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Abstract

Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection
structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for
appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired
appressorial function in the abc3D remains elusive. We hypothesized that the abc3D appressoria accumulate excessive
amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy
and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates
to inhibitory levels in M. oryzae abc3D appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type
Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the
Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis.
Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3D or when added exogenously to the
wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3D
are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess
accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in
rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence
of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.
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Introduction

ATP-binding cassette (ABC) transporters are able to couple the

binding and hydrolysis of ATP to efflux a variety of toxic

molecules such as antifungal, antibacterial, or anticancer agents

[1,2]. Often over-expression of ABC transporters confers multi-

drug resistance (MDR) and hence is believed to be an adaptive

albeit opportunistic mechanism to protect cells from various toxic

entities [3,4]. However, apart from MDR, it is possible that each

ABC transporter serves a distinct physiological function and

effluxes a specific natural substrate including an endogenous

metabolite. For example, P-glycoprotein (P-gp) at the apical

membrane in nephrons is a well-characterized transporter of the

steroidal glycoside digoxin [5,6] and likely effluxes other mem-

ber(s) of the endogenous Digoxin-like Immunoreactive Factor

(DLIF) family. Since identification of the specific physiological

efflux substrate is a daunting task that remains largely unaccom-

plished, MDR remains the only assigned function for most ABC

transporters [2,7].

Several bacterial ABC transporters are required to secrete

toxins and antimicrobial agents [8]. Similarly, fungal pathogens

likely utilize ABC transporters to keep host-derived antimicrobial

substances at bay, and in addition efflux compounds involved in

virulence [9]. Phytopathogens synthesize low molecular weight

compounds (secondary metabolites), that are bioactive and in

some instances required for virulence [10,11] but not for growth

per se. Such metabolites may be secreted out or effluxed by

virulence-associated pumps. For example, Cochliobolus carbonum

produces a maize-specific virulence factor called HC-toxin, a

cyclic tetrapeptide inhibitor [12], which is hypothesized to be

effluxed by the ToxA and ToxB transporters [13]. ABC-

transporters BcatrB from Botrytis cenerea and GpABC1 in

Gibberella pulicaris are similarly required for resistance towards

respective host-derived phytoalexins resveratrol and rishitin

[14,15].

M. oryzae, an ascomycete and the causal agent of rice blast

disease, undergoes pathogenic differentiation upon contact with

the host, wherein the asexual spore/conidium develops into a

germ tube, which elongates and develops into a specialized

infection structure called the appressorium [16,17]. The appres-

soria generate enormous turgor pressure and mechanically breach

the cuticle (appressorial function) to enter the host plants. It has
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been proposed that M. oryzae deploys an efficient and effective

strategy, wherein the fungus secretes a large array of specific

virulence factors (elicitors and/or effectors) into the host, to

prepare it for the invasion and to cope with the stress therein

[18,19]. Interestingly, host plants have evolved a highly-efficient

strategy to recognize specific effectors or elicitors, in order to

activate the defense response (Hypersensitive Response or HR) to

control the pathogen spread [20,21,22]. A rapid efflux of K+ and

an influx of Ca+2 and H+ ions mark the first phase of HR

induction in plants. The second phase of the HR includes

elevation of reactive oxygen species (ROS), increase in levels of

phenolics, and induction of pathogenesis related (PR) genes

[23,24,25].

M. oryzae genome encodes about 50 ABC transporters [9], of

which four have been characterized thus far for their role(s) in

fungal pathogenesis. While Abc1, Abc3, and Abc4 are required for

effective virulence, Abc2 is dispensable for pathogenesis in M.

oryzae [7,26,27,28]. However, none of these ABC transporters has

been assigned any physiological function or is known to efflux a

specific substrate in M. oryzae. Previously, we have shown that

Abc3, which localizes predominantly to the plasma membrane in

the appressoria, is essential for the host-penetration step during

pathogenesis in M. oryzae [27]. It has been proposed that loss of

pathogenicity in the abc3D mutant is likely due to excess

appressorial accumulation of the physiological efflux substrate of

the Abc3 pump [27].

In the present work, we identify an endogenous metabolite,

ATS, as the specific efflux substrate of the Abc3 transporter in M.

oryzae. We show that Abc3 activity is essential for efflux of ATS.

We characterize the likely functions of ATS that strike a

mechanistic link between ion homeostasis, Tef2-function and

modulation of the actin cytoskeleton in M. oryzae. Finally, we

propose that ATS serves as an important component that alters

the host response and outcome of the M. oryzae-Rice interaction

during initiation of the blast disease.

Results/Discussion

M. oryzae abc3D mutant accumulates a cytotoxic
molecule

Previously, we showed that loss of Abc3 transporter-function

leads to impaired host penetration in M. oryzae [27]. Based on the

predominant localization of Abc3 to the plasma membrane of the

appressorium, it was hypothesized that accumulation of the

endogenous efflux substrate therein was responsible for cell death

in the abc3D mutant [27]. A suitable tool was necessary to guide

the purification of such a cytotoxic moiety, presumably the efflux

target of Abc3. Interestingly, appressorial extracts from abc3D led

to cell enlargement, aberrant and excessive septal/cell wall

deposition at cell ends (Figure 1A), and consequent loss of viability

in wild type fission yeast. However, treatment with total extracts

from wild-type appressoria did not lead to such defects or cell

death in yeast. To check whether the cytotoxic activity was present

in the appressorial exterior, we tested the effect of the extracellular

fluid surrounding the wild-type or abc3D appressoria on yeast.

Importantly, the cell wall biogenesis defects were evident only in

yeast treated with extracellular fluid from the wild type and not

that of the abc3D strain (Figure 1A). We proceeded to utilize such

cytotoxicity-based assay as a tool to guide purification (Figure 1B)

of the endogenous molecule (ATS) from appressorial extracts of

the abc3D mutant. We reckoned that the maximum amount of

ATS would accumulate by 24 hpi since Abc3-GFP translocates

thereafter from the appressorial plasma membrane to the vacuoles

[27]. Molecular size-based fractionation of the abc3D appressorial

extract was carried out where a few of the resulting subfractions

contained the cytotoxic activity against the wild type S. pombe. Such

cytotoxic fractions were further resolved by size-based separation,

and each individual purified fraction tested in the aforementioned

yeast cell based assay. Fractions containing significant cytotoxic

activity were pooled and purified further using reverse phase

FPLC. Finally, the cytotoxic activity against the wild-type S. pombe

was narrowed down to a fraction that showed a single prominent

peak upon UV detection at 196 nm/220 nm. To verify if the

purified cytotoxic molecule was a specific efflux target of Abc3, we

expressed M. oryzae Abc3 transporter in the wild-type S. pombe (wild

type S. pombe expressing MoABC3) cells. Most importantly, S. pombe

strain expressing Abc3 did not show any substantial defects or

abnormalities in the presence of the purified cytotoxic moeity

(Figure 1B), which was thus designated as ATS. Such Abc3-

expressing S. pombe cells showed normal cell size with medial septa

and cytokinesis even in the presence of ATS (or total abc3D
appressorial extract) when compared to the control cells. It is

worth noting that expression of a single M. oryzae protein, Abc3,

negated the inhibitory effect of ATS on S. pombe, thus helping in

isolation of the target substrate. We conclude that abc3D
appressoria accumulate ATS, which is normally present outside

wild-type infection structures, in excess and that ATS is most likely

a specific efflux substrate of the Abc3 transporter in M. oryzae.

