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nsulin resistance and the metabolic

syndrome are associated with a pro-

thrombotic state that contributes to the
pathogenesis and progression of the vas-
cular complications of type 2 diabetes.
Development of the disease is also linked
to the loss of the direct antiplatelet effect
of insulin and platelets obtained from pa-
tients with diabetes who are hyperreactive
(i.e., demonstrate increased adhesiveness
and exaggerated aggregation and throm-
bus generation). Conditions linked to in-
sulin resistance and development of type
2 diabetes are generally associated with
redox stress within the vasculature that,
in turn, affects platelet function. There are
numerous platelet signaling events that
are sensitive to changes in the vascular
balance of nitric oxide (NO) and oxygen-
derived free radical generation; however,
recent studies have highlighted the link
among platelet hyperreactivity and oxida-
tive modifications in Ca**-ATPase activ-
ity and Ca®" homeostasis, altered surface
expression of glycoprotein receptors and
adhesive proteins on the platelet surface,
and increased binding of fibrinogen (rev.
in1).

Effects of insulin on platelet
function

A direct antiplatelet effect of insulin has
been demonstrated by many groups; al-
though we and others have observed an
insulin-induced attenuation of the throm-
bin-induced Ca®* response and platelet
aggregation as well as the release of ADP
(2,3), reports from groups assessing the
same responses are inconsistent. Part of
the controversy may be attributed to the
fact that responses to insulin are highly
heterogeneous; indeed, clear populations
of “responders” and “nonresponders”
have been identified in several studies

(3,4) and can be related to numerous fac-
tors including physical condition (5).
Studies in which an effect of insulin
has been documented and that were
aimed at addressing the molecular mech-
anisms that underlie the antiaggregatory
effects of insulin have not yet managed to
completely clarify the events involved.
Thus, although insulin has been reported
to stimulate the AMP-activated protein ki-
nase and Akt in a phosphatidylinositol
3-kinase (PI13-K)-dependent manner (2)
and to decrease platelet Ca** and attenu-
ate agonist-induced platelet activation
(6), these events have not been defini-
tively linked to the activation of the
insulin receptor. Indeed, researchers spe-
cifically addressing expression of the in-
sulin receptor on washed human platelets
(7) have failed to demonstrate its pres-
ence. Platelets do, however, express high
levels of functional receptors for IGF-1
that, when activated, lead to the tyrosine
phosphorylation of insulin receptor sub-
strate (IRS)-1 and IRS-2 and their associ-
ation with the p85 subunit of PI3-K (8).
At the moment, it is tempting to suggest
that insulin signaling in platelets is medi-
ated by the IGF receptor. It is equally
tempting to extrapolate data obtained in
cardiac muscle showing that insulin stim-
ulates the binding of IRS-1 and IRS-2 to
the COOH-terminus of sarcoplasmic en-
doplasmic reticulum Ca”*-ATPase
(SERCA)-2 (9) to the situation in platelets
and to propose that this is the mechanism
by which insulin decreases platelet intra-
cellular calcium concentration ([Ca”]i).
This is an attractive possibility in light of
the observation that this association is sig-
nificantly reduced in cardiac muscle from
streptozotocin diabetic rats (9) but has yet
to be addressed experimentally. How-
ever, while the activation of IGF receptor
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by insulin could account for the disparate
results obtained in some investigations
(10), not all of the reports are currently
reconcilable.

NO. Itis generally accepted that platelets
generate NO and that they express an NO
synthase (NOS) isoform similar to that ex-
pressed in endothelial cells. Moreover, a
number of stimuli, including insulin,
have been reported to increase NO pro-
duction (usually assayed by an increase
in intracellular cyclic guanosine mono-
phosphate [GMP] levels) in platelets
from healthy subjects. Certainly, agonist-
induced platelet aggregation is modified
by NOS and guanylyl cyclase inhibitors
and by cyclic GMP analogues. Even
though platelets from endothelial NOS-
deficient (NOSIII/eNOS™"7) mice dem-
onstrate decreased bleeding times and an
attenuated insulin-induced release of
ATP, eNOS deficiency is reported to only
minimally affect platelet aggregation and
arterial thrombosis in vivo. It has, how-
ever, proven difficult to demonstrate the
expression of eNOS protein in isolated
human or murine platelets (rev. in 11).
Moreover, although we and others have
detected a 135-kDa protein in isolated
human platelets using antibodies directed
against eNOS and demonstrated the gen-
eration of NO by electron-spin resonance
spectroscopy (2,12), we have been unable
to unequivocally confirm the presence of
eNOS protein in platelet samples using
modern proteomic approaches. More re-
cent studies have failed to clear up the
controversy; although eNOS is reportedly
present in bovine platelets (11), other
groups have concluded that human and
mouse platelets do not express either
eNOS or inducible NOS and that some
platelet agonists directly affect the soluble
guanylyl cyclase, resulting in an NO-
independent activation of the cyclic GMP
signaling pathway (13).

