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Colorectal cancer (CRC) has become a global public health problem because of its high
incidence and mortality rate worldwide. The previous clinical treatment for CRC mainly
involves conventional surgery, chemotherapy, and radiotherapy. With the development of
tumor molecular targeted therapy, small molecule inhibitors present a great advantage in
improving the survival of patients with advanced CRC. However, various side effects and
drug resistance induced by chemotherapy are still the major obstacles to improve the
clinical benefit. Thus, it is crucial to find new and alternative drugs for CRC treatment.
Traditional Chinese medicines (TCMs) have been proved to have low toxicity and multi-
target characteristics. In the last few decades, an increasing number of studies have
demonstrated that TCMs exhibit strong anticancer effects in both experimental and clinical
models and may serve as alternative chemotherapy agents for CRC treatment. Notably,
Wnt/β-catenin signaling pathway plays a vital role in the initiation and progression of CRC
by modulating the stability of β-catenin in the cytoplasm. Targeting Wnt/β-catenin pathway
is a novel direction for developing therapies for CRC. In this review, we outlined the anti-
tumor effects of small molecular inhibitors on CRC through Wnt/β-catenin pathway. More
importantly, we focused on the potential role of TCMs against tumors by targeting Wnt/
β-catenin signaling at different stages of CRC, including precancerous lesions, early stage
of CRC and advanced CRC. Furthermore, we also discussed perspectives to develop
potential new drugs from TCMs via Wnt/β-catenin pathway for the treatment of CRC.

Keywords: traditional Chinese medicines, colorectal cancer, Wnt/β-catenin, potential role, small molecules,
therapeutic mechanism

INTRODUCTION

Colorectal cancer (CRC) is the third cause of cancer-related death worldwide according to the latest
statistics of the International Agency for Research on Cancer (IARC) of the World Health
Organization (WHO) (Authors Anonymous, 2021a). It estimated that there are 1.8 million new
CRC cases and 880,792 CRC-related deaths in 2018 (Yang et al., 2020). Moreover, the incidence of
CRC in some countries is on the rise gradually. Approximately 70% CRC cases are sporadic and
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develop through the adenoma-carcinoma sequence (De Filippo
et al., 2002; Fodde, 2002). Tumorigenesis is usually driven by
multiple genetic and molecular alterations in the different stages.
The mutations of adenomatous polyposis coli (APC) gene, were
first discovered as the underlying cause of the hereditary colon
cancer syndrome termed familial adenomatous polyposis (FAP);
in 1991 (Kinzler et al., 1991; Nishisho et al., 1991). Then some
researchers found that APC gene could interact with ß-catenin
and loss of APC function results in overactive T-cell factor 4
(TCF4)/β-catenin signaling. These findings establish a direct link
between Wnt/β-catenin signaling pathway and human CRC.
Furthermore, more than 90% of sporadic CRCs has been
identified to carry mutations of one or more components of
theWnt/β-catenin signaling pathway including APC based on the
genome-scale analysis (Network, 2012). Therefore, the canonical
Wnt pathway plays an pivatal role in the development of CRC
and may be a significant potential target for CRC treatment.

In clinical practice, standard conventional treatments for CRC
are surgery, chemo-therapy and radiotherapy. Currently, with the
development of tumor molecular targeted therapy, small
molecule inhibitors present a great advantage in improving the
survival of patients with advanced CRC. Moreover, long-term
application of these therapies can lead to various side effects and
toxicities, consisting of nausea, vomiting, mucositis, peripheral
neuropathy, and diarrhea (Mcquade et al., 2017). Thus, it is
urgent to identify new and more effective drugs for CRC
treatment. TCMs have been used for more than 2000 years in
China. Owing to the low toxicity and the multi-target capacity (So
et al., 2019), TCMs are attracting increasing attention and
acceptance for the treatment of CRC as it can alleviate
chemotherapy-induced side effects and improve the quality of
life of patients with CRC. Previous studies have shown that
diverse TCMs exhibit excellent anti-tumor activities in both
experimental models and clinical cases. In this review, we
focused on ongoing strategies of TCMs used to target aberrant
Wnt/β-catenin pathway compared with targeted small molecules
as a novel therapeutic intervention in different stages of CRC.
Taken together, TCMs will become promising alternative drugs
to treat cancer with less toxicity and also be used as an adjunctive
treatment together with classic drugs for improving therapeutic
outcomes in CRC patients.

Wnt/β-Catenin Pathway and CRC
Wnt signaling pathway is a highly conserved signaling pathway in
eukaryotes and commonly divided into canonical (β-catenin
dependent) and non-canonical (β-catenin independent)
pathways (Polakis, 2012). Originally, many components of the
Wnt signaling were identified as key mediators of patterning
decisions during embryonic development by genetic screening
(Mazzotta et al., 2016). In the last decade, aberrantWnt/β-catenin
pathway activation in carcinogenesis has most prominently been
described for CRC. Data from the Cancer Genome Atlas (TCGA)
suggests that Wnt/β-catenin pathway is activated in 93% of
nonhypermutated CRC and 97% of hypermutated CRC (Li
et al., 2012; Sebio et al., 2014; Voorneveld et al., 2015). The
status of Wnt/β-catenin pathway is mainly related to the stability
of ß-catenin controlled by the ß-catenin destruction complex that

is comprised of scaffolding proteins APC, Axin and the kinases
casein kinase 1 (CK1) and Glycose synthase kinase 3β (GSK3β).
Absence of Wnt ligands stimuli, the cytosolic ß-catenin is
phosphorylated by GSK3β, ubiquitinated by ß-TrCP200 and
targeted for proteasomal degradation. The ligand Wnt binds to
the cell surface receptor Frizzled and low-density lipoprotein
receptor-related protein 5/6 (LRP5/6) to form a trimer, which
recruits the Dishevelled (Dvl) protein to the plasma membrane,
leading to dissociation of the destruction complex followed by
cytosolic accumulation of ß-catenin. Consequently, the ß-catenin
translocates to the nucleus where nuclear ß-catenin cooperates
with TCF/LEF family transcription factors to active target genes
such as c-myc, MMP-7, SNAIL and EGFR (Zhan et al., 2017). The
activation of Wnt/β-catenin signaling is indispensable for the
progression of CRC (Figure 1).

