and hydra shows this evolutionary pattern. Our discovery of
hydra suggests that gene expression level and gene structure
may also evolve rapidly and recurrently in new genes. We
suggest that the successful retention of new genes requires
maximal variation.

Materials and Methods

Fly strains. Flies used in this study include: (1) isofemale lines of D.
melanogaster (WI) from Sergey Nuzhdin (University of California Davis,
Winters, California, United States); (2) strains of D. melanogaster from
worldwide populations: California (CA), Canton S (CS), Taiwan
(TWN), Oregon R (ORC), France 3V-1 (Fr3V-1) (gift of S. C. Tsaur,
Academia Sinica, Taiwan); (3) isofemale lines of D. simulans from
African populations (mad, sz, su, zk lines; gift of John Pool, Cornell
University, Ithaca, New York, United States), and one line each from
France (W54) and Japan (W60); (4) isofemale lines of D. yakuba (cy
lines) from Africa (gift of Peter Andolfatto, University of California
San Diego, United States); and (5) strains of Drosophila species,
including D. yakuba (Tai18E2, and 286.82–90), D. erecta, D. ananassae, D.
virilis, and D. pseudoobscura (gift of S. C. Tsaur).

DNA preparation and analysis of DNA sequences. DNA was
extracted from pools of ;50 male flies from each line by a standard
phenol-chloroform extraction followed by ethanol precipitation.
Primers to amplify and sequence the hydra gene regions from D.
melanogaster, D. simulans, and D. yakuba were designed using the
homologous sequences obtained from BLAST searches against
Flybase genome databases (http://www.flybase.org/blast). Primers for
both D. melanogaster and D. simulans are IN1_F (59-GCGTTTGTA-
CACTTGGCAAC) and 3UR (59-TGATGTAGGAATATGCGTTGC),
and for D. yakuba are yakE2_F (59-CTTCAGAGAACCCCAACCAA)
and yakE3_R (59-CTTGCAATTATCCGGATTGC). In D. simulans, the
primer pair specifically amplifies the second duplicate of hydra, which
is adjacent to the S3 alternative exon 1 (Figure 1B). Other primer
sequences and PCR amplification conditions are available upon
request. PCR products were directly sequenced in both direction
using ABI BigDye (Applied Biosystems, http://www.appliedbiosystems.
com) technologies under slight modification of the manufacturer’s
suggested protocols. All alleles were sequenced on both strands.
Sequences are deposited in GenBank (http://www.ncbi.nlm.nih.gov/
Genbank) under accession numbers EF596837–EF596877.

Southern hybridization. Genomic DNA was extracted from 60–70
flies of each line with phenol-chloroform, was ethanol precipitated,
and was diluted to a final concentration of about 5 lg/ll. A total of 15
lg DNA was then digested separately with SacII, separated on a 0.8%
agarose gel, and transferred to a nylon membrane by Southern

blotting. Probes were from PCR product using DNA template from D.
melanogaster with primers hydra_rep500_R2 (59-CAGT(T/
C ) A G A C C T C T C T G A A A T C ) a n d E 2 _ 1 4 6 R ( 5 9-
GGTTGGAATCCTCTGGAGTGTTGG), and were prepared by DIG-
labeling Nick translation kit (Roche, http://www.roche.com). Hybrid-
izations were done at 50 8C.

RNA preparation, RT-PCR, 59- RACE, and molecular cloning.
Testes of adult males aged 2–5 d old were dissected in PBS buffer and
immediately transferred to PBS buffer on ice. RNAs were extracted
with Trizol (Invitrogen, http://www.invitrogen.com). After a brief
vortex mixing, the mixture was incubated at 4 8C for 15 min and then
centrifuged at low speed to obtain phase separation. The aqueous
phase was transferred to a fresh tube, to which an equal volume of
isopropanol was added in the presence of 3 ll glycogen. The mixture
was kept at �20 8C for 30 min, followed by centrifugation. The RNA
pellet thus obtained was washed with 70% chilled ethanol, repelleted,
and air dried. The final RNA pellet was dissolved in 20 ll DEPC-
treated distilled water and was used in at least two RT reactions.

RT was performed using the Superscript II RT kit obtained from
Life Technologies (http://www.invitrogen.com) using oligo(dT)12–18 as
the primer. The RT products were dissolved in 20 ll sterile distilled
water and 1 ll was used for each PCR. For 59-RACE), first strand
synthesis using the lock-docking oligo(dT) primer and 35 cycles of
PCR amplification were performed using the SMART RACE cDNA
Amplification Kit purchased from Clontech (http://www.clontech.
com). The hydra-specific primers used in this study are E3_110R (59-
TGGATTTTACGCCGCTCCT). 59 RACE–derived PCR products were
subcloned into the pGEM-T vector (Promega, http://www.promega.
com) using a standard cloning procedure, and 61 clones were picked
randomly for DNA sequencing.

