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Background: Necroptosis has been identified recently as a newly recognized
programmed cell death that has an impact on tumor progression and prognosis,
although the necroptosis-related gene (NRGs) potential prognostic value in skin
cutaneous melanoma (SKCM) has not been identified. The aim of this study was to
construct a prognostic model of SKCM through NRGs in order to help SKCM patients
obtain precise clinical treatment strategies.

Methods: RNA sequencing data collected from The Cancer Genome Atlas (TCGA) were
used to identify differentially expressed and prognostic NRGs in SKCM. Depending on
10 NRGs via the univariate Cox regression analysis usage and LASSO algorithm, the
prognostic risk model had been built. It was further validated by the Gene Expression
Omnibus (GEO) database. The prognostic model performance had been assessed using
receiver operating characteristic (ROC) curves. We evaluated the predictive power of the
prognostic model for tumor microenvironment (TME) and immunotherapy response.

Results: We constructed a prognostic model based on 10 NRGs (FASLG, TLR3, ZBP1,
TNFRSF1B, USP22, PLK1, GATA3, EGFR, TARDBP, and TNFRSF21) and classified
patients into two high- and low-risk groups based on risk scores. The risk score was
considered a predictive factor in the two risk groups regarding the Cox regression analysis.
A predictive nomogram had been built for providing a more beneficial prognostic indicator
for the clinic. Functional enrichment analysis showed significant enrichment of immune-
related signaling pathways, a higher degree of immune cell infiltration in the low-risk group
than in the high-risk group, a negative correlation between risk scores and most immune
checkpoint inhibitors (ICIs), anticancer immunity steps, and a more sensitive response to
immunotherapy in the low-risk group.

Conclusions: This risk score signature could be applied to assess the prognosis and classify
low- and high-risk SKCM patients and help make the immunotherapeutic strategy decision.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is considered aggressive
cancer. Its global prevalence is 15–25 individuals per
100,000 with an annual increase of 3–5% (Schadendorf et al.,
2015). Early-stage melanoma with timely surgery showed a
favorable prognosis. The 10-year survival rate was up to 95%,
while the rate in metastatic melanoma was less than 20% (Balch
et al., 2009; Gershenwald et al., 2017). The treatment of advanced
melanoma is limited and mainly depends on immunotherapy
(Leonardi et al., 2020). Overall, SKCM patients remain at a high
recurrence rate with all kinds of interventions. So, identifying
effective prognostic biomarkers is a must to develop better
prognosis methods.

Apoptosis and necroptosis are both programmed cell death
mechanisms. One is natural (Bertheloot et al., 2021), and the
other is caspase-independent. Necroptosis is used to treat

tumors after drug resistance to apoptosis, and is mediated
by the toll-like and tumor necrosis factor (TNF) receptor
activation. The receptor-interacting protein kinase 1, 3
(RIPK1) (RIPK3), and their target—the mixed lineage
kinase domain-like protein (MLKL)—are three key proteins
to initiate necroptosis (Gong et al., 2019; Bertheloot et al.,
2021). Necroptosis plays a tumor-inhibiting role in most cases
(Tang et al., 2020). Previous studies found that necroptosis-
related regulatory factors could be a biomarker for the
prognosis of tumors and some diseases (Zhang et al., 2018;
Park et al., 2020). For instance, in glioblastoma, Park et al.
indicated that the overexpression of RIPK1 is correlated with a
poorer prognosis (Park et al., 2009). Low RIPK3 expression
and poor prognosis are correlated (Feng et al., 2015). The
potential role of necroptosis in tumors has stimulated intense
research interest. However, the role of necroptosis in SKCM is
rarely reported.

FIGURE 1 | The study workflow.
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This study aims to elucidate the NRGs expression and
prognostic significance in SKCM. To assess the NRGs
prognostic value in SKCM, we established a survival-based risk
score model. The study findings may provide clues for prognostic
biomarkers in SKCM and focus on individual-specific SKCM
treatment.