The best-known mutation of APC is the major driver of Wnt
pathway in colorectal tumorigenesis which functions as a
negative regulator and its importance was further highlighted
by several recent studies (Hankey et al., 2018). By using the
CRISPR/Cas9 technique to introduce APC mutation into
human intestinal organoids, the tumorigenesis of CRC could
be modeled in vivo (Drost et al., 2015; Matano et al., 2015).
Moreover, these studies in human and mouse models indicated
that the genotypes of APC mutations are consistent with the
distinct levels of canonical Wnt pathway and these alterations
are associated with characteristic tumor locations within the
large intestine (Buchert et al., 2010; Christie et al., 2013). Besides
APC, ring finger protein 43 (RNF43) mutations and R-spondin
translocations are noted in over 18 and 9% patients with CRC
respectively by preventing removal of Wnt receptor. Both
RNF43 and R-spondin fusion are completely opposite to
APC mutations (Schatoff et al., 2017). In addition to the
well-established function of Wnt/β-catenin in CRC, there is
accumulating evidence indicating that the KRAS is also an
important and frequently mutant gene during colorectal
cancinogenesis. Up to 40% of KRAS mutations occur in
patients with CRC (Arrington et al., 2012). The discovery of
small-molecule RAS inhibitors or a siRNA targeting RAS
displayed anti-proliferative activity on xenografts of human
CRC cell line SW480 (Song et al., 2020). The mutations of
KRAS result in the hyper-activation of RAS-extracellular signal-
regulated kinase (ERK) pathway involving transformation of
cells and tumorigenesis. Series of studies confirmed the
regulation of the RAS-ERK pathway by Wnt/β-catenin
signaling and its roles, such as Axin, APC, and GSK3β, and
so on (Vincan and Barker, 2008). The crosstalk of RAS and
Wnt/β-catenin pathways relies on the phosphorylation of RAS
mediated by GSK3β. GSK3β, a key component of the ß-catenin
destruction complex, is identified as a kinase inducing
phosphorylations of ß-catenin and RAS at the different sites
of the threonine, and subsequently recruits the ß-TrCP E3 linker
for the proteasomal degradation. Inactivation of GSK3β caused
by Wnt stimuli or APC loss further leads to high concentration
of cytoplasmic ß-catenin and KRAS (Lee et al., 2018a).
Therefore, both mutations of APC and KRAS have a positive
connection with the Wnt/β-catenin pathway in colorectal
tumorigenesis (Figure 1).
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Metastasis is a hallmark of advanced cancer and a major
challenge to clinic treatment. Epithelial-mesenchymal transition
(EMT) is a crucial process by which epithelial cells lose cell
polarity and cell-cell adhesion, and closely associate with invasion
and metastasis in many types of malignancies including CRC
(Spaderna et al., 2006; Vu and Datta, 2017). There is a
complicated network involved in the regulation of EMT,
containing different signaling pathways. Many investigations
indicated that aberrant activation of the canonical Wnt
pathway promotes EMT-associated dedifferentiation located at
the invasive front of colorectal tumors. Enhanced Wnt/β-catenin
signaling in CRC cells induces the action of E-cadherin repressors
SNAIL and upregulation of matrix metalloproteinases (MMP)
involving CRC invasion and metastasis (Gu et al., 2016).
However, inactivating mutations of APC and AXIN2 can up-
regulate the canonical Wnt pathway, thereby promoting EMT.
Furthermore, in vitro and in vivo experiments showed that
WNT3a overexpression induces SNAIL expression and
promotes invasion (Qi et al., 2014).

In addition, increasing evidences suggest that cancer stem cells
(CSCs) theory underlies tumor proliferation, differentiation and
metastasis. Although there is still no consensus on the concept of
cancer stemness, the vital role of the Wnt pathway for the
function of normal and cancer stem cells is commonly
accepted (Reya and Clevers, 2005). In the intestinal crypt,
Wnt/β-catenin pathway exerts a crucial role in the self-renewal
of CSCs in CRC (Yan K. S. et al., 2017). R-spondin receptor Lgr5,
one putative mark of intestinal stem cells, is a direct target gene of
the canonical Wnt signaling cascade and able to promote tumor
proliferation after APC is deleted in these cells. The experiments
in mouse models showed that the Lgr5+ stem cells can increase

additionally the population of Lgr5-positive cells and drive
adenoma expanding in colon (Barker et al., 2009). CD44v6, as
another CSC marker in colorectal cancer, is promoted by Wnt/
β-catenin signaling and cytokines secreted from tumor-associated
cells (Todaro et al., 2014). Moreover, the tumor environment has
an important effect on maintenance of cancer stemness in some
studies, such as hepatocyte growth factor, which is secreted by
myofibroblasts in tumor micro-environment and can induce
stemness features in colorectal cancer cells by improving Wnt
activity (Clara et al., 2020). Recently, several studies uncovered
potential relations between Wnt pathway and non-coding
microRNAs in CSCs. Scientists have discovered miR-142 can
inhibit stem cell-like traits by targeting APC gene whose
mutations are linked to colon cancer (Isobe et al., 2014).
Taken together, these findings indicate that canonical WNT
signaling plays a vital role in the maintenance and expansion
of CSCs in CRC.

