
 International Journal of 

Molecular Sciences

Article

Deletion of Col15a1 Modulates the Tumour Extracellular Matrix
and Leads to Increased Tumour Growth in the MMTV-PyMT
Mouse Mammary Carcinoma Model

Guillermo Martínez-Nieto 1,†, Ritva Heljasvaara 1,†, Anne Heikkinen 1,2, Hanne-Kaisa Kaski 1, Raman Devarajan 1,
Otto Rinne 1, Charlotta Henriksson 1, Emmi Thomson 1, Camilla von Hertzen 1, Ilkka Miinalainen 2,
Heli Ruotsalainen 1, Taina Pihlajaniemi 1 and Sanna-Maria Karppinen 1,*

����������
�������

Citation: Martínez-Nieto, G.;

Heljasvaara, R.; Heikkinen, A.;

Kaski, H.-K.; Devarajan, R.; Rinne, O.;

Henriksson, C.; Thomson, E.;

von Hertzen, C.; Miinalainen, I.; et al.

Deletion of Col15a1 Modulates the

Tumour Extracellular Matrix and

Leads to Increased Tumour Growth in

the MMTV-PyMT Mouse Mammary

Carcinoma Model. Int. J. Mol. Sci.

2021, 22, 9978. https://doi.org/

10.3390/ijms22189978

Academic Editor: Martin Götte

Received: 24 June 2021

Accepted: 10 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu,
90220 Oulu, Finland; Guillermo.martineznieto@utu.fi (G.M.-N.); ritva.heljasvaara@oulu.fi (R.H.);
anne.heikkinen@oulu.fi (A.H.); hanne-kaisa.kaski@fimnet.fi (H.-K.K.); raman.devarajan@oulu.fi (R.D.);
Otto.Rinne@mehilainen.fi (O.R.); charlotta.henriksson@oulu.fi (C.H.); emmi.thomson@oulu.fi (E.T.);
camilla.vonhertzen@oulu.fi (C.v.H.); heli.ruotsalainen@oulu.fi (H.R.); taina.pihlajaniemi@oulu.fi (T.P.)

2 Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; ilkka.miinalainen@oulu.fi
* Correspondence: sanna-maria.karppinen@oulu.fi
† These authors contributed equally to this work.

Abstract: Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to sup-
press the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human
breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM
zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis
using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first
time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to
increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in
mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer
during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours.
However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced
rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show
that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the
inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results
support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal
diverse roles of this collagen in different cancer types.

Keywords: angiogenesis; breast cancer; collagen XV; ECM remodelling; fibrosarcoma; MMTV-PyMT;
restin; syngeneic tumour models; tumour stroma

1. Introduction

The extracellular matrix (ECM), together with blood vessels, immune cells, fibrob-
lasts and signalling molecules, forms the tumour microenvironment, which significantly
contributes to cancer development and progression. Compared to the ECM of healthy
tissues, the architecture of tumour ECM is commonly disorganized, and its remodelling
is dysregulated, which can drive tumour progression by activating cell proliferation and
invasion [1,2].

Collagen (Col) XV is a non-fibrillar basement membrane (BM) zone-associated pro-
teoglycan which, together with another BM proteoglycan, ColXVIII, forms a subgroup
of multiplexins (multiple triple-helix domains with interruptions) within the collagen
superfamily [3,4]. These two collagens share a similar multidomain structure, for example,
both contain an anti-angiogenic C-terminal domain termed restin in ColXV and endostatin
in ColXVIII. However, the two multiplexins have many differences in terms of structure,
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tissue distribution, localisation and physiological functions, as summarised in recent review
articles [5–8]. ColXVIII is an integral component of the BM, whereas ColXV localises at
the interface between the BM and fibrillar collagen network and has an important role
in maintaining the integrity of the ECM [5–10]. ColXV is primarily produced by cells
originating from the mesenchyme, including fibroblasts, myocytes, adipocytes and nerve
cells, and is strongly expressed, for example, in the heart and skeletal muscles [5]. It is also
abundantly expressed by endothelial cells and deposited to vascular BM zones, securing
the integrity of the perivascular ECM and capillaries [5,11]. Genetically modified model
organisms highlight the functional importance of ColXV in the muscular, cardiovascular
and neuromuscular systems [5,10,11].

The anti-angiogenic and anti-tumourigenic functions of ColXVIII-derived endostatin
have been extensively studied in different cancers [7,8,12], whereas substantially less is
known about the roles of ColXV and its restin domain in cancer. The expression and
localisation of ColXV is altered in human breast, colon and skin carcinomas: it disap-
pears from the epithelial BM zones in invasive tumours and, in some cases, becomes
expressed by cancer-associated fibroblasts and inflammatory cells in the desmoplastic
tumour stroma [13–16]. Instead, ColXV persists or is even upregulated in the vascular
BMs of tumours [13,14,16,17]. Based on the localisation of ColXV in the malignant fibrillar
stroma and in tumour vasculature, and its known function in supporting ECM in healthy
tissues [5,6,10,11], it has been postulated to stabilise tumour vessels and promote the organ-
isation of a fibrotic tumour stroma. In respect to tumour angiogenesis, it has been shown
that the recombinant restin domain of human ColXV impedes neovascularisation in vivo
in renal carcinoma xenografts [18]. Mechanistically, restin inhibits the proliferation and
migration of endothelial cells, and induces their apoptosis in vitro [18–20].

An interesting hypothesis on the role of ColXV as a tumour suppressor was launched
in 2003 [21]. This hypothesis is based on observations of the presence of the ColXV gene in
a tumour suppressor locus in the mouse and human genome, and on cell studies showing
that the deletion of a chromosome 4 locus containing Col15a1 in mouse fibroblasts results
in a malignancy of tumour cell hybrids and compromises the formation of collagenous
tumour stroma [22,23]. These observations were followed up by studies showing that the
overexpression of full-length ColXV cDNA in human cervical cancer cells (which normally
do not express ColXV) significantly inhibits tumour cell growth in soft agar and in vivo
without affecting tumour angiogenesis in xenografts; furthermore, the overexpression
of the restin domain alone in tumour cells does not inhibit the growth of subcutaneous
tumours [24,25].