MATERIALS AND METHODS

Data Collection
The TCGA had been used to collect the SKCM patients’
clinical data and mRNA expression. The Genotype-Tissue
Expression (GTEx) database had been used to collect the
transcriptome data of 556 normal skin samples. To
assemble an internal training group, the TCGA-SKCM (n =
471) patients were recruited. The GSE54467 and
GSE65904 datasets collected from the Gene Expression
Omnibus (GEO) had been used as a validation set (n =
293), which is used for external validation of the model.

The R “Limma” package had been used to process and
merge data collected from GTEx and TCGA (Law et al.,
2016). The microarray data GSE54467 and GSE65904 had
been also merged and standardized using the R package
“Limma” usage.

Differentially Expressed Gene Identification
Sixty-seven NRGs had been collected from previously published
studies and the Gene Set Enrichment Analysis (GSEA)
(Supplementary Table S1). A differential gene expression
analysis with a |log2FC| > 1 and FDR < 0.05 had been done
between tumor and normal tissues using the “limma” R package.
The relationship’s significance between overall survival (OS) and
all NRGs in TCGA-SKCM was assessed using the univariate Cox
regression analysis with a p <0.05 cutoff, which was done by the
“survival” R package usage. The Venn diagram package was used
to produce overlapping results of DEGs and prognostic genes as a
graphical output and candidate NRGs. Interaction networks for
the 32 prognostic NRGs and overlapping prognostic DEGs were
analyzed using the R packages “igraph” and “psych”.

FIGURE 2 | Candidate prognostic DEGs identification in TCGA-SKCM. (A,D) Interactions between prognostic NRGs and prognostic DEGs in SKCM. The lines
connecting the NRGs represent the correlations, and thicker lines represent larger correlations. Pink and blue represent positive and negative correlations. (B) Venn
diagram of NRGs identified by univariate Cox analyses and differential expression. (C) Forest plots of correlations between 12 NRGs and OS of patients in TCGA cohort.
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Establishment and Validation for the
Necroptosis-Related Genes Prognostic
Signature
To avoid the overfitting risk, we incorporated the candidate
NRGs into LASSO-penalized Cox regression analysis using

the R package “glmnet” to select hub genes and build a gene
risk signature (Tibshirani, 1997; Simon et al., 2011). This
formula Risk score = sum (each gene’s expression ×
corresponding coefficient) was used for calculating the risk
score. Considering the medium risk score, the SKCM
patients were categorized into two risk groups.
Kaplan–Meier survival analysis had been done using the R
package “survival” and “survminer” for evaluating the two
groups’ OS. The validation set, including GSE54467 and
GSE65904 merged, was used for the external evaluation.
To perform 2-, 3-, 5-, 7-, and 10-year receiver operating
characteristic (ROC) analyses, the R package “timeROC” was
used. The prognostic model by univariate independent
prognostic analysis and multivariate independent
prognostic analysis using the R package “survival” was
built for identifying the clinical features, risk score, and
patient OS correlation. Using the R package “rms,” a
nomogram was constructed. To assess the nomogram’s
prognostic accuracy, calibration and ROC curves were
performed.

TABLE 1 | Coefficients in the LASSO Cox regression model.

i Gene Coef

1 FASLG −0.01553
2 TLR3 −0.059485
3 ZBP1 −0.324751
4 TNFRSF1B −0.098664
5 USP22 0.088670
6 PLK1 0.225349
7 GATA3 0.055237
8 EGFR 0.129443
9 TARDBP −0.408012
10 TNFRSF21 −0.064455