Small Molecules Targeting Wnt/β-Catenin
Pathway for CRC Treatment
Due to the importance of canonical Wnt/β-catenin signaling in
human carcinogenic development, small molecule inhibitors
targeting Wnt signaling have been developed for the treatment
of CRC (Table 1). Activation of Wnt signaling through ß-catenin
is a critical event in CRC progression. Porcupine (PORCN) is a
membrane-bound O-acyltransferase protein which regulates
Wnt ligands secretion outside the cell membrane through
palmitoylation. In recent years, PORCN has emerged as a
molecular target for treating Wnt-driven cancers. ETC-159,
WNT974 (LGK974) and Rxc004 has been identified as potent

FIGURE 1 | Schematic illustration of the Wnt/β-catenin signaling pathway in CRC. (A) Inactive Wnt/β-catenin pathway. In the absence of Wnt ligands, destruction
complex phosphylates ß-catenin and KRAS for ubiquitination and proteolytic degradation; (B) Active ß-catenin pathway and crosstalk with KRAS/ERK pathway. In the
Wnt stimuli or APC loss, GSK3β becomes inactive status, leading to the high levels of cytoplasmic ß-catenin and KRAS. While KRASmutations have a positive feedback
loop with the level of cytoplasmic ß-catenin. In addition, RNF43 mutations can relieve the degradation of fizzled protein and activate Wnt/β-catenin pathway.
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inhibitors of Wnt secretion inhibiting ß-catenin activity in
preclinical studies. ETC-159 has been proven to be remarkably
efficacious in treating CRCs with R-spondin translocation in vivo
and in vitro experiments (Soo and Keller, 2015). During in vitro
studies in RNF43 mutant and R-spondin fusion CRC cell lines,
Rxc004 could potently repress the cell proliferation by arresting
cell cycle at G1/S and G2/M phase (Shah et al., 2021). IWP-2 is
another inhibitor of PORCN. Experiments on organoid derived
from CRC patients unveiled that IWP-2 is sensitive to the cancers
with loss of function RNF43 mutations (Masaru, 2017).
Pyrvinium, a FDA-approved drug, has been shown to bind to
CK1α and form a degradation complex with GSK-3, APC, and
Axin, resulting in the inhibition of Wnt signaling. Moreover,
Pyrvinium suppresses the proliferation of CRC with mutations
of APC or ß-catenin in HCT116 and SW480 cell lines (Momtazi-
Borojeni et al., 2018). ICG-001, a selective inhibitor of Wnt/
β-catenin pathway, binds to the CREB-binding protein (CBP)
and down-regulates ß-catenin/Tcf transcription. As a
consequence, ICG-001 selectively induces apoptosis in colon
carcinoma cells but not in normal colonic epithelial cells, which
is effective in mouse with APCmutations or nudemouse xenograft
models of colon cancer. PRI-724, the second generation specific
CBP/catenin antagonist for oncology, has been proved to have an
acceptable safety profile in early clinical trials and is now under
further clinical investigation (Bahrami et al., 2017). Windorphen
(WD) is an inhibitor of Wnt/β-catenin signaling by directly
targeting p300 to disrupt the association of ß-catenin with p300.

These findings suggest thatWD can selectively kill cancer cells with
aberrant activation ofWnt signaling (Hao et al., 2013). Other small
molecules, such as NSC668036 and Pen-N3, block the Wnt
signaling pathway through binding to the Dishevelled (Dvl)
PDZ domain and interrupting the receptor Frizzled (Fz)-Dvl
interaction in colon cells (Shan et al., 2005; Zhang et al., 2009).

Some studies indicate that tankyrases (TNKS) are novel targets
for Wnt inhibition by regulating stabilization of Axin and hence
leading to increased ß-catenin degradation. XAV939 and JW55
have been shown to target Wnt/β-catenin pathway through
inhibiting the poly-ADP-ribose polymerase (PARP) domains
of TNKS in DLD-1 and SW480 cell lines in vitro (Huang
et al., 2009). JW55 also reduces the growth of tumor in
conditional APC mutation mice (Waaler et al., 2012). G007-
LK and G244-LM are two other types of small-molecule
tankyrase inhibitors (Lau et al., 2013). In particular, G007-LK
has greater stability and displays favorable pharmacokinetic
properties to inhibit Wnt/β-catenin signaling in APC-mutant
CRC xenograft tumors (Tanaka et al., 2017; Katoh, 2018). IWR-1
is another tankyrase inhibitor which interacts with PARP enzyme
(Mashima et al., 2017).

β-catenin is a key mediator of Wnt signaling, regulating the
stabilization of the destruction complex and consequently
intracellular ß-catenin levels. Ewan K et al. revealed that three
small molecule inhibitors including CCT031374, CCT036477,
and CCT070535 can block the Wnt/β-catenin signaling through
reducing the level of ß-catenin without altering its stability, which

TABLE 1 | List of small molecules targeting Wnt/β-catenin pathway for CRC treatment.

Small molecules Mechanism of action Preclinical vs. clinical
trial (phase) vs. FDA approved