The functions and significance of ColXV in different cancers are incompletely un-
derstood. The previously proposed tumour suppressor [6,21,24–26] and anti-angiogenic
roles [18–20,25] of ColXV and restin are largely based on in vitro studies. Here, we wanted
to further clarify these suggestions by using in vivo mouse tumour models. Hence, we
crossed Col15a1 knockout mice with a transgenic mouse model with mammary tumour
virus promoter-driven overexpression of the polyoma middle T antigen (MMTV-PyMT)
in mammary epithelial cells. In addition, to obtain a broader view on ColXV’s roles in
tumourigenesis, we monitored its impact in other selected experimental mouse tumour
models, namely syngeneic lung cancer, melanoma and fibrosarcoma transplants, as well
as chemical-induced subcutaneous fibrosarcoma. We show that the deletion of the gene
encoding ColXV leads to increased tumour growth in the MMTV-PyMT model but does not
affect tumour growth in the other models. Importantly, we observed that ColXV is needed
for the proper organisation of the tumour matrix. Moreover, the ablation of ColXV, includ-
ing its anti-angiogenic restin domain, does not allow for more potent tumour angiogenesis
in the used experimental models but affects capillaries in mammary tumours. In conclu-
sion, our study highlights the role of ColXV as an ECM organizer in the breast tumour
microenvironment and reveals potentially diverse functions in different cancer types.
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2. Results
2.1. ColXV in Mouse Mammary Carcinogenesis

To investigate the in vivo roles of ColXV in mammary tumourigenesis, we crossed
Col15a1−/− mice with the MMTV-PyMT model and compared tumour development in the
PyMT;Col15a1−/− crosses with the wild-type MMTV-PyMT (PyMT) mice from 4 weeks up
to 14 weeks of age. We did not observe differences in the incidence or number of palpable,
desmoplastic mammary glands between the two mouse lines during the examination
period (Figure 1A,B). Although considerable variation was observed in the weights of
individual tumourous glands in both genotypes, the knockout mice showed a significantly
increased total tumour burden at weeks 6–12 compared with the PyMT controls; however,
this difference levelled off in 13-week-old mice (Figure 1C). A visual inspection of whole
mount Carmine Alum or haematoxylin-eosin-stained glands did not reveal obvious differ-
ences in the amount of tumourous tissue between the PyMT and PyMT;Col15a1−/− mice
at 6, 9, 11 or 13 weeks of age (Figure 1D,E, some data not shown), most likely because of
the substantial variation in the amount of tumourous tissue in different glands in both
genotypes. Quantification of the proliferation marker protein Ki67 and the proliferating
cell nuclear antigen (PCNA) signals in tumours showed considerable variation between,
and even within, the specimens; however, both antibodies revealed a trend of more active
tumour cell proliferation in PyMT;Col15a1−/− samples than in PyMT samples at weeks 6–9
(Supplementary Figure S1). Conversely, at later stages of tumourigenesis, at weeks 10–14,
cancer cells in control PyMT tumours divided more than those in the knockout samples
(Supplementary Figure S1). In summary, we observed an increased mammary tumour
burden in the ColXV-deficient mice; however, our analyses of tumour cell proliferation did
not unambiguously explain this change.

Immunofluorescence staining of wild-type PyMT mammary tumours (Figure 1F,
Supplementary Figure S2) showed that the ColXV signal surrounds normal mammary
ducts, where it resides juxtaposed and sometimes overlaps with the myoepithelial cell
marker alpha smooth muscle actin (αSMA) (Supplementary Figure S2A–C). A thin ColXV
signal can also be detected around mammary gland adipocytes (Figure 1F, Supplementary
Figure S2A–C). In mammary ducts that are partially or completely filled with tumour
cells, the ColXV signal still encircles the tumour nests (Figure 1F), whereas the αSMA
signal has disappeared from these sites, as indicated during mammary tumour progres-
sion (Supplementary Figure S2D–F) [27]. In these samples, the ColXV signal is strong in
the BMs of capillaries and larger blood vessels (Figure 1F), with the latter also showing
αSMA-positive smooth muscle layers (Supplementary Figure S2D–F). In invasive mam-
mary tumours (Figure 1F, Supplementary Figure S2G–I), the ColXV signal associates with
blood vessels and capillaries, where it localises in close proximity or overlaps with the
endothelial marker CD-31. ColXV is mainly lost from the borders of invasive tumours
(Figure 1F, Supplementary Figure S2G–I). Occasionally, faint and discontinuous ColXV
signals can be seen at the edges of advanced tumours, sometimes colocalising with faint
αSMA signals in these sites (Supplementary Figure S2J,K). A strong αSMA signal was
detected also in elongated structures in the interstitial tumour stroma, presumably rep-
resenting cancer-associated fibroblasts; however, a ColXV signal was not observed in
these locations (Supplementary Figure S2J). In addition to BM-associated staining, ColXV
sometimes showed a cytoplasmic type of staining in the myoepithelial layer surround-
ing the tumour islands (Supplementary Figure S2L), indicating that these cells actively
produce ColXV and deposit it into the BM. The ColXV antibody did not reveal signals in
PyMT;Col15a1−/− samples, and the secondary antibodies did not show unspecific binding
in PyMT samples, confirming the specificity of the antibodies used in the immunofluores-
cence staining (Supplementary Figure S2M–O). In summary, in PyMT oncogene-driven
mammary tumours, ColXV is expressed by myoepithelial cells and localises around tumour
nests in early-stage tumours and in ductal BMs in normal mammary ducts adjacent to tu-
mour tissue. ColXV is also produced by endothelial cells and deposited to tumour vascular
BMs. When tumours progress in malignancy, ColXV disappears from the ductal BM but
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prevails in the tumour vasculature. These first observations made on ColXV expression in
mouse mammary tumours are in accordance with ColXV localisation in ductal carcinomas
of the human breast, except for the deposits of ColXV signal in the interstitial stroma of
human tumours [15].
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We next focused on angiogenesis and ECM remodelling in PyMT mammary tumours 
in the absence of ColXV. Counting of intratumoural blood vessels in highly vascularised 
areas of mammary tumours showed significantly (approximately 20%) less CD-31-posi-
tive structures in the PyMT;Col15a1‒/‒ tumours than in the PyMT control tumours on av-
erage, potentially indicative of impaired tumour angiogenesis in the absence of the peri-
vascular vessel stabiliser ColXV [10,11]. However, quantification of the CD-31 signals in 