FIGURE 3 | A prognostic signature of NRG construction. (A) The 10 prognostic genes’ LASSO coefficient profiles. (B) Partial likelihood deviation map. (C,F)
Patients in TCGA and GEO cohorts’ risk score distribution and survival status. (G,I) TCGA and GEO cohorts’ PCA plots. (H,J) K-M survival curves for the training and
validation sets.
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Functional Enrichment Analyses
The DEGs (|log2FC|≥ 1 and FDR < 0.05) were filtered in TCGA-
SKCM among the two risk groups. The Gene Ontology (GO)
functional enrichment analysis had been done for the DEGs using
the R “clusterProfiler” package and “circlize” package. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis associated with the NRG signature had been done by
conducting the Gene Set Variation Analysis (GSVA)
(Hänzelmann et al., 2013; Kanehisa et al., 2021). The R
package “GSVA” was used to find enriched pathways between
the two risk groups using a normalized p < 0.05.

Immune Response and Tumor
Microenvironment Analysis
The EPIC (Racle and Gfeller, 2020), MCP-counter (Becht et al.,
2016), XCELL (Aran et al., 2017), QUANTISEQ (Finotello
et al., 2019), CIBERSORT-ABS, CIBERSORT (Newman et al.,
2015; Chen et al., 2018), and TIMER (Li et al., 2020) algorithms
had been used for calculating the relationship between the risk

score and immune filtration status. For calculating the
immune score that determines the immune-stromal
component levels of the tumor samples’ ratio by the
ESTIMATE algorithm, the R package “estimate” was used.
These scores were Immune, Stromal, and ESTIMATE scores.
Each of them was linked to immune and stromal cells and their
sum in TME. We evaluated the correlation between risk scores
and tumor stemness, and the relationship between immune
infiltration subtypes and risk scores using the two-way
Spearman correlation. The cancer immunity cycle gene set
was derived from tracking tumor immunophenotype (TIP;
http://biocc.hrbmu.edu.cn/TIP/), and the ssGSEA algorithm
enriched the cancer-immune cycle–related gene set between
the two risk groups and analyzed the correlation between risk
score and cancer-immune cycle.

Immunotherapy Analysis
To assess the response to the immunotherapy in risk subgroups,
we used the Cancer Immunome Database (TCIA) to obtain the

FIGURE 4 | The risk model performance. (A,D) The prognostic model ROC curves in TCGA and GEO cohorts. The univariate (B) and multivariate (E) Cox
regression analysis of factors with OS. Construction of the nomogram model: (C) Nomogram predicting 3-, 5-, 7- and 10-year OS for SKCM patients. (F) Nomogram
model calibration curves. (G–J) The nomogram’s time-dependent ROC curves predict 3-, 5-, 7-, and 10-year survival.
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SKCM patients’ Immunophenoscores (IPS) and then compared
the differences in IPS between risk groups.

Online Database Verification
TheHPA database was used to identify tenNRGs’ protein expression
levels in tumor and normal tissues (Uhlen et al., 2010). The K-M
survival curves showed prognostic significances of NRGs, in which
the patients were separated based on each gene’s median expression
into two groups by the TIMER 2.0 usage (Li et al., 2017).

Tumor Immune Single-Cell Hub Database
The Tumor Immune Single-Cell Hub (TISCH; http://tisch.comp-
genomics.org) is a large-scale online database of single-cell RNA-
seq focused on the TME (Sun et al., 2021). This database was used
to systematically investigate the TME heterogeneity in various
datasets and cell types.

RESULTS

Prognostic Necroptosis-Related DEGs
Identification in The Cancer Genome Atlas
Cohort
Figure 1 shows the study design workflow diagram and grouping.
Thirty-two prognostic genes were chosen from 67 NRGs using
univariate Cox regression, and their network was presented
(Figure 2A). Sixty-seven NRGs’ expression levels were
examined in 557 normal skins and 471 melanoma tissues from
TCGA and GTEx datasets, and 28 genes were differentially
expressed. FASLG, RIPK3, TLR3, ZBP1, TNFRSF1B, USP22,
CFLAR, PLK1, GATA3, EGFR TARDBP, and TNFRSF21 were
significantly related to the patient’s OS. These genes were
considered the prognostic necroptosis-related DEGs