ATS is a steroidal glycoside that shares structural and
functional properties with digoxin

The purified ATS showed a retention time of 5.52 min on the

RP-HPLC column (Figure 2A inset). Mass spectrometric analysis

by Atmospheric Pressure Chemical Ionization (APCI/MS) of

purified ATS showed a major peak with the m/z 780 (Na+

adduct = m/z 803.5) (Figure 2A). Reference and compound library

searches indicated that digoxin, which is a steroidal glycoside from

the foxglove plant, shows a similar molecular mass as ATS.

Standard digoxin showed retention time of 5.41 min on RP-

HPLC column and m/z 780 (Na+-adduct = m/z 803.5) (Figure 2B

Author Summary

Magnaporthe oryzae, the causal fungus of the devastating
blast disease in rice, invades its host via specialized
infection structures called appressoria. Previously, we
showed that ATP-Binding Cassette 3 (Abc3) transporter is
indispensable for appresssorial function of host penetra-
tion in M. oryzae. However, the cause of inviable
appressoria and impaired host entry in the abc3D
remained unclear. ABC transporters are known to efflux
xenobiotic or toxic molecules to the cell exterior. There-
fore, we hypothesized that the loss of Abc3 pump leads to
excessive accumulation of its physiological substrate to
likely inhibitory levels resulting in appressorial dysfunction.
We devised an innovative yeast-based strategy to suc-
cessfully purify the Abc3 Transporter Substrate (ATS). We
show that ATS is a digoxin-like endogenous steroidal
glycoside primarily involved in modulating ion homeosta-
sis and host colonization in M. oryzae. Furthermore, we
identified Translational Elongation Factor 2 (Tef2) as the
target for ATS, and find a mechanistic link between ATS,
ion homeostasis, Tef2 function, and F-actin dynamics
during M. oryzae pathogenesis. We uncover a unique
ability of ATS to induce the hypersensitive response and
consequently disease resistance in host plants. Lastly,
digoxin-like steroidal glycosides promise to be novel
antifungal agents to combat the destructive blast disease
in crop plants.

Steroidal Glycoside ATS and Fungal Pathogenesis
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inset). Tandem mass spectra of digoxin resulted in major

fragments with m/z 651.4, 521.3, and 391.4, which are successive

breakdown products of digitoxose molecules (Figure 2D). Similar-

ly, ATS, upon tandem MS, resulted in major fragments with

molecular masses of m/z 651.4, 521.3, and 391.4 (Figure 2C)

strongly indicating a structural similarity between ATS and

digoxin. ELISA tests confirmed the immuno-reactivity of mono-

clonal anti-digoxin antibodies towards ATS (Figure S1A in Text

S1) and helped estimate the ATS concentration in the extracellular

fluid and appressorial extracts of the wild type or abc3D mutant.

The concentration of ATS was estimated to be 6 and 7 ng in the

total extracellular fluid surrounding the wild type appressoria and

abc3D mutant appressorial extract, respectively, from 16108

conidia (Figure S1C in Text S1). The abc3D extracellular fluid

and wild type appressorial extract did not show any detectable

reactivity towards anti-digoxin antibodies (Asterisks, Figure S1C in

Text S1). Similarly, ATS concentration was found to be 0.2 mg/ml

in the FPLC-purified fraction (Figure S1B in Text S1); and

approximately 500 ng per 2.56108 appressoria. Although ex-

tremely low in concentration, the amount of ATS extracted per

unit biomass was considerably higher in mature appressoria than

in vegetative hyphae. Based on the above analyses, M. oryzae ATS

was thus considered to be an endogenous digoxin-like steroidal

glycoside.

To test if digoxin shared the cytotoxic property of ATS, we

studied the growth kinetics of wild-type or Abc3-expressing S.

pombe cells treated with ATS or digoxin. Wild-type or Abc3-

expressing S. pombe cells were grown in the presence of different

concentrations of ATS or digoxin, and the cell density measured

every hour over a 24 h period. The cell density of the wild-type S.

pombe culture showed substantially reduced growth rate after 4 h of

ATS or digoxin treatment, whereas the cells treated with residual

solvent showed growth kinetics similar to that of the untreated

control. Growth curves indicated that incubation for 6 h was

sufficient to observe the inhibitory effect of ATS or digoxin on S.

pombe. While the wild-type S. pombe showed a dose-dependent

inhibitory activity of ATS (Figure S2A in Text S1), the Abc3-

expressing cells did not show any considerable difference in the

growth kinetics in the presence of ATS (Figure S2B in Text S1).

Similarly, digoxin showed inhibitory effect in a dose-dependent

manner towards wild-type yeast (Figure S2C in Text S1), but not

on the Abc3-expressing yeast cells (Figure S2D in Text S1). The

minimum concentration of digoxin required to completely inhibit

growth in the wild-type S. pombe cells was found to be 125 mM.

Digoxigenin (an aglycone derivative of digoxin) or Ouabain (a

related steroidal glycoside) showed similar potency in inhibiting

yeast growth when compared to digoxin (Figure S3A and Figure

S3B in Text S1). Hereafter, we refer to the cytotoxic effect of ATS

or digoxin as inhibitory activity.

Next, qualitative bioassays were performed using wild-type S.

pombe cells and ATS or digoxin using the same assay conditions

described above and observed after 6 h. Indeed, the wild-type S.

pombe cells treated with digoxin showed similar defects in septal/

cell wall deposition and cell size (Figure 2E) as elicited upon ATS

treatment, indicating that inhibition of cell growth is likely due to

(hitherto unknown) inhibitory activity of digoxin similar to that of

ATS. Additionally, ATS- or digoxin-treated wild-type Saccharomyces

cerevisiae (BY4741) and Candida albicans (SC5314) showed enlarged

cells with excess and aberrant septal/cell wall deposits predom-

inantly at the bud neck (Figure S2E in Text S1). The induction of

hyphal growth in C. albicans was not completely inhibited by ATS

or digoxin; however, hyphal elongation was considerably restricted

with similar defects in septum/cell wall biogenesis (Figure S2E in

Text S1). Similarly, on a non-inductive surface, ATS- or digoxin-

Figure 1. Isolation of ATS from abc3D appressoria in M. oryzae.
(A) Wild-type S. pombe cells were treated with extracellular fluid (E/F) or
appressorial extract (A/E) from the wild-type or abc3D M. oryzae strain
for 6 h and stained with calcofluor white (CFW). Arrowheads indicate
aberrant deposition of septal/cell wall material at the cell tip(s).
Bars = 10 mm. (B) Schematic representation of the S. pombe cell-based
assay used to guide the purification of ATS and to confirm ATS as an
efflux substrate of the Abc3 transporter. MoABC3 refers to M. oryzae
ABC3.
doi:10.1371/journal.ppat.1002888.g001