Figure 1. Mammary carcinogenesis in the wild-type MMTV-PyMT (PyMT) and ColXV-deficient
PyMT;Col15a1−/− mice. The incidence (A) and number (B) of desmoplastic mammary glands (MG)
per mouse at the age of 4–13 weeks. Abdominal and thoracic MGs were palpated weekly. (C) Total
tumour burden in the MGs of PyMT and PyMT;Col15a1−/− mice at indicated ages, measured as total
weight of the dissected four abdominal and two thoracic MGs. The numbers of mice included in the
analyses are shown in the bars. (D) Representative images of Carmine Alum-stained whole mount
preparations of MGs at week 11, and (E) haematoxylin-eosin (H&E)-stained MG sections at week 6.
(F) Representative images of ColXV and CD-31 double immunofluorescence staining in mammary
tumours of control PyMT mice at the age of 9 and 12 weeks. ColXV localises in the BMs of tumour
nests (arrowheads and magnification in insert) and in vascular BMs, where it often overlaps with the
CD-31 signal (arrows). a, adipocyte; s, tumour stroma; t, tumour tissue. Fluorescent signals: ColXV,
green; CD-31, red; nuclei, DAPI, blue. The scale bar in E is 200 µm and in F 100 µm. The error bars in
B and C indicate s.e.m. * p < 0.05; ** p < 0.01; ns, not significant.

We next focused on angiogenesis and ECM remodelling in PyMT mammary tumours
in the absence of ColXV. Counting of intratumoural blood vessels in highly vascularised
areas of mammary tumours showed significantly (approximately 20%) less CD-31-positive
structures in the PyMT;Col15a1−/− tumours than in the PyMT control tumours on average,
potentially indicative of impaired tumour angiogenesis in the absence of the perivascular
vessel stabiliser ColXV [10,11]. However, quantification of the CD-31 signals in the same
microscopic fields by automatic image analysis showed equally large CD-31-positive areas
in the samples, suggesting that PyMT;Col15a1−/− tumours may contain fewer but larger
blood vessels than control tumours (Figure 2A–C).
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Figure 2. Angiogenesis and fibrosis in MMTV-PyMT mammary tumours. (A) Immunohistochemistry
for CD-31 (red) in tumours of 12-week-old control PyMT and PyMT;Col15a1−/− mice. (B) Man-
ual counting of CD-31-positive structures in tumours. For both genotypes (n = 9), four random
microscopic fields were analysed at 100× magnification. (C) ImageJ analysis of CD-31-positive
areas in the same microscopic fields. Quantification of the signal in the light microscopy images of
tumour samples stained with Masson’s trichrome (D) and picrosirius red (E) revealed comparable
fibrillar collagen content in the control and PyMT;Col15a1−/− tumours. (F,G) Quantification of the
birefringence of picrosirius red signals captured under polarised light showed a slightly reduced
ratio of thick (red) to thin (green) collagen fibres in the PyMT;Col15a1−/− tumours in comparison to
the PyMT control tumours. Samples were collected from mice at 10–14 weeks of age (n = 8 mice for
both genotypes; one tumour sample per mouse was analysed). Four microscopic fields per tumour
at 100×magnification were analysed. Scale bars in (A,D–F), 200 µm. Error bars in (B,C,G) indicate
s.e.m. *** p < 0.001; ns, not significant.

The content of fibrillar collagen in the tumour tissues was analysed using Masson’s
trichrome and picrosirius staining and imaged by light microscopy. Neither method
showed obvious differences in the structure or amount of fibrillar stroma between the
genotypes (Figure 2D,E). Nevertheless, the examination of picrosirius red-stained sections
under polarised light, followed by quantification of birefringence, revealed that the ratio
of thick to thin collagen fibres was reduced to some extent, but not significantly, due to
Col15a1 inactivation (Figure 2F,G).

We then analysed the tumour samples at the ultrastructural level using transmission
electron microscopy. Stromal ECM in the PyMT control tumours contained large collagen
bundles and smaller-order fibrillar and mesh-like protein structures that typically filled
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the extracellular space (Figure 3A,D,G). In the PyMT;Col15a1−/− tumours, the stromal
ECM was more often loosely packed than in the controls, and contained non-fibrillar
protein deposits which also accumulated on collagen fibrils (Figure 3B,C,E,H,I). The colla-
gen content appeared slightly decreased in the PyMT;Col15a1−/− samples, however, the
collagen fibril density in the bundles was similar in both genotypes (Figure 3D,E), being
209.5 ± 43.2 fibrils/mm2 in PyMT and 214.1 ± 47.9 fibrils/mm2 in the PyMT;Col15a1−/−

samples; p = 0.86. In addition, in the PyMT;Col15a1−/− tumour stroma, the collagen fib-
rils were slightly, although not statistically significantly, smaller in diameter and were
also more variable in size than fibrils in the control samples (Figure 3D–F; for PyMT, M
(mean fibril diameter) is 46.1 ± 7.9 nm and SD% (standard deviation of fibril diameter
in %) is 17.2 ± 1.8%; for PyMT;Col15a1−/− M is 42.2 ± 8.4 nm and SD% is 19.9 ± 1.2%);
t-test for M, p = 0.09 and for (SD%) p = 0.012). These analyses supported the observations
made by picrosirius staining on the presence of immature fibres in the ColXV-deficient
tumours (Figure 2G). The most consistent, exclusive and highly prevalent finding in
the PyMT;Col15a1−/− tumours was accumulation of non-fibrillar protein aggregates on
the capillary BM, making it locally excessively thick (Figure 3H,I,K,L), similar to those
observed in the heart tissue capillaries of the Col15a1−/− mice [10]. PyMT;Col15a1−/−

tumour capillaries were typically covered with regions of both protein aggregates and
normal looking BM. Aggregates were not evenly distributed over the entire length of the
PyMT;Col15a1−/− tumour vessels, and their thickness varied from 100 nm to even 1500
nm (mean thickness 297 ± 220nm). Notably, these capillary BM aggregates were present
in all analysed PyMT;Col15a1−/− tumours but were not observed in the control tumours
(Fig. 3G-L). Morphological changes in the ColXV-deficient capillaries have been previously
reported in cardiac and skeletal muscle [10,11,28]. In the tumour stroma, however, the
integrity of endothelial cells was compromised in both genotypes, and reliable assessment
of recurrent changes, such as those in endothelial cell–cell junctions, was not possible in
the PyMT;Col15a1−/− tumours in relation to the PyMT control tumours (Figure 3G–L).
In summary, our investigations on tumour ECM remodelling in PyMT tumours lacking
ColXV expression demonstrated that this collagen has a role as an important organiser
of fibrillar tumour stroma and perivascular ECM. In addition, the data from this cancer
model confirm the previous observations that the ablation of ColXV/restin does not lead
to enhanced tumour neovascularisation.