FIGURE 5 | The risk score and clinicopathological characteristics’ correlation. (A) The heatmap shows the clinicopathological features distribution between the two
risk subgroups. (B) Risk score distribution stratified by (B) tumor stage, (C) age, (D) gender, (F) T stage, (G)N stage, and (H)M stage. (E,I) The distribution of risk scores
according to tumor stage and T stage. *p <0.05, **p <0.01 and ***p <0.001.
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(Figure 2B). A univariate Cox regression analysis was done to
determine 12 candidate genes (Figure 2C). The correlation
analysis of these genes was performed in Figure 2D. The
heatmap revealed the 12 candidate genes’ differential
expression in tumor tissues and normal skin (Supplementary
Figure S1).

Gene Signature Construction in The Cancer
Genome Atlas and Gene Expression
Omnibus Cohort
Further LASSO analysis was done to construct a prognostic
signature with 12 prognostic DEGs, we used data from TCGA
as a training set, and finally, we selected ten genes from
12 prognostic DEGs (Table 1). To determine the penalty
parameter (λ), the minimum parameters had been used
(Figures 3A,B). GEO data were used as a validation set for
the external evaluation. Patients in these two cohorts were
categorized into two risk subgroups based on the median risk
scores (Figures 3C–F). The PCA analysis findings suggested that
the two subgroups’ patients were distributed randomly through
the TCGA (Figure 3G) and GEO (Figure 3I). The K-M curve

suggested that the risk levels could significantly predict the OS in
SKCM patients (Figures 3H,J). The OS of the low-risk subgroup
increased in the two cohorts. The risk model’s predictive accuracy
is moderate according to the ROC curves at years 2 (ROC =
0.700), 3 (ROC = 0.650), 5 (ROC = 0.709), 7 (ROC = 0.706), and
10 (ROC = 0.698) (Figure 4A). Furthermore, the results in the
validation set were also obtained (Figure 4D). The risk score
could function as a predictive factor for patients in the TCGA
cohort. Both univariate and multivariate Cox regression analyses
were used for analyzing age, gender, tumor stage, TNM stage, and
risk score. The risk score and OS were linked in the univariate
analysis (HR = 2.682, 95%CI = 1.876–3.834, p＜0.001)
(Figure 4B). In the multivariate Cox regression analysis, they
were shown to be an independent OS predictor (HR = 2.607, 95%
CI = 1.796–3.786, p＜0.001) (Figure 4E). These findings
indicated that the risk score was a predictive factor. Based on
the TCGA cohort, for 471 SKCM patients, a nomogram was
employed to predict the 3-, 5-, 7-, and 10-year OS (Figure 4C).
Figure 4F presented the nomogram’s high accuracy and
sensitivity in a calibration plot. The 3-, 5-, 7-, and 10-year
AUC values were 0.694, 0.722, 0.741, and 0.734, respectively,
in the training cohort (Figures 4G–J). By comparing the

FIGURE 6 | The enriched items in functional analysis. (A,B) Gene ontology (GO) enrichment analysis. (C) KEGG pathway enrichment by GSVA between two risk
subgroups.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9170077

Song et al. NRG Signature in SKCM

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


distribution of clinical features of the high- and low-risk groups,
we observed a significant difference in the distribution of the
tumor stage and T stage in the risk group, while other clinical
characteristics did not change significantly between the two
subgroups (Figures 5A–D, F−H). Furthermore, we performed
a comprehensive analysis of the distribution of risk scores in
tumor stage and T stage, and we found that patients with high
T-stage tumors had higher risk scores (Figures 5E,I).