Reference

ETC-159 Porcupine inhibitor Phase 1 Soo and Keller (2015)
WNT874 (LGK974) Porcupine inhibitor Phase 1 Shah et al. (2021)
RXC004 Porcupine inhibitor Phase 1/2
IWP-2 Porcupine inhibitor Preclinical Masaru (2017)
Pyrvinium Binding to CK1a FDA approved Momtazi-Borojeni et al. (2018)
ICG-001 Binding to CBP Preclinical Bahrami et al. (2017)
PRI-724 CBP/β-catenin inhibitor Phase 1b
Windorphen P300/β-catenin inhibitor Preclinical Hao et al. (2013)
NSC668036 Binding to Dishevelled Preclinical Shan et al. (2005)
Pen-N3 Binding to Dishevelled Preclinical Zhang et al. (2009)
XAV939 Tankyrases inhibitor Preclinical Huang et al. (2009)
JW55 Tankyrases inhibitor Preclinical Waaler et al. (2012)
G007-LK Tankyrases inhibitor Preclinical Lau et al. (2013)
G244-LM Tankyrases inhibitor Preclinical Narwal et al. (2012)
IWR-1 Tankyrases inhibitor Preclinical Mashima et al. (2017)
CCT031374 β-catenin inhibitor Preclinical Ewan et al. (2010)
CCT036477 β-catenin inhibitor Preclinical
CCT070535 β-catenin inhibitor Preclinical
iCRT3 β-catenin/Tcf Preclinical Gonsalves et al. (2011)
iCRT5 β-catenin/Tcf Preclinical
iCRT14 β-catenin/Tcf Preclinical
PKF115-584 β-catenin/Tcf Preclinical Yan M. et al. (2017)
PKF222-815 β-catenin/Tcf Preclinical
CGP049090 β-catenin/Tcf Preclinical Tian et al. (2012)
BC21 β-catenin/Tcf Preclinical
NC403 β-catenin/Tcf Preclinical He et al. (2017)
KYA1797k GSK3β activator Preclinical Lee et al. (2018b)
KY1022 GSK3β activator Preclinical Cho et al. (2016)

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6905014

Chang et al. TCMs by Wnt/β-Catenin in CRC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 2 | Effects of monomers, extracts, formula of TCMs on CRC by Wnt/β-catenin pathway.

Herbal medicine Stage Cell Animal Cellular mechanism Wnt related
targets

References

Berberine Polyps KM12C Apc Min/+ mice Proliferation β-catenin, APC Zhang J. et al. (2013)
KM12SM
KM12L4A

Genistein Pre-neoplasia - SD Rat Differentiation Wnt5a, Sfrp1,2,5 Zhang et al. (2020)
EESB CRC HT29 BALB/c nude

mice
Proliferation Apoptosis APC, ß-catenin Wei et al. (2017)

Brucine
Strychnine

CRC DLD1, SW480, LoVe Nude mice Proliferation Apoptosis APC, ß-catenin, Dkk1 Ren et al. (2019)

Luteolin CRC HCT15 BALB/c mice Proliferation GSK-3β, ß-catenin Ashokkumar and
Sudhandiran (2011)

C.
brachycephalum

CRC SW480 - Proliferation GSK-3β, ß-catenin Mervai et al. (2015)

PAG CRC HCT116 - Proliferation, Apoptosis GSK-3β, ß-catenin Qiu et al. (2017)
Dvl2

Wogonin CRC SW480 - Proliferation GSK-3β, Ctnnb1 Li et al. (2020)
NG CRC, Migration HT29, SW620 - Proliferation Apoptosis,

Cell cycle, EMT
GSK-3β, ß-catenin Wen et al. (2019)

IBC CRC HCT116, SW480 - Proliferation Apoptosis GSK-3β, ß-catenin Li et al. (2019)
4 ß HWE CRC HCT116, HT29, SW480,

LoVo, CCD-CoN-841
BALB/c nude
mice

Proliferation, Apoptosis β-catenin Ye et al. (2019)

Rg3 CRC HCT116, SW480 Athymic nude
mice

Proliferation β-catenin He B.-C. et al. (2011)

Isoquercitrin CRC HCT116, DLD-1, SW480 Xenopus
embryos

Proliferation β-catenin Amado et al. (2014)

RTHF CRC SW620, HT29 C57Bl/6 mice Cell cycle,
Stemness, EMT

β-catenin Wu et al. (2018)

TGG CRC NIH3T3, HT29 - Apoptosis β-catenin Li et al. (2019)
TET CRC, Migration HCT116, SW480 Female athymic

nude mice
Proliferation, Apoptosis β-catenin He B.-C. et al. (2011)

Curcumin CRC SW620, rHCT116 - Proliferation β-catenin, Wnt3a Jiang X. et al. (2019)
Apoptosis,EMT

Beta-elemene CRC HCT116, HT29 - Proliferation β-catenin, Wnt3a -
Apoptosis

Celastrol CRC HCT116, SW480 APC Min/+ mice Proliferation β-catenin, YAP, LKB1 Wang et al. (2019)
BRB CRC HCT116, HT29, LoVo,

SW480
c57Bl/6 mice miRNA β-catenin, DKK3 Guo et al. (2020)

Quercetin CRC SW480, clone 26 - Proliferation Apoptosis β-catenin, Tcf4 Shan et al. (2009)
COL CRC DLD1, SW480, LoVe BALB/c nude

mice
Proliferation Apoptosis β-catenin, TCF/LEF Lei et al. (2019)

Apigenin CRC SW480, HCT15 - Proliferation β-catenin, TCF/LEF Xu et al. (2016)
Silibinin CRC SW480 Athymic nude

mice
Proliferation β-catenin, Tcf4 Kaur et al. (2010)

Lonchocarpin CRC RKO, SW480 Xenopus laevis Proliferation β-catenin, Tcf4 Predes et al. (2019)
Henryin CRC HCT116, SW480, HT29 - Proliferation - Li et al. (2013)
γ-Mangostin CRC HCT116, SW480, RKO,

LS174T
Nude mice Proliferation Apoptosis,

Stemness
TCF4 Krishnamachary et al.