2.2. Other In Vivo Tumour Models

The functions of ColXV in carcinogenesis were assessed using other types of experi-
mental mouse tumour models in addition to the MMTV-PyMT model. Thus, subcutaneous
fibrosarcomas were induced in the Col15a1+/+ control and Col15a1−/− knockout mice, both
in the C57BL/6JOlaHsd background, with a 3-methylchlolantrene (MCA) treatment. This
model was chosen because it represents a cancer of a mesenchymal cell origin, a cell type
associated with prominent ColXV expression [5], and follows the natural stepwise develop-
ment of cancer with chronic inflammation and accumulating mutations [29,30]. Tumours
appeared in the flanks of the mice after a similar latency period of 5–6 weeks in both
genotypes and, even if linear modelling showed that the Col15a1−/− mice have a delay in
the tumour incidence (i.e., in the percentage of mice bearing at least one persistent tumour
of 3 mm in diameter), this difference between the genotypes was not significant, and all
mice developed a measurable tumour at least in one flank by week 15 from the carcinogen
treatment (Figure 4A). In addition, tumour size measurements showed a trend of reduced
growth in the Col15a1−/− mice at the late monitoring phase; however, the differences
between the genotypes were not significant at these or any other time points (Figure 4B).
The effect of ColXV deficiency on tumour angiogenesis was evaluated by calculating the
CD-31-positive intratumoural vessels in the control and knockout tumours. This analysis
showed that ColXV deficiency did not alter the average number of microvessels in the
MCA-induced fibrosarcomas (Figure 4C).
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Figure 3. Ultrastructural analysis of mammary tumour stroma. Transmission electron microscopy
shows that, in the PyMT control tumours (A,G), the stromal ECM is filled with clearly outlined
collagen fibres (white stars), whereas, in the PyMT;Col15a1−/− tumours (B,C,H,I), the ECM appear
sparse (black stars), with accumulations of non-fibrillar protein aggregates (arrows). These protein
aggregates accumulated also within collagen fibres in the PyMT;Col15a1−/− tumours (E). The collagen
fibril diameter in PyMT;Col15a1−/− tumours is slightly decreased and variable (E,F) when compared
to PyMT control tumours (D,F). For calculating fibril diameter fractions, 893–1032 fibrils/genotype
and 121–265 fibrils/tumour sample were measured. The capillary BM (arrowheads) is well defined
in the PyMT control tumours (G,J) but thickened with ECM protein deposits in the PyMT;Col15a1−/−

tumours (H,I,K,L). No obvious difference was found in the endothelial cell–cell junctions (open red
circles) in the tumour capillaries between genotypes (G–L). Three mammary tumours from two mice
of both genotypes (n = 6 + 6), harvested at the age of 10 weeks, were analysed by electron microscopy.

Moreover, we assessed the influence of Col15a1 deletion in tumour growth using
common syngeneic mouse models for the C57BL6 background. None of the tested cancer
cell lines, namely T241 sarcoma, LLC1 Lewis lung carcinoma or B16F10 melanoma, showed
differences in primary tumour growth rates between Col15a1+/+ and Col15a1−/− mice when
injected subcutaneously (Figure 4D–F). Taken together, unlike the genetic MMTV-PyMT
model, the transplantable or chemical models did not reveal significant changes in primary
tumour growth or tumour angiogenesis in the absence of ColXV.

2.3. COL15A1 Expression-Based Survival Analysis for Breast Cancer Patients

Finally, we analysed the correlation between ColXV expression levels in breast can-
cer tumours and patient survival in open-access databases that include genome-wide
expression data and survival data of almost 8000 patients with breast cancer using the
Kaplan–Meier plotter tool [31]. This analysis showed that high ColXV mRNA levels are
associated significantly with a better relapse-free survival rate in low grade 1 tumours, but
with poor survival in aggressive grade 3 tumours (Figure 5).
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Figure 4. MCA-induced fibrosarcoma model and syngeneic transplantation models. (A) Incidence
of MCA-induced subcutaneous fibrosarcomas in Col15a1+/+ control and Col15a1−/− knockout mice,
presented as the percentage of mice bearing at least one persistent tumour of 3 mm in diameter.
(B) Tumour volumes at different time points. Numbers of tumours included in the analysis at differ-
ent time points are shown above the bars. (C) Microvessel densities in MCA-induced fibrosarcomas
were determined in 10 random fields of CD-31-stained fibrosarcomas (Col15a1+/+ n = 12, Col15a1−/−

n = 13) collected 13–17 weeks after MCA treatment at 200×magnification. (D–F) Growth curves of
subcutaneous syngeneic tumour transplants in the Col15a1+/+ control and Col15a1−/− mice. Numbers
of mice (N) and tumours (n) included in the experiments are indicated in panels. In (B–F), error bars
indicate s.e.m.
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Figure 5. High ColXV mRNA expression is associated with good prognosis. Kaplan–Meir plots
showing relapse-free survival of patients with breast cancer stratified by ColXV expression levels
(probe: 203477_at). (A) All available breast cancer cases with ColXV expression data (n = 4929),
(B) available grade 1 cases with ColXV expression data (n = 329), (C) available grade 2 cases with
ColXV expression data (n = 1177) and (D) available grade 3 cases with ColXV expression data
(n = 1300). For meta-analyses, the open access gene expression data and patients’ survival information
from TCGA, GEO and EGA, compiled in a single database at ww.kmplot.com [31], were used. High
ColXV, red line; low ColXV, black line. Hazard ratio (HR) and log-rank p values were automatically
computed using the best performing threshold as the cut off. The number of patients for each analysis
at different time points is also indicated in the survival graphs.
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3. Discussion

We present here data on the impact of the BM-zone associated ColXV on carcinogenesis
using our Col15a1 knockout mice subjected to both autochthonous and transplantable
tumour models. We show that the deletion of Col15a1 affects tumour burden in the genetic
MMTV-PyMT model; whereas, in the other studied models, the chemical subcutaneous
fibrosarcoma model and syngeneic transplantation models, deletion of ColXV did not
show any significant effect on tumour growth. Our key findings in the PyMT model are
that ColXV can suppress primary tumour growth in wild-type PyMT mice and that the
deletion of Col15a1 leads to the aberrant organisation of the interstitial tumour matrix.
These findings support the proposed tumour-suppressive and matrix-organiser roles of
ColXV [6,10,21] and the subsequent data from the overexpression models [24–26].