Functional Enrichment Analysis
GO analyses were performed to assess the two risk groups’
DEGs for clarifying the biological activities and the risk score’s
correlation. Biological process (BP), cellular component (CC),
and molecular function (MF) were the GO enrichment
analyses’ three parts. For the TCGA database, the enriched
GO terms of each part were shown in Figures 6A,B and
Supplementary Table S2. The major biological process was
connected with the immunity-related process, such as immune
response–activating cell surface receptor signaling pathway,
leukocyte-mediated immunity, immune response–regulating

signaling pathway, and immune response–activating signal
transduction. The GSVA was performed to analyze KEGG
pathways between two risk subgroups, revealing
57 significantly enriched pathways (adj p-value <0.05;
Supplementary Table S3). The GSVA-KEGG pathway
enrichment in the low-risk group was significantly related
to immunity, including the B-cell receptor signaling
pathway, toll-like receptor signaling, T-cell receptor
signaling pathway, and natural killer cell–mediated
cytotoxicity (Figure 6C). We were surprised to find that
many GO terms and KEGG pathways were linked to
immunological responses. Therefore, we further investigated
the correlation between immune response and the risk score.

Immune Response and Tumor
Microenvironment
We explored the relationship between the risk score and the
infiltrated immune cells’ abundance using the CIBERSORT-ABS,
TIMER, XCELL, CIBERSORT, MCP-COUNTER, QUANTISEQ,

FIGURE 7 | The tumor microenvironment characteristics between risk subgroups. (A) Immune cell infiltration based on XCELL, TIMER, QUANTISEQ, MCP-
counter, CIBERSORT, CIBERSORT-ABS, and EPIC algorithms between high- and low-risk groups. (B,D)Comparison of ssGSEA scores between the two risk groups in
the TCGA cohort. (G) ESTIMATE scores, stromal scores, and immune scores for different risk statuses. (C,E,F,H) Correlation between risk scores and RNAs, DNAs,
immune subtype, and immune checkpoints.
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and EPIC algorithms (Figure 7A). The ssGSEA algorithm had
also been used to assess the immune cell infiltration levels
associated with the risk score for 471 SKCM patients in the
TCGA using transcriptome profiling data. Almost all cell types,
related pathways, and functions were much higher in the low-risk
group, except mast cell scores (p <0.05, Figures 7B,D). The gene
expression and immune cells infiltration correlation were
calculated using the CIBERSORT algorithm (Supplementary
Figure S2). Immune infiltration can divide into four subtypes,
named C1, C2, C3, and C4, which represent (wound healing),
(INF-g dominant), (inflammatory), and (lymphocyte depleted),
respectively, which have been used to demonstrate the correlation
between the risk score and immune subtypes (Tamborero et al.,
2018). The risk score was found to decline in C2 (Figure 7F)
significantly. We assessed the relationships between the hub
genes and the immune subtypes, FASLG, GATA3, TLR3,
TNFRSF1B, and ZBP1, expressed at significantly higher levels
in the C2 immune subtype (Supplementary Figures S3A–E),
which was also significantly linked to TNFRSF21 downregulated
gene expression (Supplementary Figure S3G). The TARDBP
and PLK1 expression was significantly decreased in C3
(Supplementary Figure S3H). The TME and tumor stemness
were important for tumor progression. To generate the immune,
stromal, and ESTIMATE scores, the ESTIMATE algorithm had
been used. The three scores differed significantly in the two risk
groups (p <0.05; Figure 7G). The risk score and DNA and RNA
methylation profiles had a positive correlation, which could
measure the tumor stemness (DNAss, RNAss; p < 0.05;
Figures 7C,E). The necroptosis-related hub gene expression,
except USP22, PLK1, and TARDBP, correlated positively with