Role of calpain in platelet activation
Calpains are Ca” " -regulated cysteine pro-
teases that have been implicated in cy-
toskeletal organization, cell proliferation,
apoptosis, cell motility, and hemostasis.
Platelets have been reported to express
both p-calpain (calpain 1) and m-calpain
(calpain 2), named for the Ca’™ concen-
tration required to activate them in vitro
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(14). As Ca”* is the main regulator of pro-
tease activity, it follows that calpain acti-
vation occurs rapidlz following an
increase in platelet [Ca +]i and induces
limited proteolysis of a number of pro-
teins implicated in cytoskeletal rearrange-
ment, degranulation, and aggregation.
Proteins identified to date that are targeted
by calpain include spectrin, adducin, and
talin as well as platelet endothelial cell ad-
hesion molecule (PECAM)-1, the myosin
light-chain kinase, and N-ethylmaleim-
ide—sensitive factor attachment receptor
(SNARE) proteins such as N-ethylmale-
imide—sensitive factor attachment protein
(SNAP)-23 and vesicle-associated mem-
brane protein (VAMP)-3. Furthermore,
p-calpain modulates a5 integrin—
mediated outside-in signaling and plate-
let spreading by cleaving the 35 subunit of
the o ,B5 integrin (rev. in 15). The im-
portance of p-calpain activation in plate-
let function has been highlighted by the
disruption of the mouse p-calpain gene:
p-calpain ™/~ mice demonstrate pro-
nounced defects in platelet aggregation
and clot retraction. Mechanistically, the
latter effects have been attributed to the
dephosphorylation of platelet proteins in-
asmuch as p-calpain ™/~ platelets exhibit
high levels of protein tyrosine phospha-
tase 1B (PTP1B) and activity. Moreover,
either an inhibitor of the phosphatase or
the generation of pw-calpain and PTP1B
double knockout mice was able to rescue
the platelet defect (16). Although one
consequence of calpain activation is re-
ported to be a change in platelet tyrosine
phosphorylation, it seems that this mod-
ification also determines the susceptibil-
ity of a protein to proteolytic cleavage by
calpains (17). It has not been studied in
detail whether insulin acts as a physiolog-
ical modulator of calpain activation, but
the reported Ca**-lowering effects of the
hormone would suggest that this may
well be the case.

Insulin resistance and platelet
signaling in diabetes

Insulin resistance has been linked with a
prothrombotic risk and suppressed fibri-
nolysis as a consequence of elevated levels
of plasminogen activator inhibitor-1 (18).
To date, it has not been investigated in
humans in detail to what extent chronic
hyperglycemia and the posttranslational
modification of proteins by O-GlcNAcy-
lation affect platelet function. However, a
recent report failed to detect this modifi-
cation in platelets isolated from either a
hyperglycemic murine model of type 1

diabetes or a genetically-based model (0b/
ob) of type 2 diabetes (19).

Reactive nitrogen and oxygen species.
A large body of evidence from animal
models and patient studies indicates that
redox stress plays a major role in the
pathogenesis of vascular complications of
diabetes. There is convincing evidence
linking decreased vascular NO produc-
tion coupled with the overproduction of
reactive oxygen species (ROS) and the
generation of potent oxidants such as per-
oxynitrite (ONOO™) to altered platelet
function. Although the regulation of a
platelet NOS is currently controversial,
insulin-induced cyclic GMP production
in platelets from subjects with diabetes is
reported to be attenuated, and agonist-
induced platelet aggregation becomes in-
sensitive to NOS inhibitors (20). The
generation of ROS in diabetes may either
lead to or result from platelet activation,
suggesting that oxidative stress and plate-
let activation may be closely interrelated.
Indeed, superoxide anions and hydrogen
peroxide, which are both reported to play
an important role in platelet activation,
are continuously produced in these cells,
and diabetes is associated with reduced
platelet antioxidant levels (21). High con-
centration of ROS can modify platelet
function in different ways; e.g., hydrogen
peroxide elevates protein tyrosine phos-
phorylation by activating Bruton’s ty-
rosine kinase, the Janus kinases, and the
Src family tyrosine kinases (22,23).
ONOO™ generation is also increased in
diabetes, presumably as a consequence of
eNOS uncoupling (i.e., under conditions
in which tetrahydrobiopterin levels are
low, the enzyme generates superoxide an-
ions in addition to NO, which then can
react to generate ONOO ™), and diabetes
is associated with the elevated tyrosine ni-
tration of serum proteins.