The remodelling of tumour ECM, together with the activities of different stromal
cells embedded in the ECM, significantly contributes to the tumourigenic process [2].
We previously detected a poorly organised fibrillar collagen matrix and interstitial non-
fibrillar protein deposits in aged Col15a1−/− mouse hearts [10]. Here, we report a novel
observation that, besides acting as a matrix organiser in non-tumourigenic tissues, ColXV
has a similar role in solid tumours. We found less and loosely organised fibrillar collagen
matrix in the PyMT;Col15a1−/− tumours in comparison with PyMT control tumours and
the presence of non-fibrillar protein aggregates in the tumour stroma (Figure 3). Moreover,
picrosirius red staining revealed a slight but not significant increase in the relative ratio
of thin to thick collagen fibres in PyMT;Col15a1−/− tumours, indicating more immature
collagen fibres in these than in the wild-type tumours (Figure 2G). In this context, we were
interested in comparing our new findings with early in vitro data by Henry Harris in 1985
showing that the malignancy of fibroblast-tumour cell hybrids is suppressed due to the
deposition of abundant collagenous ECM by these cells [23]. The formation of this fibrillar
matrix was dependent on the chromosomal region 4A4-C3 in mouse fibroblasts [22], the
region that also includes the Col15a1 gene [32]. When this region was deleted in the cell
hybrids, they regained the malignant phenotype and collagen production was reduced [23].
In summary, our current data support the previous cell hybrid studies pointing to a
role for ColXV in regulating matrix remodelling in tumours and widen the view of its
significance as an important matrix organiser from organ development and pathogenesis
to tumourigenic processes.

Tumour invasion is an intricate process that includes interactions between different
cells, such as myoepithelial cells and immune cells, and a release of various invasive and
angiogenic factors, such as matrix metalloproteases, to support tumour cell invasion and
proliferation [33]. The loss of the myoepithelial cell layer and the ductal BM precede breast
cancer invasion and contribute to the development of a tumour-supportive microenviron-
ment [27,33,34]. We show here that in healthy mouse mammary tissue, ColXV is expressed
by myoepithelial cells lining the mammary ducts and forms thin but continuous deposits
in ductal BMs; however, in the course of mammary carcinoma progression, ColXV is lost
from the ductal BM but prevails in the BMs of tumour vessels (Supplementary Figure S2).
Parallel observations have been made in normal human breast tissue and in the ductal ade-
nocarcinoma of the human breast [14] and in other carcinomas [13,15,16]. As the gradual
disappearance of the myoepithelial cells is a prerequisite of breast cancer progression, the
loss of ColXV in the ductal BM is probably a part of this process. Amenta et al. noticed that
ColXV disappears from the ductal BM of the breast earlier than some other BM markers [14].
This may reflect the fact that, unlike the integral BM components, such as laminin, ColIV
and ColXVIII, ColXV locates in the outermost layer of the BM and may thus also be easily
lost from the BM structures [9,10,35]. Given that ColXV is implicated in maintaining an
intact BM, its lack probably results in a fragile or fenestrated BM structure in the invasive
front and in the vasculature, which promotes tumour cell invasion and metastasis [6].
Our finding on the absence of ColXV in the fibrillar, αSMA-positive stroma in the mouse
mammary tumours differs from the previous observations on prominent ColXV staining in
the interstitium of invasive human breast, skin and colorectal tumours [13–16].
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Myoepithelial cells and the BM deposited by them separate the breast epithelium
from the surrounding stroma. Moreover, they mediate communication between luminal
epithelial cells and the stroma and secure the polarity of luminal epithelial cells and prevent
their dissemination to the surrounding tissue [34,36]. Interestingly, luminal epithelial cells
are unable to polarise when cultured alone in a ColI matrix, but undergo polarisation
when cultured in the BM extract Matrigel or together with myoepithelial cells in the ColI
matrix [37]. The critical BM component for cell polarisation produced by myoepithelial
cells was found to be the laminin subunit a1 [37], which is known to interact with ColXV
in vitro [38]. Based on these and our new findings, we speculate that myoepithelial cell-
derived ColXV could be involved in the regulation of mammary epithelial cell polarity by
integrating signals from the collagenous matrix through laminin to luminal epithelial cells.
Thus, in the presence of ColXV, the proper architecture of the collagenous ECM is preserved
and the communication between the ECM compartment and the mammary epithelium is
appropriately regulated, supporting E-cadherin stabilisation and epithelial polarisation,
as reported in a ColXV overexpression model of pancreatic adenocarcinoma [26]. Instead,
upon depletion of myoepithelial cells and ColXV expression during cancer progression,
the important regulatory link between ColI and luminal epithelium is lost, leading to
epithelial-to-mesenchymal transition EMT, the upregulation of N-cadherin through the
activation of the DDR1-Pyk2 pathway and tumour cell invasion, as has been shown to
occur in pancreatic cancer [26]. Detailed molecular studies are needed to confirm whether
ColXV is involved in the signalling routes regulating the polarity of mammary epithelial
cells and epithelial-to-mesenchymal transition.

We found increased mammary tumour growth in the PyMT;Col15a1−/− mice in com-
parison with control PyMT mice almost through the follow-up period, except for in the
latest examined time points, when the tumour burden was the same in both experimen-
tal groups (Figure 1C). Tumour cell proliferation analyses with two different antibodies
showed a trend towards higher proliferation in early-stage PyMT;Col15a1−/− tumours
collected from mice at the ages of 6–9 weeks than in controls of the same stage, but lower
proliferation in late-stage tumours at weeks 10–14. ColXV overexpression has been shown
to inhibit cervical carcinoma cell growth in soft agar and subcutaneous xenografts, but does
not affect cell doubling time in 2D cultures [24]. Together, the findings from our knockout
and previous overexpression models may imply that the tumour suppressive action of
ColXV is dependent on the surrounding 3D environment and is relevant in early-stage
tumours when the myoepithelial cells producing this collagen (Supplementary Figure S2)
are still present in the preinvasive carcinomas. In late-stage mammary carcinomas, the
lack of ColXV seems to lead to the inhibition of tumour cell proliferation and, together
with compromised tumour vascularisation (Figure 2, Supplementary Figure S1), may slow
down tumour growth (Figure 1C). However, this interpretation may be appropriate only
for epithelial cancers; as in the chemical fibrosarcoma model, the minor differences in
tumour incidence and growth between the Col15a1−/− and the wild-type control mice did
not support the potential tumour suppressive functions of ColXV. Moreover, none of the
transplantation carcinoma experiments conducted here, not even the epithelial LLC1 lung
carcinoma, revealed tumour suppressive actions for ColXV, which is likely at least partly
due to the very fast growth rates of subcutaneous tumours in these models. In summary,
ColXV appears to play complex, stage-dependent roles in the regulation of carcinogenesis,
and more detailed analyses in sophisticated experimental models are needed to reveal its
molecular mechanisms in epithelial cancers.