Steroidal Glycoside ATS and Fungal Pathogenesis
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Figure 2. ATS shares structural and functional properties with digoxin. Molecular mass of ATS (A) or digoxin (B) identified by APCI method.
Molecular masses shown are sodium adducts of ATS or digoxin (both, m/z 780). Insets depict the predominant peaks of ATS or digoxin with their
respective retention times. (C) and (D) Tandem mass spectra of ATS and digoxin, respectively. The ionization products characteristic of the steroidal
nucleus (m/z 390), mono- and bi-sugar (m/z 520 and 650, respectively) molecules are highlighted. (E) Wild-type S. pombe cells were treated with
residual solvent, ATS, or digoxin for 6 h and stained with CFW. Arrowheads show aberrant septal/cell wall biogenesis. Bars = 5 mm. (F) Conidia from
wild-type M. oryzae were germinated on agarose in the presence of residual solvent, ATS, or digoxin and stained with CFW after 4 h. Excess cell wall
deposits are indicated with arrowheads. Bar = 10 mm.
doi:10.1371/journal.ppat.1002888.g002

Steroidal Glycoside ATS and Fungal Pathogenesis
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treated conidia of the wild-type M. oryzae resulted in short and

curved germ tubes with excessive cell wall deposits at the point of

emergence (Figure 2F).

We tested if ATS shows the characteristic digoxin-like activity

on heart function. Interestingly, ATS-treated zebrafish larvae

showed considerably reduced heart rate similar to that ascribed to

digoxin treatment. While zebrafish embryos treated with approx-

imately 415 nM (100 ng/300 ml fish water) of ATS showed no

obvious effect on the development of the larvae, ATS reduced the

heart rates substantially in a dose-dependent manner when

compared to residual solvent-treated embryos until 48 hours post

fertilization (hpf). Heart rates were found to be 94.865.0,

84.660.2, and 88.066.9 beats/min in the control, ATS-, or

digoxin-treated larvae, respectively, at 26 hpf (P = 0.0108; Figure

S4 in Text S1; Video S1 and Video S2). Based on similarities

between ATS and digoxin, and the most likely role of ATS during

appressorial function, an analogy could be drawn between the

heart and the fungal appressorium. Both these structures require

hydrodynamic turgor for their respective functions; however,

proper contraction of the heart is brought about by highly

regulated ion fluxes across the membranes of the cardiomyocytes.

This suggests a similar function for ATS in regulating ion

homeostasis during appressorium formation and/or function at

the onset of host entry.

Endogenous DLIFs were discovered in part as a consequence of

their cross-reactivity to anti-digoxin antibodies. Various studies

suggest that such endogenous DLIFs and Ouabain-like factors

(OLFs) not only are similar in structure but also share function

with digoxin and ouabain, respectively. Interestingly, although

analysis by techniques such as mass spectrometry suggested that

OLF was similar to ouabain, later studies using exciton-coupled

circular dichroism showed that OLF is structurally distinct from

ouabain [29,30]. Thus, although ATS and digoxin show immuno-

reactivity with anti-digoxin antibodies and share certain functional

similarities, we do not rule out subtle structural and physical

differences such as those predicted in DLIFs or OLFs when

compared to digoxin. Our repeated attempts at NMR-based

analysis of ATS structure have been largely unsuccessful given the

extremely low concentration of ATS produced by the fungal

appressoria. Similar difficulties have been encountered in charac-

terization of DLIFs from mammalian tissues [29]. Although the

anabolic pathway for endogenous cardiac glycoside (CG) biosyn-

thesis is not fully clear, Qazzaz et al. [6] suggest three critical steps

in the transformation of the last known precursor Pregnenolone or

Progesterone into a CG. Identification of such critical enzymes in

digoxin biosynthesis, although elusive, would certainly enable

further characterization of the endogenous CGs (and ATS)

through overexpression and/or mutagenesis approach.

Thus, ATS shares the structural properties and an inhibitory

activity with digoxin. We uncovered a hitherto uncharacterized

dose-dependent and broad spectrum inhibitory activity of digoxin.

Taken together, we conclude that ATS is a DLIF or steroidal

glycoside that shows structural and functional relatedness to

digoxin. Furthermore, we concur that excess ATS or digoxin

perturbs the cell wall biogenesis machinery in yeast and in M.

oryzae.

Inhibitory activity of ATS is associated with Tef2-function
in M. oryzae

To identify the downstream target(s) and to understand the

mechanism underlying the intracellular function of ATS, we

performed a pull-down assay using monoclonal anti-digoxin

antibodies that specifically recognised ATS too. Total protein

extracts from the wild-type M. oryzae strain was incubated with or

without ATS, and standard immunoprecipitation was carried out

with monoclonal anti-digoxin antibodies. A 55 kDa polypeptide

was detected specifically in the ATS-treated pull-down fraction,

but was absent in the untreated control (Figure S5A in Text S1).

Mass spectrometric analysis identified this protein as the Trans-

lation Elongation Factor 2 (GenPept: XP_361098.1; Tef2, alias

eEF1A2) ortholog from M. oryzae (Figure S5B in Text S1; P,0.05).

Absence of Tef2 in the control (- ATS; untreated) pull-down ruled

out a possibility that the co-immunoprecipitation was due to sheer

abundance (if any) of Tef2. TEF2 was found to be an essential

gene in M. oryzae since a gene-deletion mutant for TEF2 could not

be obtained even after repeated attempts. In all such attempts,

only the transformants with random integration of the gene-

deletion construct could be recovered. Notably, the tef2D S. pombe

strain showed septal/cell wall deposition defects similar to those

observed in the wild-type yeast treated with ATS or digoxin

(Figure 3A). Furthermore, an SpTef2-RFP fusion protein localized

to the cytoplasm in control cells (Figure 3B), however, it appeared

predominantly in the form of distinct aggregates in the digoxin-

treated cells that showed the characteristic cell wall/septal

abnormalities (Figure 3B, lower panels). To ascertain whether

the aggregation was due to the activity of digoxin or shrinkage in

the cytoplasm, we studied the localization of a known cytoplasmic

protein Swo1 (Hsp90) in digoxin-treated cells. Uniform cytoplas-

mic distribution of Swo1-GFP (Hsp90-GFP), upon treatment with

digoxin, confirmed the aggregation of SpTef2-RFP and supported

a specific association with the steroidal glycoside (Figure 3B, upper

panels). Similarly, RFP-Tef2 fusion protein was predominantly

cytosolic in vegetative hyphae and conidia in M. oryzae. In addition

to being cytosolic, RFP-Tef2 localized to nuclear and perinuclear

regions in M. oryzae conidia (Figure 3C). However, distinct and

highly intense cytosolic and perinuclear aggregates of RFP-Tef2

were evident in ATS-treated mycelia and conidia in wild-type M.

oryzae (Figure 3C). We infer that ATS physically associates with

Tef2 in M. oryzae, and that the inhibitory activity of ATS or

digoxin is likely coupled with alteration in the function of Tef2.

