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Phlebopus portentosus can form fruiting bodies, both independently as a saprophyte and in association with plants as an ecto-
mycorrhizal symbiont. It thus offers an excellent model from which to examine the genetic basis of lifestyle adaptations and
transitions for mushrooms. This paper reports the genome sequence of a homokaryotic strain of P. portentosus, PP33.
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hlebopus portentosus belongs to the basidiomycete family Bo-

letinellaceae and is distributed in tropical regions in Asia (1-5).
Unlike its close relatives in Boletaceae, such as Boletus edulis,
P. portentosus can be artificially cultivated (1). Indeed, this species
can form mushroom-fruiting bodies, both independently as a sap-
rophyte on artificial substrates and in association with plants as an
ectomycorrhizal symbiont (1, 2, 6). This versatile fruiting strategy
makes this species an excellent model organism from which to
examine the genetic basis of lifestyle adaptations and the potential
influences of plant factors on mushroom fruiting. The availability
of a whole-genome sequence would lay a solid foundation for
investigating these issues.

The genomic DNA from the homokaryotic strain PP33 of
P. portentosus was extracted using the cetyltrimethylammonium
bromide (CTAB) protocol, and three insert libraries (180-bp,
500-bp and 5-kb) were constructed. Genome sequencing was per-
formed by the Illumina HiSeq 2000 system using 100-bp paired-
end reads (Novogene Bioinformatics Technology Co., Ltd., Bei-
jing, China) and generated 11.46 Gb of raw data. After filtering out
low-quality reads, clean data of 10.90 Gb were assembled using
SOAPdenovo2 (7), with a k-mer size of 63. The genome was esti-
mated to be 33.3 Mb, with a G+C content of 48%. The assembly
comprised 108 scaffolds with a total length of 30.35 Mb, an Ns,
size of 1,450,735 bp, and an Ny, size of 182,560 bp. RepeatMasker
(8) was used to mask repetitive sequences, which accounted for
3.26% of the genome. The genome contained 9 rRNAs, 111
tRNAs, and 13 small nuclear RNAs (snRNAs), as revealed by
tRNAscan (9) and comparisons with Rfam (10). A total of 8,390
putative protein-coding genes were predicted by Augustus (11),
GenelD (12), GeneWise (13), and EVidenceModeler (14). The
putative functions of the genes were derived by comparing them
against several databases, including NCBI nonredundant, Swiss-
Prot, TrTEMBL, KEGG, and KOG. Our comparisons showed that
90.17% of the predicted genes had putative functional homologs
in these databases.

The carbohydrate metabolism enzymes (CAZyme) were anno-
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tated using dbCAN (15). In total, 317 CAZymes were found, in-
cluding 41 auxiliary activities (AA), 54 carbohydrate-binding
modules (CBM), 48 carbohydrate esterases (CE), 107 glycoside
hydrolases (GH), 60 glycosyltransferases (GT), and 7 polysaccha-
ride lyases (PL). Interestingly, several key CAZyme families related
to the degradation of lignocellulose from plant cell walls (e.g.,
cellulose, xylan, and pectin) were not found at all or existed only in
low copies in the genome of P. portentosus. Some of these CAZyme
proteins (e.g., GH7, GH115, CBM1, etc.) play essential roles in
saprophytic fungi but are often absent in ectomycorrhizal fungi
(16).

Analyses of the transcriptomes of P. portentosus at different
developmental stages and their detailed comparisons with other
saprophytic, ectomycorrhizal, and pathogenic basidiomycetes
would help define and understand the genetic basis for its versatile
biotrophic mechanisms.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. JROP00000000. The version described in this
paper is version JROP02000000.
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