Our data of increased mammary tumour growth in the PyMT;Col15a1−/− mice and
the previous data on diminished ColXV expression in human breast cancer [14] raise the
question of the relation between ColXV levels and patient survival. Kaplan–Meier survival
analysis [31] showed that higher expression levels of Col15a1 gene transcripts in low grade
tumours associate with better relapse free survival, while in high grade tumours they
associate with poor survival (Figure 5). In light of the previous data [6,14,24] and our
results of the PyMT model, we propose that, in healthy mammary duct epithelium and
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low-grade tumours, ColXV is actively produced by myoepithelial cells and deposited into
ductal BM, serving as a tumour suppressor and preventing the transformation of epithelial
cells and their subsequent invasion. However, in high-grade tumours, myoepithelial cells
are lost, and ColXV is now derived from stromal cells, including the endothelial cells of
highly vascularised tumours and other cell types in the interstitium between the tumour
nests, as has been previously reported in human breast and other carcinomas [13,14,16].

The neovascularisation of tumours is a prerequisite for their growth and metasta-
sis [39]. We have shown that the deletion of Col15a1 leads to abnormal and leaky capillaries
in cardiac and skeletal muscles [10,11,28]. The tumour vasculature differs from the normal
vasculature by acquiring an irregular shape and size and by being fragile and leaky, hence
facilitating the intravasation of disseminating tumour cells [39,40]. Compared with intact
healthy vessels, we found morphological abnormalities in the capillaries of both control
PyMT and PyMT;Col15a1−/− tumour samples (Figure 3). Therefore, we could not make
firm conclusions on the potential effects of ColXV deletion on capillary structure and
function. However, based on the analysis of microvessel density and vascular area in the
PyMT;Col15a1−/− mammary tumours, we postulated that, relative to controls, the knockout
tumours have fewer vessels but are larger in size. This result is in accordance with the
observations here and in other studies showing that ColXV expression is strong and persis-
tent in the vasculature of human tumours [13,14,16] and is anticipated to play an important
role in supporting the tumour vasculature. Ultrastructural analysis revealed locally thicker
BMs and protein aggregates around capillaries in the PyMT;Col15a1−/− tumours, similar
to what has been observed in heart capillaries [10]. Together, these observations further
support the conclusion that this collagen plays an important role in vessel formation and
in maintaining capillary integrity, both during organ development and in solid tumours.
Our data from the PyMT mammary carcinoma and the MCA fibrosarcoma models also
support the previous data that ColXV-derived restin is not an efficient inhibitor of tumour
angiogenesis [25].

In conclusion, our data from the in vivo mammary carcinoma model support the
previous evidence for the tumour suppressor role of ColXV and advocate that the effect of
ColXV in tumourigenesis is not due to the anti-angiogenic properties of its restin domain
but rather because of its protective effect on tumour ECM remodelling and subsequent
consequences in tumour cell behaviour. The discrepancy in tumour growth that we
observed between the genetic MMTV-PyMT model and the transplantable or chemical
models may reflect the differences in ColXV function in cancers of distinct cell origin
and regulation, as well as differences in the ability of different experimental models to
accurately simulate functions of specific proteins.

4. Materials and Methods
4.1. Mice and Licences

Col15a1 knockout mice (Col15a1tm1Pih, MGI:2386162) have been generated previ-
ously [11]. These mice were backcrossed for at least eight generations into the FVB/N (Har-
lan, Horst, The Netherlands) background and for at least 10 generations into the C57BL/6J
OlaHsd (Harlan). The knockout mice in the FVB/N background were further intercrossed
with the MMTV-PyMT [FVB/N-Tg(MMTV-PyMT)634Mul/J] (MGI:2161653) mouse line
(Jackson Laboratory, Bar Harbor, ME, USA) [41] for mammary carcinoma studies.

Animal experiments were conducted in the Laboratory Animal Centre of the Uni-
versity of Oulu (OULAC) following the national and international legislation and guide-
lines for animal maintenance, care and experimentation. All mouse lines were main-
tained in a pathogen-free facility, group-housed in corncob bedding with enrichments,
given ad libitum purified water and irradiated standard rodent chow and maintained
on a 12:12-h light:dark cycle. Col15a1 mouse lines were maintained by internal licences
from the OULAC. Permissions and study protocols of tumour models were approved by
the Oulu Provincial Government (syngeneic models, OLH-2002-790/Ym-23) and by the
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Finnish National Animal Experiment Board (licence numbers: ESLH-2007-09159/Ym-23,
ESAVI/7328/04.10.03/2012 and ESAVI/1188/04.10.07/2016).

4.2. C57BL/6 Mouse Tumour Cell Lines

The B16F10 melanoma cell line was purchased from the American Type Culture Col-
lection (ATCC Cat. No. CRL-6475), Lewis lung carcinoma cell line LL/2 (LLC1) was a
generous gift from Prof. Karl Tryggvason, University of Oulu (origin ATCC Cat. No.
CRL-1642) and T241 fibrosarcoma cell line [42] from Prof. Kari Alitalo, University of
Helsinki. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), high
glucose (4.5 g/L), supplemented with 2 mmol L-glutamine, penicillin (100 U/mL), strepto-
mycin (100 mg/mL) and 10% foetal bovine serum (FBS). Cells were removed from culture
plates with trypsin-EDTA (0.25%), harvested into DMEM containing 10% FBS to inacti-
vate trypsin, washed twice with ice-cold phosphate buffered saline (PBS, pH 7.4) and
re-suspended to serum-free DMEM to get a single-cell suspension of desired dilution for
tumour transplantation studies. Cell viability was confirmed with Trypan blue exclusion
and was typically approximately 90% for all cell lines.