(2019)
Huaier CRC, Metastasis T1,T2 - Stemness β-catenin, TCF/LEF Zhang T et al. (2013)
Resveratrol CRC, Invasion,

Metstasis
HCT116, LoVo - MMPs β-catenin Ji et al. (2013)

IPM711 Invasion,
Migration

HT29, HCT116, NCM460 - Proliferation, EMT β-catenin, FZD Ma et al. (2019)

TKP Invasion,
Migration

DLD1, HCT116 - MMP2, MMP9 GSK-3β Sun et al. (2020)

Cinnamaldehyde CRC, Migration HCT116, SW480 BALB/c nude
mice

EMT, Stemness β-catenin, GSK-3β Wu et al. (2019)

ZJW CRC, Invasion,
Migration

SW403 - Proliferation, MMPs β-catenin, Axin1, Dvl2,3,
GSK-3β, Lef1,Tcf4

Pan et al. (2017)

WCA CRC, Metastasis HCT116 - MMPs, EMT β-catenin Tao et al. (2019)
HLJDD CID HT29 Athymic nude

mice
Stemness Wnt3,Axin2, Fzd5,Pygo2 Chan et al. (2020)

AP CACC HT29, HCT116 ICR mice Proliferation β-catenin Li et al. (2020)

Notes: 1. EESB, ethanol extract of Scutellaria barbata D. Don; 2. PAG, pterisolic acid G; 3. NG, Nerigoside; 4. IBC, Isobavachalcone; 5. 4 ß HWE, four ß-Hydroxywithanolide E; 6. RTHF,
Radix Tetrastigma hemsleyani flavone; 7. TGG, 1,4,6-Tri-O-galloyl-β- d -glucopyranose, 8. TET, tetrandrine; 9. BRB, black raspberry; 10. COL, columbamine; 11. IPM711, 4-(1H-imidazo
[4,5-f][1,10]-phenanthrolin-2-yl)-2- methoxyphenol; 12. TKP, Trichosanthes kirilowii; 13. ZJW, Zuo Jin Wan; 14.WCA,Weichang’an; 15.HLJDD, Huanglian Jiedu Decoction; 16. AP, apple
polysaccharide; 17. CID, chemotherapy-induced diarrhea.
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is different from drugs involving inhibition of TCF-dependent
transcription in SW480 cells (Ewan et al., 2010). Interaction of ß-
catenin with TCF binding proteins is a crucial step in the
activation of target genes in response to the activation of Wnt/
β-catenin pathway. A cohort of Wnt antagonists including
iCRT3, iCRT5, iCRT14, PKF115-584, PKF222-815,
CGP049090, and BC21 have been demonstrated to suppress
the Wnt/β-catenin signaling by breaking the association
between Tcf4 and ß-catenin (Gonsalves et al., 2011; Tian et al.,
2012; Yan M. et al., 2017). NC043 is an inhibitor of ß-catenin/
TCF4, which decreases ß-catenin/TCF4 association without
affecting the cytosol-nuclear distribution of soluble ß-catenin
in vivo and in vitro (He et al., 2017).

In recent years, a small molecular KYA1797K has been
identified to suppress the formation of CRCs along with the
mutations of APC and KRAS via activating GSK3β and
subsequently reducing the level of both ß-catenin and Ras as
showed both in vitro and in vivo studies. Moreover, KYA1797K
can alleviate the resistant to the EGFR-targeting therapies because
of KRAS mutations (Lee et al., 2018b). Whereas, KY1022
destabilizes both ß-catenin and Ras by targeting the Wnt/
β-catenin signaling in the process of metastasis involving
EMT, which is different from the action of KY1797K (Cho
et al., 2016). As indicated above, small molecule inhibitors
targeting Wnt/β-catenin pathway exhibit promising
therapeutic effects on CRC. However, to the best of our
knowledge, few of these small molecules has gone into clinical
trials. In the future, many scientists will make great efforts to
identify more small molecules targeting Wnt/β-catenin and
convert them into effective therapies.

Therapeutic Mechanism of TCMs Against
CRC via Wnt/β-Catenin Pathway
It is well documented that uncontrolled cell proliferation is a
typical feature in many types tumor development, especially in
CRC. The complex balance between proliferation and apoptosis is
intimately connected with tissue homeostasis (Diwanji and
Bergmann, 2018) and in general, increased cell proliferation
along with reduced apoptosis, drives tumor formation. It has
been found that many compounds or extracts from TCMs could
inhibit colorectal tumorigenesis by targeting different molecules
inWnt/β-catenin pathway. Therefore, we summarized the single-
herb and formula of TCM against the different stages of CRC via
Wnt/β-catenin pathway (Table 2).

EFFECT OF ACTIVE COMPOUNDS ON
PRECANCEROUS CRC

The presence of adenoma (polyps), is a precursor and amajor risk
factor for CRC (Nguyen et al., 2020). Currently, endoscopic
removal is the most effective therapeutic regimen for these
patients. However, TCMs also have been reported to exhibit
important therapeutic effects on colon adenomas. Alkaloid
berberine, which is previously used as an anti-inflammatory
drug, has proximately been demonstrated to possess anti-

tumor activity by reducing Wnt activity and its mechanism of
action may involve inhibition of ß-catenin translocation to the
nucleus by enhancing the expression of APC gene and stabilizing
the complex of APC-β-catenin. Studies looking at berberine
treatment in vivo have found that it gave rise to reduced
formation of polyps accompanied with a decrease in cyclin D1
and c-myc expression in the intestinal adenoma model.
Furthermore, oral administration of berberine has been
confirmed to significantly reduce the size of polyps in patients
with FAP (Zhang J. et al., 2013). In addition, the discovery of
Aberrant crypt foci (ACF) in early colorectal adenomas provided
new opportunities to explore the pathogenic mechanism of CRC.
Genistein, a soya isoflavone, is capable of decreasing the number
of total aberrant crypts in the colon cancer model with
azoxymethane (AOM) injection by repressing the expressions
of Wnt/β-catenin target genes, including Wnt5a, Sfrp1, Sfrp2,
Sfrp5, and c-Myc. These results revealed a novel role for genistein
as a suppressor of carcinogen-induced Wnt/β-catenin signaling
and the prevention of early colon neoplasia (Zhang et al., 2020).