stromal and immune scores (Supplementary Figures S4A–T).
The cancer cells can escape anti-tumor immunity using an
immunosuppressive mechanism of immune checkpoints. With
the ICI therapy approved, ICIs have considerably transformed the
clinical treatment of human cancer (Llovet et al., 2018; Salik et al.,
2020). We then analyzed the relationship between the risk score
and the immune checkpoint expression. The risk score and those
immune checkpoint genes expression had a negative correlation,
except the CD276 and VTCN1, which had a positive correlation
with the risk score (Figure 7H). The results suggested that ICIs
therapy was more suitable for the low-risk group. The cancer
immunity cycle, which explains tumor cell immune detection and
immunotherapy, has recently become a research hotspot. The
cancer immunity cycle is divided into seven steps, from the initial
antigen presentation until the final killing of tumor cells. As
expected, all cancer immunity cycles were highly enriched in the
low-risk group. The risk score and cancer immunity cycles had a
negative correlation (Figures 8A,B).

Analysis of Immunotherapy in the Risk
Subgroups
Cancer immunotherapies, such as anti-CTLA4 and anti-PD1
therapies, improved the prognosis and OS in metastatic and
advanced melanoma (Ladányi, 2015; Davis et al., 2019). Based
on the background, we investigated the differences in the
potential immunotherapeutic response between the two risk
groups in the TCIA database. The prediction findings found
that the more suitable for immunotherapy was the low-risk group
(Figures 8C–F).

FIGURE 8 | The cancer immunity cycle and the immunotherapy response prediction among different risk groups. (A) The enrichment of the cancer immunity cycle
between the two risk groups. (B) The cancer immunity cycle and the risk score correlation. (C,D,E,F) The IPS and risk score correlation.
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Online Databases Verification
To enhance the reliability of the database, the protein expressions
of 10 NRGs were analyzed using the HPA database (Figure 9A).
These results go along with our differential gene expression
analysis (Figure 9C). The ten gene signatures’ Kaplan–Meier
survival curves were presented in Figure 9B, and we found that
USP22, PLK1, and EGFR high expression was significantly linked
to poor prognosis.

Correlation Analysis of
Necroptosis-Related Genes and Tumor
Microenvironment
TME has an integral role in tumor occurrence, development, and
prognosis. Therefore, we used six single-cell datasets
(SKCM_GSE115978_aPD1, SKCM_GSE120575_aPD1aCTLA4,
SKCM_GSE123139, SKCM_GSE139249, SKCM_GSE148190,
and SKCM_GSE72056) from the TISCH database to analyze
the expression of 10 NRGs in TME-related cells. We found
that FASLG, TNFRSF1B, GATA3, ZBP1, and TARDBP had a
high expression in a variety of immune cells, such as proliferating
T cells, exhausted CD8+ T cells, CD4+ T cells, B cells, and NK
cells. The highest expression of FASLG, TNFRSF1B, GATA3,
TARDBP, and PLK1 was found in proliferating T cells, while
ZBP1 showed the highest expression in plasma cells. In addition,

TARDBP was also highly expressed in malignant cells and
endothelial cells. USP22 is highly expressed in fibroblasts,
endothelial cells, and malignant cells, and also has a low to
moderate expression in immune cells of different types. EGFR
was mainly expressed in fibroblasts, and TNFRSF21 was highly
expressed in malignant cells and dendritic cells (Figures 10B,C,
and Supplementary Figure S5). In GSE72056, there are 14 cell
clusters and 8 cell types, and the distribution and number of
various cell types have been visualized (Figure 10A).

DISCUSSION

Necroptosis, which is considered to be a secondary mechanism to
apoptosis, is a tightly regulated inflammatory cell death form
(Molnár et al., 2019). Necroptosis has been implicated in tumor
initiation, progression, and metastasis, as indicated in previous
research (Jouan-Lanhouet et al., 2014; Barbosa et al., 2018).
Furthermore, necroptosis has been considered a novel
approach to killing cancer cells and be a future treatment for
cancer patients (Philipp et al., 2016). However, in previous
studies, the NRG’s specific role in the SKCM prognosis has
not been fully elucidated.

In the current research, depending on NRGs from TCGA and
GEO, a novel predictive model for SKCM was built and validated.