Functional relationship between ATS, ion homeostasis,
Tef2-function, and the F-actin cytoskeleton

Digoxin is known to inhibit the Na+/K+ ATPase pump in the

membranes of the cardiac myocytes leading to an increase of

intracellular Na+, followed by Ca+2 ions [31]. To indirectly test

whether ATS shows a similar mode of action as a patho-

physiological function, we studied appressorial development in

wild-type M. oryzae in the presence of excess ATS and Na+ or Ca+2

ions. To rule out a possibility of non-specific response to any

cation, we also tested the effect of Mg+2 ions in parallel. Wild-type

M. oryzae developed appressoria with normal germ tube length and

incubation time (6 to 8 h) in the presence of permissive

concentration of Na+ (5 and 20 mM NaCl), Ca+2 (25 and

50 mM CaCl2), or Mg+2 ions (25 and 50 mM MgCl2) as in case of

untreated control (Figure 4A). On the other hand, wild-type M.

oryzae showed delayed appressorial development (16 to 20 h) in the

presence of excess Na+ (50 mM NaCl), Ca+2 (100 mM CaCl2), or

Mg+2 (100 mM MgCl2) (Figure 4A). Interestingly, ATS addition

delayed appressorial development even in the presence of

permissive concentration of Na+ or Ca+2 (Figure 4A, middle and

lower panels) in wild type M. oryzae. Notably, normal appressorial

development was evident in the presence of ATS and permissive

concentration of Mg+2 indicating a specific response towards Na+

and Ca+2 ions during appressorial development. Importantly, the

abc3D mutant showed similar sensitivity specifically towards Na+

and Ca+2 during appressorial development (Figure 4B). These

results suggest that ATS, under physiological conditions, may be

Steroidal Glycoside ATS and Fungal Pathogenesis
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involved in regulating intracellular levels of Na+ and Ca+2 ions

during hydrodynamic conditions prevalent in appressorial devel-

opment in M. oryzae. Ingold had hypothesized that glucose and

ions were essential for generating the turgor pressure sufficient for

forcible discharge of ascospores in Sordaria fimicola [32]. Indeed, an

elegant study has shown that mannitol is not enough to generate

the turgor pressure sufficient for discharge of the eight ascospores

in Gibberella zeae, but the K+ and Cl2 ions present in the ascus fluid

are necessary to generate the required force [33]. Since Ca+2-

mediated signaling plays a crucial role and is studied extensively in

most eukaryotes, we decided to focus more on the effect of Ca+2

ions for further analysis of ion homeostasis in M. oryzae. In order to

study the importance of ion homeostasis during pathogenesis, we

tested the effect of excess Ca+2 on appressorial function in M.

oryzae through quantification of callose deposits as an indicator of

host penetration. Aniline blue-stained callose deposits were evident

Figure 3. ATS associates with Tef2 in S. pombe and M. oryzae. (A) Loss of SpTef2-function simulates ATS effect in S. pombe. Cell wall staining of
the wild-type or tef2D S. pombe cells using CFW. Red arrowheads depict defective septal/cell wall deposition. Scale bar equals 10 micron. (B) Effect of
digoxin on subcellular localization of SpTef2-RFP or Swo1-GFP in S. pombe cells. The strains expressing the indicated fusion proteins were stained
with CFW and analysed by epifluorescence microscopy. Arrowheads show distinct aggregates of SpTef2-RFP. Bar = 10 mm. (C) Effect of ATS on
localization of RFP-Tef2 in M. oryzae vegetative hyphae (upper panels; Scale Bar = 5 mm) and conidia (middle and lower panels; Bar represents 10 mm)
co-stained with DAPI to aid visualization of nuclei. Arrowheads denote aberrant perinuclear aggregates and/or patches of RFP-Tef2. BF, Bright Field.
doi:10.1371/journal.ppat.1002888.g003

Steroidal Glycoside ATS and Fungal Pathogenesis
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underneath 70% of the untreated wild-type appressoria at 30 hpi.

Whereas, only 50 or 30% of the appressoria were capable of

entering the host in the presence of 0.1 or 0.2 M Ca+2,

respectively, added at 7 hpi (Figure 4C and 4D; P = 0.001).

Similarly, penetration efficiency of the appressoria was reduced to

50 or 45% when 0.1 or 0.2 M Ca+2, respectively, was added at

23 hpi (Figure 4C and 4D; P = 0.0016). Further, we studied the

effect of excess ATS on host penetration by wild type M. oryzae.

While, 73.362.7% of the wild-type untreated appressoria showed

normal host-penetration efficiency at 30–36 hpi, only 8.662.6%

of the ATS-treated wild-type appressoria were able to induce

callose deposition in the host tissue (Figure 4E and 4F,

P = 0.00003). Microscopic observation after 30 hpi revealed that

only 5–10% of the ATS-treated wild-type appressoria could

develop invasive hyphae as opposed to 60% in the untreated

control. Our previous studies showed that the abc3D appressoria

were significantly defective in penetrating the host tissue likely due

to intracellular accumulation of ATS [27]. These results indicate a

significantly reduced appressorial function in the presence of

excess endogenous or exogenous ATS. Altogether, we conclude

that Ca+2 flux plays an important role during appressorial

development as well as function; and deduce that endogenous

ATS likely serves a physiological role in regulating such ion

homeostasis in M. oryzae.

Tef2 or eEF1A2 is one of the two isoforms of the translation

elongation factor eEF1A (Tef1 or eEF1A1 and Tef2 or eEF1A2).

While eEF1A1 is ubiquitously expressed, eEF1A2 is found mainly

in heart, brain, and skeletal muscle [34,35,36] indicating that these

isoforms may have differential functions other than their canonical

role(s) in translation elongation. To test if there is any association

between Tef2 and ion homeostasis, we analyzed the sensitivity of

the tef2D S. pombe strain towards Ca+2 or Mg+2 in the growth

medium. While both the wild-type and tef2D cells grew normally

on YPD or YPD supplemented with 0.2 M MgCl2, the tef2D strain

showed significant sensitivity towards and growth inhibition in

0.15 M CaCl2 (Figure 5A). This suggests a possible non-canonical

function for SpTef2 in ion homeostasis in S. pombe. Indeed, Kaur

and Ruben have shown that EF-1a directly interacts with

calmodulin CaM that is involved in calcium signaling in protozoan

parasite Trypanosoma brucei [37].