THERAPEUTIC MECHANISM OF ACTIVE
COMPOUNDS AGAINST CRC IN SITU

Ninety-three percent of CRC cases has at least onemutation inWnt/
β-catenin pathway genes (Pearlman et al., 2017). Themost frequently
mutated gene in CRC is APC which may be a promising target for
drug development in CRC. The ethanol extract of Scutellaria barbata
D. Don (EESB), used for the treatment of various types of cancer
clinically (Wei et al., 2017; Zhang et al., 2017; Liu et al., 2018), has
been found to prevent the development of human CRC via
increasing APC expression with a concomitant decrease in the
expression of ß-catenin, leading to inactivation of the Wnt/
β-catenin pathway in a CRC xenografted mouse model and HT-
29 cell line. Brucine and strychnine from nux vomic have remarkable
effects in improving circulatory system and relieving arthritic and
traumatic pains. Recently, Ren H et al. (2019) found both two
compounds can suppress the growth significantly by inducing the
apoptosis of CRCs in nudemice by enhancing the expression of APC
and reducing that of ß-catenin. Meanwhile, they can greatly promote
DKK1 expression, which is proved to negatively regulate Wnt/
β-catenin pathway. On the other hand, some monomers derived
from traditional Chinese herbs such as Luteolin, C. brachycephalum,
pterisolic acid G (PAG), wogonin, nerigoside (NG) and
isobavachalcone (IBC), exhibit anticancer functions by affecting
the phosphorylation state of GSK-3β and ß-catenin in CRC.
However, nerigoside has been found to destroy the balance of
proliferation and apoptosis through the ERK/GSK3β/β-catenin
signaling pathways, whereas isobavachalcone exerts its anticancer
effect via the AKT/GSK-3β/β-catenin pathway in CRC
(Ashokkumar and Sudhandiran, 2011; Mervai et al. (2015); Qiu
et al., 2017; Li et al., 2019; Tan et al., 2019; Wen et al., 2019).

There are some compounds inhibiting CRC by mediating the
core molecule of canonical Wnt pathway. Ye ZN et al. discovered
that the anti-tumor effect of four ß HWE is to promote the
phosphorylation and degradation of ß-catenin and the
subsequent inhibition of its nuclear translocation in CRC cells
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(Ye et al., 2019). While, Ginsenoside Rg3 and isoquercitrin were
demonstrated to inhibit Wnt/β-catenin pathway by blocking
nuclear translocation of the ß-catenin protein and hence
inhibiting ß-catenin/Tcf transcriptional activity (He B. et al.,
2011). Moreover, some experiments in vitro showed that
Radix Tetrastigma hemsleyani flavone (RTHF), 1,4,6-Tri-O-
galloyl-β-d-glucopyranose (TGG) as well as tetrandrine (TET)
could suppress colorectal tumor growth and downregulate target
genes expression (He B.-C. et al., 2011; Wu et al., 2018; Li et al.,
2019). Curcumin is another inhibitor of ß-catenin in many
cancers (Deguchi, 2015). Previous studies illustrated caudal
type homeobox-2 (CDX2) is a mediator of the Wnt signaling
pathway, and curcumin can reduce cell proliferation and increase
apoptosis by restoring CDX2 which inhibited the Wnt/β-catenin
signaling pathway (Jiang X. et al., 2019). Besides, curcumin might
exert anti-resistant effect of 5-FU on rHCT-116 cells by
controlling WNT signal pathway to reverse the EMT progress
(Lu et al., 2020). Beta-elemene, however, could elevate sensitivity
to 5-FU through down-regulating miR-191 and preventing the
Wnt/β-catenin pathway in CRC cells (Guo et al., 2018). Lately,
accumulating evidence has strongly suggested Hippo signaling
interacted with Wnt/β-catenin pathway. (Jiang Z. et al., 2019).
found that celastrol, isolated from Tripterygium wilfordii plant,
exerted antitumor effects by accelerating ß-catenin degradation
via the HSF1–LKB1–AMPKα–YAP pathway in CRC. In addition,
miRNAmicroarray analysis suggested that black raspberry (BRB)
anthocyanins can reduce the expression of miR-483–3p
accompanied by an increased level of DKK3 expression, which
is one negative regulator of Wnt pathway (Guo et al., 2020).

Some studies revealed that quercetin and columbamine
(inhibitors of the Wnt/ß-catenin pathway) could decrease
nuclear lcatenin and downregulate the transcriptional activity
of ß-catenin/Tcf, leading to inhibition of cell proliferation in
SW480 cell lines (Pahlke et al., 2006; Lei et al., 2019). Similar to
quercetin and columbamine, apigenin can suppress CRC
proliferation by inhibiting ß-catenin nuclear entry and thereby
prevented the expression of Wnt downstream target genes (Xu
et al., 2016). Silibinin and lonchocarpin, also exert anticancer
functions through the regulation of ß-catenin/Tcf transcriptional
activity in animal and cell models (Kaur et al., 2010; Predes et al.,
2019). Yet silibinin exhibited selective growth inhibitory effects
on SW480 cells (human CRC cells), but not HCT116 cells, by
inhibition of Wnt signaling. Henryin, used to control pain for a
long time, has been reported to be capable of impairing the
association of the ß-catenin/TCF4 trans-criptional complex
through direct blockade of ß-catenin binding to TCF4, but not
to affect the cytosol to nuclear distribution of soluble ß-catenin
(Li et al., 2013). In addition, γ-mangostin, found in Mangosteen
fruit, can interact with the transcription factor TCF4 at the ß-
catenin binding domain, which results in the suppression of the
expression of cyclin D1 and c-Myc. Furthermore, γ-mangostin
treatment significantly decreased the levels of stem cell markers
such as Lgr5, Dclk1 and CD44 in HCT116, LS174T and DLD1
cells, which also confirmed in vivomodels (Krishnamachary et al.,
2019). In the last few decades, the existence of CSCs is central to
chemo-resistance and recurrence of many tumors. Some studies
identified Huaier aqueous extract can take action against CRC by

eradicating CSCs and the Wnt pathway may be considered as a
potential target of Huaier for the treatment of CRC (Zhang T.
et al., 2013).