4.3. MMTV-PyMT Mammary Carcinogenesis Model

MMTV-PyMT mouse lines were maintained by breeding the PyMT transgene-positive
male mice, either wild type (PyMT) or ColXV knockout (PyMT;Col15a1−/−) with PyMT-
negative wild-type females or PyMT-negative Col15a1−/− females, all in FVB/N back-
ground, to obtain female mice hemizygous for the PyMT transgene for mammary car-
cinogenesis experiments. Tumour formation in abdominal and thoracic mammary glands
was monitored weekly with palpation to detect desmoplastic tissue starting at the age
of 4 weeks and continuing until the age of 8, 10, 12 or 13 weeks in four PyMT and four
PyMT;Col15a1−/− experimental groups, 5–10 females per group. If the size of a single
mammary tumour or total tumour burden in an individual reached the pre-determined
humane end-point criteria, the mouse was removed from the experiment. At the end of
the monitoring period, mice were sacrificed with CO2 inhalation and cervical dislocation,
and the four thoracic and two abdominal mammary glands were dissected, weighted,
fixed with 4% paraformaldehyde (PFA) in PBS and embedded in paraffin or embedded
in cryo-compound (Tissue-Tek OCT; Sakura, Alphen aan den Rijn, The Netherlands); and
stored at −80 ◦C.

4.4. MCA-Induced Fibrosarcoma

For fibrosarcoma induction, 9–11 weeks old Col15a1+/+ and Col15a1−/− male mice in
the C57BL/6J background were injected subcutaneously into both flanks with a freshly
prepared solution of 3-methylchlolantrene (MCA; Merck, Darmstadt, Germany, Cat. No.
213942) in olive oil (100 mg/100 mL per mouse) under short isoflurane inhalation anaesthe-
sia, as described earlier [43]. Tumour formation was monitored weekly for up to 20 weeks,
first with palpations and later with gauge measurements. Subcutaneous tumours larger
than 3 mm in diameter and showing progressive growth were counted as positive. Tu-
mour volumes were calculated using the following formula: length × width2 × 0.52. At
the end of the monitoring period, mice were sacrificed by CO2 inhalation and cervical
dislocation, and tumours were dissected, fixed with 4% PFA and embedded in paraffin for
tissue analyses.

4.5. Syngeneic Models

T241 fibrosarcoma cells (7 × 105 per mouse), LLC1 lung carcinoma cells (7 × 105 per
mouse) and B16F10 melanoma cells (5 × 105 per mouse) were injected subcutaneously
into one flank of Col15a1−/− and Col15a1+/+ male mice, all originating from breeding
heterozygous Col15a1+/- mice in the C57BL6/J background. Rapid inhalation anaesthesia
with isoflurane was employed to calm the mouse during the injection. Tumour growth
was monitored at 2-day intervals with gauge measurements over the course of 3 weeks. At
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the end of the monitoring period, mice were sacrificed with CO2 inhalation and cervical
dislocation, tumours were dissected, fixed with 4% PFA in PBS and embedded in paraffin.

4.6. Tissue Analyses
4.6.1. Carmine Alum Staining on Whole Mounts

Tumour nodules in mammary ducts were assessed by fixing mammary gland whole
mount preparations for 2 h in 4% PFA and staining them with 0.2% Carmine (Sigma-
Aldrich, Darmstadt, Germany) and 0.5% aluminium potassium sulphate dodecahydrate in
PBS (Sigma–Aldrich) overnight at room temperature (RT), as previously described [44]. The
samples were then dehydrated through consecutive washes of increasing concentrations
of ethanol, stored in methyl salicylate and imaged with a Leica DM LB2 light microscope
equipped with a digital camera system (Leica, Wetzlar, Germany). For this analysis,
3–10 mammary glands per genotype were collected from mice at the age of 6, 9, 11 and
13 weeks.

4.6.2. Haematoxylin-Eosin Staining

The tissue morphology of mammary gland tumours was assessed by cutting PFA-
fixed paraffin embedded tumour samples to 5 µm-thick sections, which were then stained
with H&E and imaged with a light microscope (Leica DM LB2) equipped with a digital
camera (Leica DFC 320). For this analysis, at least 10 mammary glands per genotype were
collected from mice at the age of 6, 9, 11 and 13 weeks.

4.6.3. CD-31 Immunohistochemistry

Blood vessels in PFA-fixed specimens were imaged with light microscopy using a
rat monoclonal CD-31 antibody (Cat. No. 558736, BD Pharmingen, Franklin Lakes, NJ,
USA) at 1:800 dilution in conjunction with a Tyramide Signal Amplification Biotin system
(TSA Biotin Kit, Perkin Elmer Life Science, Waltham, MA, USA, Cat. No. NEL700001KT),
following the detailed staining protocol provided by the manufacturer. Antigen retrieval
was performed by boiling the samples for 15 min in 10 mM sodium citrate buffer (pH 6.0).
Biotinylated secondary anti-rat antibody (Vector Laboratories, Oxfordshire, UK) was used
at 1:250 dilution, streptavidin-conjugated horseradish peroxidase at 1:100 dilution and TSA
reagent at 1:50 dilution. Stained sections were counterstained with Cole’s haematoxylin
and mounted in Immumount (Thermo Scientific, Waltham, MA, USA). A Leica DM LB2
microscope with a digital camera (Leica DFC 320) was used for imaging.