In Dictyostelium, Tef2 binds to F-actin and enhances actin

bundling, suggesting that it has other cellular functions including

actin remodeling [38,39]. It has been estimated that out of total

Tef2 present, .60% could be associated with the actin

cytoskeleton in Dictyostelium [40]. Similarly, Tef2s from a number

of species have been shown to bind actin filaments and/or

microtubules both in vitro and in vivo [41]. Furthermore, calcium

signalling induced self-incompatibility in Papaver rhoeas leading to

inhibition of pollen tube growth is also associated with altered

actin cytoskeleton [42]. Therefore, we studied the F-actin

organization and dynamics in the tef2D and wild-type S. pombe

cells treated with ATS, digoxin, or excess calcium. Normal

actomyosin rings were assembled, which was followed by

cytokinesis in control wild type S. pombe (Figure 5B; Video S3).

However, majority of the tef2D or ATS/digoxin-treated wild-type

S. pombe cells showed deferred assembly and constriction of

actomyosin rings, leading to delayed or failed cytokinesis resulting

in elongated and enlarged cells. Interestingly, cells that were

unsuccessful in cytokinesis continued growing further with short

and spooling F-actin cables at the cell end(s) (Figure 5B; Video S4;

Video S5 and Video S6). In addition, the F-actin patches in such

ATS- or digoxin-treated cells accumulated predominantly at the

cell end(s) and were occasionally dynamic albeit only along the cell

periphery (Figure 5B). Notably, wild-type S. pombe cells grown in

the presence of 0.15 M CaCl2 showed similar F-actin morphology

and dynamics as observed in ATS- or digoxin-treated cells except

that the cell size was considerably smaller when compared to the

untreated control cells (Figure 5B; Video S7). Similar excess

accumulation of F-actin patches and cables at the cell tip(s) was

evident in wild-type S. pombe cells treated with either ATS or

digoxin, and stained with Alexa Fluor 488 Phalloidin (Figure S6 in

Text S1). Further, we studied F-actin organization (Figure 6A) and

dynamics (Figure 6B) in M. oryzae expressing Actin-Binding Protein

1 (Abp1)-RFP fusion protein. Under control condition, Abp1-

RFP-marked cortical actin patches were enriched at the germ tube

tips and along the periphery of the developing appressorium in

wild type M. oryzae (Figure 6A). However, ATS, digoxin, or Ca+2-

treated wild type M. oryzae showed aberrant aggregates of actin

patches accumulated in the appressoria or distributed randomly

along the germ tubes (Figure 6A). Substantially aberrant

localization/morphology and dynamics of F-actin cytoskeleton in

treated M. oryzae and S. pombe cells suggests that ATS (or digoxin)

associates with more than one factor and supports a mechanistic

link between ion homeostasis, Tef2, and F-actin cytoskeletal

organization in yeast/fungi.

Altogether, we propose that under physiological conditions ATS

likely regulates ion homeostasis during appressorial function in M.

oryzae. We further show that excess ATS or digoxin possibly alters

the actin cytoskeleton, leading to septal/cell wall biogenesis defect

in yeast and M. oryzae, and that aberrant Tef2-function and/or

calcium signaling is associated with such cytoskeletal remodelling

activity.

Excess ATS or digoxin induces host cell death and
reduces rice blast disease symptoms

Based on Abc3 localization [27] and the presence of ATS

activity in the extracellular fluid surrounding the wild-type

appressoria, we infer that ATS would be normally effluxed by

the Abc3 transporter during pathogenic development in M. oryzae.

In addition, we hypothesize that a steroidal glycoside such as ATS

may have an ability to alter the function of ion transporters in the

host membranes (similar to digoxin-based block of Na+/K+ pump

in cardiac myocytes) or target Tef2-like cellular proteins leading to

induced host response. Therefore, we tested if ATS has any effect

on the host plants. Plant immunity or Hypersensitive Response

(HR) is manifested by many ways including localised cell death,

oxidative burst, and upregulation of pathogenesis related (PR)

proteins. Cell viability tests using trypan blue staining showed

visible localised cell death in rice leaf tissue treated with ATS for

48 to 72 h when compared to untreated control samples

(Figure 7A). ATS- or digoxin-treated rice leaf sheath was stained

with cerium chloride (CeCl3) and observed under Transmission

Electron Microscope (TEM) to study the oxidative burst, precisely

elevated levels of H2O2. Cerium perhydroxide granules, formed by

the reaction of cerium ions with H2O2, were observed predom-

inantly in the cell wall and cell membrane of the ATS- or digoxin-

treated rice leaf tissues. Moreover, the host cells also showed

plasmolysis upon treatment with digoxin or ATS when compared

to the control leaf tissue, which did not show any plasmolysis or

cerium perhydroxide enrichment at the cell wall or plasma

membrane (Figure 7B). Furthermore, we analyzed transcript levels

of pathogenesis-related genes in the host, including PR1a, PR5,

and peroxidase by quantitative real-time RT-PCR (qRT-PCR)

using ATS-treated rice leaves. ATS induced PR1a, PR5, and

peroxidase transcript levels in rice by 360.1 , 1.560.0, and

1.1860.3 fold, respectively, at 24 hpi (Figure 7C; P = 0.00006).

Thus, these observations indicate that ATS or digoxin is capable of

inducing an HR in rice.

Steroidal Glycoside ATS and Fungal Pathogenesis

PLOS Pathogens | www.plospathogens.org 7 August 2012 | Volume 8 | Issue 8 | e1002888



Figure 4. ATS plays a role in ion homeostasis during pathogenesis in M. oryzae. (A) ATS increases sensitivity of wild-type M. oryzae towards
specific cations. Excess or permissive concentrations of Ca+2, Na+, or Mg+2 ion were added to the germinating wild-type conidia in the presence or
absence of ATS. Arrows show delayed appressorial development (longer germ tubes) in the presence of ATS, which was otherwise seen only in the
presence of excess concentration of the ions under control condition. Bar = 10 mm. (B) Sensitivity of the abc3D towards permissive concentratios of
indicated cations. Arrows indicate delayed response in terms of longer germ tubes. Bars = 10 mm. (C) Effect of excess Ca+2 on appressorial function/
host penetration efficiency in M. oryzae. Penetration efficiency was evaluated at 28 hpi by staining callose deposits with Aniline Blue. Arrowheads
depict appressoria successful in host penetration. Bar = 10 mm. (D) Penetration efficiency of the appressoria was calculated as % appressorial function
at 28 hpi. Data represent mean 6 SEM from 3 individual experiments (n = 100 each per replicate). (E) Rice leaf sheaths were inoculated with wild-type
M. oryzae in the presence of residual solvent or ATS for 24 h, and stained with aniline blue (right panels) for induced callose deposits (arrow)
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Since, HR is indicative of host resistance against pathogen

attack, we performed a detached-leaf infection assay to test if

higher concentrations of digoxin could control blast disease in

barley. Barley leaf explants were inoculated with conidia from

wild-type M. oryzae (ca 100) with or without digoxin, and the

disease reaction was scored for lesions at 7 dpi. The inoculated leaf

pieces without digoxin started developing blast disease symptoms

on day 3. However, equivalent number of conidia in the presence

of 200 mM digoxin failed to elicit any considerable disease

symptoms. The severity of disease in the untreated control leaves

was substantially higher when compared to the digoxin-treated

leaves (Figure 7D). Overall, these findings show that ATS or

digoxin induces host response in rice and barley, and excess

digoxin reduces blast disease in barley.