Calcium signaling. One prominent
change in the “diabetic platelet” is an al-
tered Ca®" homeostasis (24). Dysregula-
tion of the platelet Na*/Ca”* exchanger
has been reported to be one of the mech-
anisms underlying the increased platelet
[Ca”*]; and hyperactivity. However, the
modified Ca** homeostasis is also par-
tially attributable to changes in the activ-
ity of Ca*"ATPases, which are highly
sensitive to oxidative damage (25). In
platelets from healthy individuals, the
plasma membrane Ca** ATPase is regu-
lated by tyrosine phosphorylation, and
platelet-activating agonists such as
thrombin stimulate its phosphorylation
by Src, thus inhibiting the pump and in-
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creasing intracellular Ca*™ (26). It fol-
lows that modifications that interfere with
such a regulatory process would affect
several platelet signaling pathways and
lead to platelet activation. Indeed, al-
though the regulation of SERCA-2 activity
by tyrosine phosphorylation has yet to be
specifically documented in platelets, the
tyrosine nitration of the protein has been
detected in platelets from patients with
type 2 diabetes, could be mimicked by
incubating healthy platelets with authen-
tic ONOO ™, and was associated with the
loss of Ca®"ATPase activity (27). Such
findings indicate that the Ca** ATPases
are a potential link between oxidative
stress, dysregulation of Ca** handling,
protease activity, and platelet activation.

Is there any way to improve platelet
function in diabetes?

Vitamin E deficiency is associated with in-
creased platelet aggregation, and a-to-
copherol supplementation was initially
reported to decrease platelet thrombox-
ane A, production in response to ADP
(28). Although several such studies con-
cluded that vitamin E treatment could be
beneficial with respect to platelet function
and platelet-vessel-wall interactions, larger-
scale trials failed to demonstrate a de-
creased risk of myocardial infarction,
stroke, or cardiovascular death in diabetic
patients receiving vitamin E (29). Insulin
therapy, on the other hand, may improve
at least platelet sensitivity/responsiveness
to NO. The results of a recent clinical
study revealed that platelet responsive-
ness to the nitrovasodilator sodium nitro-
prusside was increased by insulin
administration to patients with acute cor-
onary syndrome, which is an insulin-
resistant state (30).

Despite the proven benefits of insulin,
optimal protection against the cardiovas-
cular complications of diabetes has been
obtained when insulin was used in com-
bination with oral antidiabetes drugs,
such as the thiazolidinediones and bigua-
nides. Thiazolidinediones and glitazones
are agonists of the peroxisome prolif-
erator—activated receptor vy, and the
treatment of diabetic subjects with rosigli-
tazone decreased oxidative stress, inas-
much as plasma nitrotyrosine levels were
reduced. Moreover, therapy prevented ty-
rosine nitration of platelet SERCA while
simultaneously decreasing p-calpain acti-
vation and improving platelet function
(27). Although the beneficial effect of glit-
azones on platelet function has been dem-
onstrated in vivo, the effect on isolated
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platelets is more controversial. Troglita-
zone, not pioglitazone, has been reported
to inhibit thrombin-induced aggrega-
tion—an effect mimicked by vitamin E,
suggesting that the in vitro actions of tro-
glitazone can be attributed to its struc-
tural similarity to the former (31). Taking
the available data together, it seems that
the beneficial effects of the different an-
tidiabetes drugs on platelet function can
be mostly attributed to a reduction in ox-
idative stress.

Outlook

The effects of insulin on isolated platelets
have become controversial over the last
few years as researchers use more and
more refined techniques to isolate pure
populations of nonactivated platelets,
which can effect enormous differences in
the results obtained. However, it seems
safe to state that the responses to insulin
that have been detected in samples from
healthy individuals are generally compro-
mised in diabetic patients. Clearly, re-
sponses to many stimuli are affected by
the disease, and the consequences of dia-
betes on platelet function cannot be solely
attributed to altered insulin signaling. In-
deed, tyrosine phosphorylation and lim-
ited proteolysis of platelet proteins is
altered, and the activation of calpain by a
mechanism apparently linked to redox
stress plays a major role in the diabetes-
associated changes in platelet function.
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