Quantitative PCR. A total of 50 testes of each line were collected
from 3-d-old males. Testes were homogenized in Trizol (Invitrogen),
and total RNA was phenol-chloroform extracted, ethanol precipi-
tated, and cleaned up with RNeasy mini kit (Qiagen, http://www.
qiagen.com) and RNase free DNase Set (Qiagen). About 200 ng of
total RNA was used for synthesizing cDNA with TaqMan Reverse
Transcription Reagents (Applied Biosystems) using oligo-dT as the
primer, following the manufacturer’s instruction.

Quantitative real-time PCR (qPCR) was performed using the
Lightcycler-FastStart DNA Master SYBR Green I kit (Roche),
according to the manufacturer’s instructions. Primers used were
E2_222F (59-ATGTGGCAAAGGTCCAGAAT) and E3_110R (59-
TGGATTTTACGCCGCTCCT), which are complementary to exon 2
and 3 of hydra, respectively. Note that this primer pair cannot
distinguish transcripts derived from the two duplicates of hydra in D.
simulans. PCR quality and specificity was verified by melting curve
dissociation analysis and gel electrophoresis of the amplified
products. Relative transcript abundance of hydra was calculated using
the second derivative maximum values from the linear regression of
cycle number versus log concentration of the amplified gene.
Amplification of the control gene GADPH was used for normalization.
Sequences of the primers used are GADPH_F: 59-AAGG-
GAATCCTGGGCTACAC and GADPH_R: 59-CGGTTGGAGTAACC-
GAACTC.

In situ hybridization. Digoxigenin-labeled antisense and sense
control riboprobes were generated from a cDNA containing the
sequence of exon 2 and 3 of hydra cloned into a pBluescript vector.
Probes were synthesized using DIG RNA labeling mix (Roche),
followed by treatment with 2 U DNAse (Promega) and incubation
in carbonate buffer for 40 min at 65 8C as described in [61]. Probes
were then ethanol precipitated, air dried, and resuspended in 200 ll
hybridization buffer. Probes were used at a dilution of 1:50 during
hybridization.

Testes were dissected in 13PBS and kept on ice until fixation. Two
fixations were done with 4% formaldehyde in 13 PBS for 20 min on
ice. After washing twice in PBS/0.1% Triton-X, protease treatment
and all following steps were done as described in [61]. Hybridizations
were done at 60 8C overnight.

Identification of hydra orthologs. Orthologs of hydra were from the
following prepublication genome sequences: D. simulans and D. yakuba
sequence from the Washington University Genome Sequencing
Center (http://genome.wustl.edu); D. sechellia sequence from the Broad
Institute (http://www.broad.mit.edu); and D. erecta sequence from
Agencourt Bioscience (http://www.agencourt.com). Sequences of hydra
from these species were annotated by maximizing homology to the D.
melanogaster sequence, and are shown in Texts S1–S6.

Sequence analysis. Sequences were aligned using ClustalW [62],
with some manual adjustment to keep gaps in-frame in coding
regions. Phylogenetic analyses were performed using Mega 3.1 [63].
Sequence polymorphism and divergence analysis were done using
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DnaSP 4.10 [64]. The effective number of synonymous and non-
synonymous sites, Ka and Ks values, and pairwise divergence for
synonymous sites based on Kimura’s two-parameter model were
estimated.

Supporting Information

Text S1. Annotation in GenBank Format of hydra Region Sequences
in D. melanogaster

Found at doi:10.1371/journal.pgen.0030107.sd001 (54 KB TXT).

Text S2. Annotation in GenBank Format of hydra Region Sequences
in D. simulans

Found at doi:10.1371/journal.pgen.0030107.sd002 (71 KB TXT).

Text S3. Annotation in GenBank Format of hydra Region Sequences
in D. sechellia scaf 8

Found at doi:10.1371/journal.pgen.0030107.sd003 (42 KB TXT).

Text S4. Annotation in GenBank Format of hydra Region Sequences
in D. sechellia scaf 600

Found at doi:10.1371/journal.pgen.0030107.sd004 (13 KB TXT).

Text S5. Annotation in GenBank Format of hydra Region Sequences
in D. yakuba

Found at doi:10.1371/journal.pgen.0030107.sd005 (43 KB TXT).

Text S6. Annotation in GenBank Format of hydra Region Sequences
in D. erecta

Found at doi:10.1371/journal.pgen.0030107.sd006 (43 KB TXT).

Text S7. Alignments in FASTA Format of hydra Exons 2–4 Used for
the Phylogenetic Analysis in Figure 3

Found at doi:10.1371/journal.pgen.0030107.sd007 (7 KB TXT).

Text S8. Alignments in FASTA Format of hydra Exon 1 (Including
Predicted 59 UTRs) Used for the Phylogenetic Analysis in Figure 3

Found at doi:10.1371/journal.pgen.0030107.sd008 (5 KB TXT).

Text S9. Alignment of All DNA Sequences Used in the Polymorphism
and Divergence Analyses

Found at doi:10.1371/journal.pgen.0030107.sd009 (84 KB TXT).

Text S10. Alignment of Amino Acid Sequences Based on the DNA
Alignment in Text S9
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