In conclusion, we identified ATS as a natural efflux substrate of

the Abc3 transporter, and showed that excess accumulation of

ATS blocks host entry in M. oryzae (Figure 8A). Based on the abc3D
defects in the appressoria [27], we infer that ATS may not function

directly in pathways that mediate melanin deposition and/or

turgor generation. At physiological levels, ATS may contribute to

general fitness and integrity of M. oryzae by regulating ion

homeostasis during appressorial function. However, at excess

concentrations ATS represents a previously undescribed activity of

fungal metabolites that deregulates cell-wall biogenesis through

modulated ion homeostasis and the non-canonical function of

Tef2 affecting actin cytoskeleton (Figure 8B) in yeast and fungi.

Mac1, which catalyzes cAMP production from ATP; and CPKA

that encodes a catalytic subunit of cAMP-dependent Protein

Kinase A play important roles in appressorial function [43,44] and

Ca+2 mediated signaling. However, exogenous cAMP did not

rescue appressorial defects in abc3D M. oryzae suggesting that ATS

may function independent of the cAMP signaling pathway.

Nonetheless, it would be interesting to analyze whether CpkA is

involved in regulating ATS levels and/or ion homeostasis in

appressoria. Recently, a serine-rich protein, Defense Suppressor 1

or Des1, has been identified as an important repressor of basal host

defense in M. oryzae [45]. Des1 is necessary for regulating oxidative

stress response in M. oryzae, but unlike the Abc3 transporter, is

directly involved in the secretion of extracellular peroxidases and

laccases. In addition to ROS detoxification, Des1 is also necessary

for maintaining the intracellular levels of Ferrous ions [45]. It

remains to be seen whether Des1 is required for regulating ion

homeostasis, and whether ATS levels stay unperturbed in the

des1D appressoria in M. oryzae.

Abc3-GFP does localize to penetration and invasive hyphae, but

it remains to be seen whether ATS is effluxed into the host tissue

during such in-planta growth of M. oryzae. Our repeated attempts at

detecting ATS in planta, via immunoEM using the anti-digoxin

antisera, have been largely unsuccessful. However, excess ATS (or

digoxin) not only induces host immunity in rice, but also reduces

blast disease symptoms, thus suggesting a potential use of these

related steroidal glycosides in controlling blast disease in host

plants. It is also worth noting that excess ATS or digoxin,

specifically blocks appressorial function (without affecting the

overall growth per se) in M. oryzae, and shows potential to define a

new paradigm for design of antimicrobial agents. It would be

fascinating to analyse (1) how widespread the Abc3/ATS system is

in other fungal pathogens and (2) whether ATS-based induction of

HR could potentially be useful in restricting other pathogens too.

Further analyses are imperative to identify the minimal chemical

structure of ATS that is essential to propose better-suited

antifungal agent(s). Lastly, the S. pombe cell-based assay used to

identify ATS in the present study promises to be a powerful tool to

screen novel drugs and their targets and to establish ABC

transporter-substrate relationships.

Materials and Methods

Yeast and fungal cultures
Wild-type M. oryzae oryzae strain Guy11 (mat1-2) was a kind gift

from Didier Tharreau (CIRAD, France). M. oryzae strains were

propagated on Prune-agar (PA) medium or complete medium

(CM) as described [46]. Genetic transformation of M. oryzae was

carried out as described earlier [27].

Appressorium formation was tested on inductive surfaces (rice

leaf sheath, barley leaf explants, or hydrophobic glass coverslips) in

the presence of ATS (,5 ng) or with different (permissive or non-

permissive) concentrations of MgCl2, NaCl or CaCl2. The

appressoria formed were observed at 24 hpi using bright field

microscopy.

The S. pombe strains used in this study are listed in Table S2 (in

Text S1). Cells were cultured and maintained using standard

techniques [47]. S. pombe cells used for the cytotoxicity assays were

grown in the YES medium [47].

One-step PCR-based gene deletion using the URA4+ marker

was performed according to Bahler et al. [48] using an 80-bp

flanking sequence homologies. Deletion of the SpTEF2 ORF

(SPCC794.09c) was performed in the S. pombe wild type MBY104.

Stable transformants from minimal media (MM) minus uracil were

tested and SpTEF2-deletion was confirmed by colony PCR.

Plasmid pFGL547 was created to generate a S. pombe strain that

expressed a SpTef2-RFP fusion protein from its genomic locus.

The complete 1.3 kb orf of the SpTEF2 gene was amplified by

PCR using primers listed in Table S1 (in Text S1). The 1.3 kb

SalI-SpTEF2-BamHI fragment was directionally cloned upstream

and fused in frame with the RFP gene in the pJK210 RFP

plasmid. Plasmid pFGL547 was linearized with NheI and

introduced by electroporation into MBY104 to obtain the

SpTEF2-RFP strain. Strains were confirmed by requisite colony

PCR and nucleotide sequencing. Genetic crosses were performed

by mixing appropriate strains of opposite mating type on YPD

plates, followed by selection of recombinant strains by tetrad

dissection using an MSM micromanipulator (Singer Instruments,

UK).

M. oryzae strain expressing Abp1 (MGG_06358.6)-RFP was

generated [49] by ATMT method. M. oryzae strain expressing

RFP-Tef2 was generated as follows: the Tef2 promoter (1 Kb

immediately upstream of ATG) and first 1 Kb of Tef2 orf were

cloned at BamHI/SpeI and MfeI/HindIII sites in pFGL557,

respectively. The resultant final construct pFGL872 was intro-

duced in to wild type M. oryzae by ATMT method.