4.6.4. Analysis of Fibrillar Collagen Content

Masson’s trichrome and picrosirius red staining was performed to assess the content
of fibrillar collagen in the mammary gland tumours. The PFA-fixed, 5 µm-thick tumour
sections were dewaxed in xylene and rehydrated with decreasing ethanol series. According
to the Masson’s basic protocol, the sections were treated with a nuclear stain (Celestine blue
and Harris’ haematoxylin), followed by treatments with acid fuchsin and phosphomolybdic
acid and, finally, with methyl blue stain (all reagents from Sigma–Aldrich). For picrosirius
red staining, the sections were treated with 0.2% phosphomolybdic acid for 5 min followed
by staining with 0.1% Direct Red 80/Sirius Red F3B (Sigma–Aldrich) in saturated picric
acid for 1 h at RT. Both protocols were finalised by dehydration with ethanol series, clearing
with xylene and mounting with Pertex (Sigma–Aldrich). The Masson’s trichrome-stained
sections were imaged with a Leica DM LB2 microscope with a digital camera (Leica
DFC320), and picrosirius red-stained sections were imaged under bright and polarised
light with an Olympus BX51 microscope (Olympys, Tokyo, Japan) and a digital camera
(Olympus DP71). Fiji ImageJ software was used for birefringence signal quantification and
the ratio of thick versus thin collagen fibres was calculated, as described by Rasi et al. [10].
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4.6.5. Immunofluorescence Staining

For immunofluorescence staining, 5 µm-thick cryosections of mammary tumours
were fixed for 20 min in methanol at −20 ◦C, air dried, washed twice for 5 min in PBS
and then blocked with 1% BSA–0.3 M glycine in PBS–0.1% Tween 20 (PBST) for 1 h at RT
in a humidified chamber. Samples were incubated with primary antibodies (Ab) diluted
in 1% BSA–0.3 M glycine-PBST overnight at +4 ◦C, washed three times for 5 min in PBS
and then incubated with fluorochrome-conjugated secondary antibodies and 4′6′-diamino-
2-phenylindole (DAPI; Sigma-Aldrich) at 1:300 dilution for 1 h at RT in the dark. After
three 5-min washes in PBS, the samples were mounted in Immu-Mount medium (Thermo
Scientific). The following primary antibodies and secondary antibody combinations were
used for immunofluorescence staining: polyclonal in-house rabbit ColXV Ab targeting
the N-terminal non-collagenous portion of rabbit anti-mouse ColXV (83AA) [45] at 1:70
dilution, rabbit monoclonal Ki67 Ab (Cat. No. ab15590; Abcam, Cambridge, UK) at a
concentration of 0.5 mg/mL with goat anti-rabbit Alexa Fluor 488 (Cat. No. A11008;
Invitrogen, Waltham, MA, USA) Ab at 1:200 dilution, monoclonal rat anti-mouse CD-31
Ab (Cat. No. 550274; BD Biosciences, Franklin Lakes, NJ, USA) at 1:100 dilution with goat
anti-rat Alexa Fluor 647 Ab (Jackson ImmunoResearch, West Grove, PA, USA) at 1:200
dilution, monoclonal mouse anti-rat PCNA (PC19, sc-56; Santa Cruz, Dallas, Tx, USA)
at 1:100 dilution and Cy3-conjugated alpha smooth muscle actin (αSMA) Ab (Cat. No.
C6198; Sigma Aldrich) at 1:200 dilution. A Zeiss LSM 780 confocal microscope (Zeiss, Jena,
Germany) was used for immunofluorescence imaging.

4.6.6. Morphometric Analyses

In mammary carcinoma samples, intratumoural CD-31 positive blood vessels were
counted in tumours collected from nine 12-week-old females per genotype. Four micro-
scopic fields per sample, representing the most vascularised areas of tumours, were counted
at 100×magnification. Each branching structure was counted as a single vessel. ImageJ
was used to determine the CD-31 positive areas in the same samples and microscopic fields.
In the MCA model, 12 control tumours and 13 knockout tumours collected 13–17 weeks
after tumour initiation with carcinogen treatment were included in the study. Ten micro-
scopic fields at 200×magnification were counted per sample. The average number of Ki67-
or PCNA-positive cells per sample was determined by ImageJ analysis software from 3 to
5 mice per genotype in each age group, and from 3 to 10 microscopic images per sample,
depending on the size of the tumour and of areas containing proliferating cells. Results
were calculated as percentages of Ki67- or PCNA-positive nuclei of the total number of
nuclei in the image. In Supplemental Figure S1A,C, tumour samples from three to five
mice per genotype and age were analysed (except there are no data on control PyMT mice
at the age group 6–7 weeks due to bad quality of available cryosamples).

The thickness of collagen fibres (thin, green; thick, red) was investigated from picrosir-
ius red-stained samples via polarised light microscopy (Olympus). Original images were
separated to RGB for automated thresholding using ImageJ image analysis software. Area
fractions representing green and red colours were used to calculate ratios between the
differentially stained collagen fibres. Collagen fibril diameter and density were manually
assessed on 6800 x magnification TEM images using the Visiopharm® software.

For assessing fibril density, 52–55 bundle regions/genotype, 5–14 bundle regions/tumour
sample and 193–838 fibrils/tumour sample were measured and, for calculating fibril
diameter fractions, 893–1032 fibrils/genotype and 121–265 fibrils/tumour sample were
measured. Widths of protein aggregates on PyMT;Col15a1−/− tumour capillaries were
measured at approximately 2 µm intervals on sites containing protein aggregation and
lacking a clear BM structure on 4800x and 6800x magnification TEM images using Image J.
Measurements were done in two PyMT;Col15a1−/− mice (two tumours samples/mouse),
analysing 4–6 capillaries/tumor sample and performing 2–10 measurements/capillaries
(resulting in total number of measurements, n = 104).
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4.6.7. Transmission Electron Microscopy

Approximately 1–2 mm3 samples of mammary glands from three 10-week-old PyMT
and three PyMT;Col15a1−/− mice were fixed with 1% glutaraldehyde and 4% formaldehyde
in 0.1 M phosphate buffer (pH 7.4), post-fixed in 1% osmium tetroxide, dehydrated in
acetone and embedded in Epon LX 112 (Ladd Research Industries, Williston, VT, USA).
Approximately 80 nm sections were examined using a Tecnai G2 Spirit transmission
electron microscope, and images were captured using Veleta or Quemesa CCD cameras
(Olympus Soft Imaging Solutions).

4.7. Kaplan-Meier Survival Analysis

Kaplan–Meier survival analysis was performed by accessing COL15A1 gene expres-
sion data (Affymetrix COL15A1 probe set 203477_at) of approximately 5000 breast cancer
patients utilising the Kaplan–Meier plotter tool on the website www.kmplot.com (accessed
on 14 september 2021) [31].

4.8. Statistical Analyses

Statistical significance of the differences between the groups was evaluated by a two-
tailed Student’s t-test. p values of <0.05 were considered statistically significant (symbols
in figures: *, p < 0.05; **, p < 0.01; ***, p < 0.001). Results are expressed as means ± the
standard error of the means (S.E.M). Statistical analyses were done with the GraphPad
Prism software.
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