REGULATORY MECHANISM OF ACTIVE
COMPOUNDS AGAINST METASTATIC CRC

The development of distant metastases and therefore resistance to
therapy, are major clinical problems in the management of the
patients with advanced cancer. Recently, medical professionals
have focused on TCMs as a way to resolve these issues.
Resveratrol, a natural antioxidant from Polygonum
cuspidatum, inhibits the invasion and metastasis of human
CRC through down-regulation of Metastasis Associated Lung
Adenocarcinoma Transcript1 (MALAT1) (Xu et al., 2011; Ji et al.,
2013). IPM711, a structurally modified vanillin, was reported to
attenuate EMT by increasing the expression of E-cadherin (Ma
et al., 2019). Furthermore, a serine protease TKP has a repressive
effect on CRC cell invasion and metastasis by targeting MMP2
and MMP9, and is mediated by blockade of both Wnt/β-catenin
and Hedgehog/Gli1 signaling (Sun et al., 2020). In addition,
cinnamaldehyde has been certified to have potential adjuvant
effect on CRC cells in combination with oxaliplatin through
blocking the Wnt/β-catenin pathway and enhancing the
susceptibility of oxaliplatin in the hypoxic environment (Wu
et al., 2019).

EFFECT OF TCM FORMULAS ON CRC

As well as the monomers and extracts derived from TCMs, an
increasing body of evidence suggests that TCM formulas possess
anticancer properties, too. Zuo Jin Wan (ZJW) has been used in
the treatment of gastrointestinal and liver diseases in China for
ages (Chao et al., 2011; Sun et al., 2019), which is composed of
Rhizoma Coptidis and Evodia Rutaecarpa at a ratio of 6:1.
Berberine and evodiamine are two key elements of ZJW
extract and possess anti-tumorigenic activity, respectively
(Ayati et al., 2017; Wang et al., 2019). Over the past few
decades, many clinical studies had found that some subtypes
of 5-HT receptors (5-HTRs) would enhance the proliferation of
CRC cells. Recent studies showed that ZJW extracts can exert
anti-tumorigenic effects by suppressing the canonical Wnt/
β-catenin pathway in animal and cell experiments, similar to
that seen with 5-HTR antagonists (Pan et al., 2017). Weichang’ an
(WCA) is a traditional Chinese medicinal formula used as an
anticancer drug and the experimental data also showed the anti-
metastatic function by blunting the activation of Wnt/β-catenin
pathway and reducing the expression of MMP9 and the EMT-
related protein ZEB1 (Tao et al., 2019). Furthermore, TCM
formulations could provide an adjunct for chemotherapy in
cancer patients. Huanglian Jiedu Decoction (HLJDD) has been
revealed to significantly alleviate the diarrhea induced by
chemotherapy in a mouse model. The experiments from the
intestinal segments of 5-Fu/CPT-11-treated mice proved pre-
treatment with HLJDD could activate the Wnt/β-catenin
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pathway by inducing the expressions of Wnt signaling
components, comprised of Wnt3, Fzd5, Axin2, and Pygo2
(Chan et al., 2020). These data suggest that HLJDD could
boost the regeneration of intestinal progenitor cells after
chemotherapy, probably by activating Wnt/β-catenin.

In addition, TCMs can also prevent the development of colitis
associated colorectal cancer (CACC) through canonical Wnt
signaling. It is showed that apple polysaccharide (AP) from
apple residues could affect the activation of Wnt/β-catenin
signaling pathway in vivo, but not in vitro experiments (Li
et al., 2020). Previous studies showed that AP treatment could
effectively decrease the proliferation of Fusobacterium in AOM/
DSS-induced intestinal tract. Therefore, AP may restrain the
activation of Wnt/β-catenin signal pathway in CACC mice
through controlling the imbalance of intestinal flora.

Development of New Drugs in Clinic
CRC is often diagnosed at an advanced stage when tumor cell
dissemination has already taken place and chemotherapy was one
of the major methods for the treatment of CRC in the past few
decades. In clinic, it is obviously clear that fluoropyrimidines,
irinotecan, and oxaliplatin have been widely applied to
chemotherapeutic regimens for tumors (Gustavsson et al.,
2015). The recent introduction of small molecular target agents,
such as anti-EGFR (cetuximab, panitumumab) and antiangiogenic
molecules (bevacizumab) have led to profound improvements in
the life expectancy of patients with advanced CRC (Franke et al.,
2019), but with potential lethal adverse drug events and drug
resistance. Therefore, it is necessary to develop new and neo-
adjuvant therapies in combination with other chemotherapeutics.
TCMs and their active compounds with multi-targets was reported
to prevent and treat CRC patients as promising candidates, which
is distinct from small molecular inhibitors that depend on single

target (Yeh et al., 2020). In addition, because of relatively lower
toxicity and cheaper price, TCMs can be more accepted by patients
with CRC physically and psychologically.