Isolation of ATS from abc3D strain of M. oryzae
Conidia were harvested from 8- to 9-day old Magnaporthe

cultures (wild-type Guy11, or the isogenic abc3D strain) and

suspended in de-ionized water to get a count of approximately

16106 conidia per ml. Two hundred microlitres each of such

conidial suspension was placed on to glass coverslips or square

sheets (100 Deckglaser, Thermo Scientific) and the conidia were

allowed to germinate and form mature appressoria in 24 h under

underneath the sites of host penetration (appressorial function). Asterisk shows occasional callose deposition. Bars = 10 mm. (F) Quantification of
appressorial function at 30 hpi. The data represents mean 6 SEM from 3 individual assays.
doi:10.1371/journal.ppat.1002888.g004
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Figure 5. SpTef2 function and the F-actin cytoskeleton in S. pombe. (A) Sensitivity of tef2D S. pombe cells towards Ca+2 in the growth
medium. Serial dilutions of the wild-type or tef2D cells were inoculated under indicated growth conditions. (B) Morphology and dynamics of GFP-
labelled F-actin cytoskeleton in wild-type S. pombe treated with ATS, digoxin or Ca+2. The tef2D strain was analyzed in parallel. Arrowheads show
excess accumulation of F-actin patches and/or short, spooling cables at the cell end(s). The maximum projection images shown here represent the
compressed z-stack sections. Bar equals 10 mm.
doi:10.1371/journal.ppat.1002888.g005
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high humidity. Upon incubation, the liquid surrounding the

appressoria was collected and saved as total extracellular fluid.

The appressoria on each coverslip were covered with 100 ml of

hypertonic solution (0.5 M NaCl) and incubated for further 5 h

under humid conditions in dark. Appressorial content released

into the hypertonic solution was collected and saved as

‘‘appressorial extract’’. A cell scraper (Corning Incorporated,

USA) was used to collect the appressorial debris attached to the

coverslips and mixed with the above appressorial extract and

saved as total appressorial extract, which was first lyophilized and

then extracted with methanol:chloroform (1:1) mixture. The

resultant extract was again lyophilised, resuspended in de-ionised

water, and filtered through a 0.2 mm sterile nylon membrane.

The resultant filtered extract was size-fractionated and desalted

using a ‘Hi-Trap’ column on an analytical-scale (bed volume,

5 ml; GE Healthcare Life Sciences, Sweden) as per the

manufacturer’s instructions. Elution was performed with sterile

de-ionized water with the flow rate of 1 ml/min and as 0.5 ml

fractions. Fractions of interest (displaying cytotoxicity in the yeast

cell based assay described in the main Materials and Methods

section) were pooled and re-loaded onto the same ‘Hi-Trap’

desalting column for further separation using the elution

conditions mentioned above. The instrument used for this

chromatographic elution was that for Fast Performance Liquid

Chromatography (FPLC) (Amersham, GE Healthcare, Sweden).

Fraction(s) from the second round of size based separation on

desalting column were then loaded onto an analytical grade C18

reverse phase HPLC column (Phenomenex, USA) and adsorbed

materials eluted with a solvent containing 30% acetonitrile and

0.1% formic acid. The elution was carried out under isocratic

conditions with 0.5 ml/min flow rate and 0.5 ml fraction volume.

The fractions collected from FPLC were again tested in the

aforementioned yeast cell based assay. Usually, at this stage, a

single fraction containing a single peak displayed the character-

istic cytotoxic activity and was therefore subsequently used as

purified ATS.

Figure 6. Exogenous ATS or digoxin alters the F-actin cytoskeleton in M. oryzae. Morphology (A) and dynamics (B) of the F-actin patches in
wild type M. oryzae expressing Abp1-RFP and treated with ATS, digoxin, or 0.1 M CaCl2. Arrowheads depict developing appressoria. Bars = 10 mm.
doi:10.1371/journal.ppat.1002888.g006
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Structural analysis of ATS
Purified ATS was run on an Agilent high performance liquid

chromatography (HPLC) 1200 system (Agilent Technologies)

before introduction into a 3200 Q-Trap mass spectrometer with

a mass accuracy of 20 mmu (Applied Biosystems). HPLC

conditions used were as follows: column, Eclipse XDB-C18

(5 mm, 4.66150 mm, Agilent Technologies, USA); mobile phase,

methanol:water (3:1) with a flow rate of 0.4 ml/min. The mass

spectrometer was operated under atmospheric pressure chemical

ionization (APCI) mode, while collision energy (CE) and collision

energy spread (CES) of 40 V and 15 V, respectively, were used for

tandem mass spectrometry.

Enzyme Linked Immunosorbent assays for digoxin or ATS
ELISA tests were performed using a set of different

concentrations of digoxin (Sigma Aldrich, USA) and monoclonal

anti-digoxin antibodies (Sigma Aldrich, USA). Purified ATS

(50 ml) or standard digoxin (6 ng to 6 mg) was coated onto ELISA

plate. The wells were later blocked overnight at 4uC with 10%

calf serum in 16PBS containing 0.05% Tween20. Monoclonal

antibodies (1:5000) against digoxin used as primary antiserum

were added to the wells and incubated for 2 h. After incubation,

the wells were washed 4 times for 15 min each with blocking

buffer used above, followed by incubation with HRP conjugated

anti-mouse IgG (2u) antibodies. Wells were washed in a similar

way with 16PBS containing 0.05% Tween20 after incubation

with secondary antiserum for 1 h. Ready to use TMB substrate

(Sigma Aldrich, USA) was added to the wells to test HRP

activity. Assays either without antigen (digoxin or ATS) or

without primary antiserum were run in parallel as negative

controls.

Growth inhibition assays
Approximately, 3 ml of 16107 cells/ml from overnight grown

wild-type S. cerevisiae, wild-type S. pombe (MBY104) or MBY104

expressing the M. oryzae ABC3 (MBY2838, Supplementary Table 2

online) were inoculated in 150 ml YES medium in a 96-well plate.

The cells were incubated with constant shaking at 25uC in the

presence of 50 ml of de-ionised water or residual solvent prepared

from any other FPLC fraction (untreated or solvent control,

respectively) or purified fraction (treated). Cell density (OD at

600 nm) of untreated or treated wild-type yeast cells was checked

every hour over a 10 h period. To study cell wall biogenesis in

control and treated samples, the cells were harvested, washed,

stained with calcofluor white after 6 h of incubation, and

examined using an epifluorescence microscope (Olympus IX71,

Japan). To estimate Minimum Inhibitory Concentration (MIC),

approximately, 16107 cells/ml from an overnight grown culture of

MBY104 were inoculated in 20 ml fresh YES medium in 250 ml

flasks. The cells were incubated at 25uC on a shaker in the absence

or presence of different concentrations of digoxin (Sigma Aldrich,

USA). A stock of 1 mM digoxin, digoxigenin, or ouabain (Sigma

Aldrich, USA) was prepared by adding 7.8 mg, 3.9 mg, and

7.3 mg, respectively, in 10 ml of 50% ethanol. A working stock of

200 mM solution was prepared by diluting 1 mM stock with fresh

YES medium. Further dilutions were made from this working

stock by adjusting total volume with fresh YES to 20 ml. Cell

density of untreated (YES containing 5% ethanol) or treated S.

pombe cells was checked in terms of absorbance after every one

hour over 3–4 generations. Experiments were performed in

duplicate and confirmed by several biological replicates. Wild-type

C. albicans strain SC5314 (a kind gift from Wang Yue, Singapore)

was grown in YPD broth overnight at room temperature.