FIGURE 9 | Online database analysis. (A) Validation of the 10-gene expression in our model based on the HPA database. (B) K-M curves for high- and low-
expression level subgroups based on the 10-gene signature. (C) Hub gene expression in GTEx normal, TCGA normal, and TCGA cancer tissues.
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We systematically investigated 67 NRGs in SKCM patients. The
differentially expressed genes were screened, and after univariate
Cox analysis and LASSO regression, we selected 10 genes (FASLG,
TLR3, ZBP1, TNFRSF1B, USP22, PLK1, GATA3, EGFR, TARDBP,
and TNFRSF21) to construct a novel 10-gene prognostic model.
According to our assessment, this model predicted SKCM patients’
prognosis. The results and the identified genes are related to each
other. For example, FASLG can reduce the melanoma cells’
mediated apoptosis to affect SKCM patients’ prognosis (Shukuwa
et al., 2002). ADAR1 can suppress the ZBP1-mediated necroptosis to
promote tumorigenesis (Karki et al., 2021). TLR3 directly activates
necroptosis under the regulation of RIPK3 (Kaiser et al., 2013). As
we know, this research is the first to present a new necroptosis-
related prognostic model for predicting SKCM prognosis.

Before us, most literature concerning the prognostic gene
signatures of SKCM was focused on m1A-, m5C-, and m6A-
methylation (Wu et al., 2021); autophagy (Deng et al., 2021);

ferroptosis (Xu et al., 2021); pyroptosis (Ju et al., 2021); and
oxidative stress (Yang et al., 2021). For example, Yang et al. built
an oxidative stress–associated gene’s prognostic model for
melanoma. Deng et al. built the autophagy-related gene’s
prognostic model for melanoma, which could predict the
prognosis of SKCM efficiently. By contrast, we not only
created a risk model but also comprehensively explored the
link between the risk score and the immune response.
Furthermore, our results were verified by the HPA database.

The development, prognosis, and treatment efficacy of
melanoma were closely related to the TME (Avagliano et al.,
2020). GSVA analyses revealed enriched pathways in the low-risk
group, such as apoptosis, T-cell receptor signaling pathway,
natural killer cell–mediated cytotoxicity, and toll-like receptor
signaling. Many of these pathways were linked to necroptosis,
cancer progression, and immunotherapy (Tang et al., 2020; Nouri
et al., 2021). The GO analysis results showed the significant

FIGURE 10 |NRG expression in SKCM TME-associated cells. (A) Annotation of all cell types in GSE72056 and the percentage of each cell type. (B,C) Percentages
and expressions of FASLG, TLR3, TNFRSF1B, USP22, ZBP1, PLK1, GATA3, EGFR, TARDBP, and TNFRSF21 in different cell types in GSE72056.
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enrichment of genes in immune-related processes, such as
immune response–activating signal transduction and
lymphocyte-mediated immunity. The study findings indicated
that the prognostic signature was correlated with melanoma
tumor prognosis and related to the immune status of these
cancer patients. We performed immune infiltration analysis by
eight algorithms and found higher immune cell infiltration levels
provoked higher immune pathway activation in the low-risk
subgroup. This meant a decrease in the anti-tumor
immunotherapy in the high-risk group.