On account of the significance of Wnt/β-catenin pathway in
CRC development and metastasis, some native components of
TCMs was developed as novel drugs specifically targeting this
signaling pathway and are already in clinical trials (Table 3).
Resveratrol is a naturally occurring polyphenol with antioxidant,
which has been used in many diseases involving cancers. Recently,
in vitro studies suggest that resveratrol exhibited preventative colon
cancer effects and this was associated with Wnt signaling (93). In
this clinical trial, patients with colon cancer were randomly
provided a treatment with resveratrol, and relevant studies
tested its effects directly on colon cancer and normal colonic
mucosa. These results showed that resveratrol could inhibit
Wnt/β-catenin signaling in the normal colonic mucosa, but not
in colon cancer (Nguyen et al., 2009). Thus, resveratrol represented
a potential colon cancer preventive strategy in this phase I study.
Genistein is also identified to block Wnt/β-catenin signaling and
has a cooperative effect with chemotherapeutic agents in lab.
According to pre-clinical data, investigators found that
combining genistein with standard chemotherapeutic regimens
could reduce chemotherapy resistance and improve patient’s
response rates (Authors Anonymous, 2021b).

Besides, small molecular weight Wnt 974, a potential inhibitor
of Wnt/β-catenin signaling, has been used to assess its safety and
antitumor activity in combination with chemotherapeutic agents
in patients with BRAF-mutant metastatic CRC andWnt pathway
mutations (Authors Anonymous, 2021c). Nevertheless, so far, the
study results have not been published. ABT-888 (veliparib) has
also been used in combination with chemotherapeutic drugs to
inhibit the growth of metastatic CRC in phaseⅠandⅡclinical trials
(Authors Anonymous, 2021d). But it has not yet been approved

TABLE 3 | New drugs inhibiting Wnt/β-catenin pathway for treatment CRC in clinic.

New drug Disease or
condition

Combination with Aim or result Phase Recruitment
status

Resveratrol Colon cancer - Resveratrol represented a potential colon cancer
preventive strategy in this phase I study

Phase I completed

Genistein Metastatic CRC FOLFOX or FOLFOX-Avastin Combining genistein with the standard of care
chemotherapeutic regimens reduced chemotherapy
resistance and improved response rates

Phase I
and II

completed

Wnt 974
(LGK974)

BRAFV600-mutant
Metastatic CRC

LGX818 and Cetuximab The triple combination of WNT974, LGX818 and
cetuximab could result in anti-cancer activity with the
inhibition of Wnt and BRAF signals

Phase
Ib/II

completed

ABT-888
(veliparib)

CRC that cannot
been cured by
surgery

Temozolomide Combining veliparib and temozolomide was well-
tolerated at doses up to 200 mg/m2/day of
temozolomide

Phase II completed

Foxy5 Metastatic CRC - The aim is to set up the recommended drug dose for
use in the subsequent clinical phase 2 study and
develop Foxy-5 as a first-line drug in anti-metastatic
cancer

Phase I completed

Foxy5 CRC with lowWnt-5a Surgery to remove the tumour and then
giving treatment with FOLFOX about
6 months

In this trial the safety and tolerability of Foxy-5 will be
built and early signs of anti-metastatic activity will be
evaluated in subjects with resectable colon cancer

Phase II Recruiting

Niclosamide FAP Placebo Niclosamide has been indicated to have a inhibitory
effect on tumorigenesis via inhibition of Wnt pathway
with no significant safety issues

Phase II Recruiting
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by the FDA for use in this cancer. Foxy5, identified by
WntResearch, can prevent migration of epithelial cancer cells
by mimicking the functions of Wnt-5a and thereby play the anti-
metastatic role. The safety and tolerability of Foxy-5 were
established and early signs of anti-metastatic activity were
evaluated in subjects with resectable colon cancer. Further,
researchers have already examined the maximum tolerated
dose and dose-limiting toxicity of this drug (Authors
Anonymous, 2021e). Interestingly, another small molecule
niclosamide, an anti-helminthic drug, has been proved to have
an obviously suppressive effect on colorectal tumorigenesis by
attenuating Wnt/β-catenin signaling lately. In this experiment,
investigators devised a double-blind randomized controlled trial
to evaluate the effect of niclosamide on patients with FAP.
Unfortunately, to date, this project is still in the recruitment
stage (Authors Anonymous, 2021f).

CONCLUSIONS AND FUTURE
PERPECTIVES

CRC has become a global public health problem on account of its
high incidence and mortality rate worldwide. The clinical
treatments for CRC mainly involve surgery-based chemotherapy.
In recent years, with the application of targeting small molecules
against cancer, the quality of life for CRC patients has improved.
Nevertheless, chemotherapy-induced side effects and drug
resistance remain a major issue for clinical practice. Numerous
studies have shown that TCMs can be used to exert potential
anticancer activity and alleviate the side effects associated with
chemotherapy. It is confirmed that various mutations in one or
more members of the canonical Wnt signaling pathway take place
in the progression of CRC. Therefore, in this review, we aimed to
intensively explore molecular mechanisms of TCMs against cancer
at the different stages in CRC progress, including precancerous
lesions, early stage CRC and CRC invasion and migration based on
the inhibition of theWnt/β-catenin signaling pathway. Cell culture

and animal experiments have found that TCMs play anticancer
roles by regulating APC/β-catenin, GSK-3β/β-catenin, and ß-
catenin/TCF4 pathways which represent the main elements of
the Wnt/β-catenin pathway involved in the treatment of CRC.
Thus, understanding the molecular mechanisms of action of TCMs
and how they target Wnt/β-catenin may shed light on future
therapies for CRC. However, it needs multi-level and multi-link
comprehensive action to anti-tumor because of the complex
composition of traditional Chinese medicine. This suggests that
we need to investigate the crosstalk between Wnt/β-catenin signal
pathway and others. In addition, there remains very few new
clinical treatments under development due to lack of strict
evaluation system for effectiveness and safety of TCMs.
Therefore, it will hopefully pave the way for the CRC clinical
treatment and may also relieve the side effects related to
chemotherapy if there is a breakthrough in the study of multi-
target intervention of TCM in CRC.
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