Using ESTIMATE analysis, the low-risk group was found to
have higher degrees of immune and stromal cell infiltration,
which showed relatively good immunogenicity and
immunoreactivity. By investigating immune infiltration,
C2 was related closely to the low-risk score and might have
the effect of preventing and inhibiting cancer progression.
Furthermore, our results showed that cancer stem–like cell
accumulation was positively correlated with a risk score. In
recent decades, cancer stem–like cells are hypothesized to be
responsible for cancer recurrence, therapy resistance, and
metastasis. The cancer stem–like cells’ increased number and
poor prognosis are correlated (Shiroki et al., 2017). Our research
found a positive correlation between the risk signature and tumor
stem cell scores, suggesting that our gene signature functions as a
risk profile. The cancer immunity cycle is considered to be an
important cyclic event for effective anti-tumor growth through
immunity, and the cancer immunity cycle comprehensively
reflects the outcome of a complex variety of immune
regulatory interactions within the TME. A negative
relationship between the risk score and the cancer immunity
cycle step was found, and thus, the low-risk group was defined as
an inflammatory TME. The immune checkpoints’ expression has
a role in immune escape via inhibiting the T-cell response, and
immune checkpoint inhibitors have been widely used for
melanoma, especially anti-CTLA4 and anti-PD-1 antibodies
(Carlino et al., 2021). Another feature of the inflammatory
TME is the upregulation of immune checkpoint expression. In
this research, the immune checkpoint genes’ expression and the
low-risk group had a negative correlation. In addition, the two
risk subgroups’ immunogenicity was evaluated using IPS analysis.
These results meant the risk signature could guide the use of ICBs
and the low-risk groups are suitable for immunotherapy. In
addition to the existing therapies, the development of novel
immunotherapeutic approaches holds great promise in the
field of melanoma treatment. For example, the mutant
P53 protein has been considered a new target for
immunotherapy in melanoma, and the new biological drug
ALT-801, which specifically targets P53 protein, is currently in
a phase II clinical trial in combination with cisplatin in metastatic
melanoma (Chasov et al., 2021).

TME consists of malignant cells, stromal cells, and immune
cells, which play a key role in both tumorigenesis and metastasis
(Arneth, 2019). FASLG, TNFRSF1B, GATA3, TARDBP, ZBP1,
TNFRSF21, and TLR3 are mainly expressed in multiple immune
cell types, and immune cells have a role in TME to inhibit tumor
progression (Simiczyjew et al., 2020). We, therefore, speculated
that the high expression of the above NRGs predicted a higher

degree of immune cell infiltration in the TME, predicting a
better prognosis. Subsequently, we compared the K-M curves of
the two groups with high and low expression of NRGs in the
TCGA cohort, and the groups with high expression of FASLG,
TNFRSF1B, GATA3, TLR3, ZBP1, and TNFRSF21 had better
survival times, thus well validating our hypothesis.
USP22 mainly infiltrates endothelial cells. Since stromal cells
can promote tumor growth and influence cancer behavior
(Simiczyjew et al., 2020), we speculated that high expression
of USP22 and EGFR suggested a higher degree of stromal cell
infiltration in the TME, indicating a worse prognosis, and the
K-M curve verified our hypothesis. PLK1 has been shown to be
an oncogene (Li et al., 2018), and high PLK1 expression tends to
be associated with reduced immune activity, which may be
related to the fact that PLK1 is rarely expressed in other
immune cells except for proliferating T cells. The K-M
curves of the two groups with high and low expression of
TARDBP were not statistically significant, and this may
relate to the high expression of TARDBP in immune cells,
malignant cells, and stromal cells. Therefore, these indicate
that NRGs are associated with the TME of SKCM, and
targeting the corresponding genes in corresponding cell types
may benefit from manipulating the cellular components in the
TME, but the specific mechanism needs further study.

Our study had some limitations. First, the research still
requires a wider range of multi-center and prospective clinical
research studies to support our hypothesis. Second, the present
study consisted of only bioinformatic analyses, lacking
verification through experiments in vivo and in vitro.
Moreover, the detailed mechanism between NRGs and
melanoma prognosis needs further investigation.

CONCLUSION

We constructed a novel NRG risk signature in SKCM by
combining bioinformatic tools and related algorithms. The
ten-gene signature was linked to immune cell infiltration,
TME, immune checkpoints, immune functions, and
immunotherapy for SKCM patients. The results obtained from
this study may contribute to the personalized clinical decision-
making for SKCM patients.
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