Figure 7. Excess ATS or digoxin induces cell death in the host plants and reduces blast disease severity. (A) Barley leaf explants were
treated with residual solvent or ATS for 72 h, stained with trypan blue and observed using bright field optics. Arrowhead and arrows show visible
(inset) and localized cell death, respectively, in the inoculation zone. (B) Transmission electron micrographs of residual solvent-, ATS- or digoxin-
treated rice leaf explant stained with CeCl3 after 48 h of treatment. Arrowheads depict cerium perhydroxide granules and/or plasmolysis after ATS or
digoxin treatment for 48 h. CW, cell wall; M, mitochondrion; and V, vacuole. Bars = 1 mm. (C) Transcript levels of Pathogenesis Related genes tested by
real-time qRT-PCR in rice after 24 h of treatment. Data represent mean 6 SEM of two independent experiments with three replicates each. Perox,
peroxidase; Tub, tubulin. (D) Detached barley leaf pieces were inoculated with wild-type conidia in the absence or presence of 200 mM digoxin (DG).
The disease symptoms were evaluated at 6 dpi. Arrowhead denotes disease lesion. The data represents observations from 3 independent
experiments.
doi:10.1371/journal.ppat.1002888.g007
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Approximately 3 ml of 16107 cells/ml culture was inoculated in

150 ml of fresh YPD medium dispensed in a 96-well plate. The

yeast cells were treated in a similar way as S. pombe above. For

induction of hyphal growth in Candida strain, 10% calf serum was

added to the YPD medium and the cells were grown at 37uC for

6 h. For microscopic observation (both yeast as well as hyphae),

the cells were stained with calcofluor white after 6 h of incubation

with or without ATS or digoxin.

To study the effect of ATS on Guy11, 1 ml of a conidial

suspension (ca. 16106 conidia/ml) was mixed with 20 ml of water

Figure 8. Working model for the role of ATS in M. oryzae pathogenesis. (A) Schematic representation of accumulation of ATS, in the wild
type or abc3D appressoria, affecting host entry. (B) The figure illustrates a proposed crosstalk/mechanistic link between ATS accumulation and ion
homeostasis, Tef2-function, and F-actin dynamics during M. oryzae pathogenesis.
doi:10.1371/journal.ppat.1002888.g008
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or purified ATS (,5 ng) and drop-inoculated onto 0.6% agarose

gel and incubated for 4 h. Cells were stained with calcofluor white,

washed and observed using an epifluorescence microscope.

Immunoprecipitation assay
Mycelia used for total protein extraction was obtained by

growing the relevant strains in liquid CM with gentle shaking for

2–3 days. For total protein extractions, CM-grown mycelia were

ground to a fine powder in liquid nitrogen and re-suspended in

0.5 ml of 16PBS. Lysates were cleared by centrifugation at

12000 g for 10 min at 4uC. The lysate was then divided in to 2

equal parts – one was mixed with ATS and incubated on ice for

2 h whereas the other part was used as a control. Monoclonal anti-

digoxin Ab was then added to these 2 samples and incubated at

4uC for 1 h. The pull down assay was performed using Protein A

Sepharose 4 Fast Flow (GE Healthcare Biosciences, USA). To

identify the pulled-down proteins, the final IP sample was

fractionated by SDS-PAGE, and silver-stained using a kit (Silver

Stain Plus kit, BioRad). The protein of interest was digested using

a Trypsin In-gel Digestion Procedure (http://www.

proteomecenter.org/ under Protocols) and processed for mass

spectrometric analysis. MS Instrument used for MALDI-Tof-Tof

MS was 4700 Proteomics Analyzer (Applied Biosystems). Database

searching for protein matches was performed using Data Explorer

v4.6 (Applied Biosystems) by comparing peptide masses with those

in the NCBI protein database. The searches were conducted with

the following criteria: S/N Ratio in MS/MS mode for peak

identification .40; with carbamidomethylation of cysteine (fixed

modification) and methionine oxidation (variable modification);

using NCBInr Protein Database, selecting all entries, using the

parent ion mass with an error tolerance of 100 ppm and MS/MS

fragment mass tolerance of 0.2 Da.

Recording of cardiac activity in zebrafish larvae
Wild-type zebrafish (Danio rerio, TU) were reared under standard

laboratory conditions at 28uC. A working concentration of

415 nM ATS was prepared in fish water. Embryos (n = 5 each/

experiment) at 0 to 1 hour post fertilization (hpf) were incubated in

either ATS- (100 ng/300 ml) containing fish water or the solvent

control (prepared from any other FPLC fraction collected during

ATS purification) and observed over 3 dpf. Bright field images and

videos (streaming with time lapse 40 ms per frame, 150 frames

over 5.7 sec) were taken using Zeiss Axioplan 2 microscope

equipped with a CCD camera. The heart rates (in terms of beats/

min) of control and ATS- or digoxin-treated larvae were estimated

using a digital chronometer.

Visualization of the F-actin cytoskeleton
S. pombe strain expressing either GFP-CHD (calponin homology

domain of the Rng2 protein) or Lifeact-GFP [50] were used to

visualize the F-actin cytoskeleton. A 6 h treatment was used to

study the effect of ATS, digoxin or calcium (150 mM) on requisite

S. pombe strains. The cells were observed using a spinning disk

confocal microscope and the images processed with MetaMorph

software. F-actin dynamics were recorded by taking time-lapse

images (z-stack sections covering 4.5 mm with a 0.5 micron step)

with an interval of 2 min over 2 h. In parallel, S. pombe cells were

fixed using paraformaldehyde and stained with Alexa Fluor 488

Phalloidin (Life Technologies, USA), and observed using a Zeiss

LSM 510 inverted confocal microscope. M. oryzae strain expressing

Abp1-RFP or RFP-Tef2 was observed using a Yokogawa spinning

disk inverted confocal or Olympus BX51, respectively. F-actin

dynamics were recorded by taking time-lapse images (z-stack

sections covering 3 mm with a 0.5 micron step) with an interval of

15 sec over 5 min.

Real Time qRT-PCR
Detached rice (CO39) leaves were drop-inoculated with residual

solvent or ATS (,5 ng per drop) and incubated for 24 h. Total

RNA was extracted from these leaf tissues as per the manufac-

turer’s instructions (RNeasy Plant Mini kit, QIAGEN, USA).

qRT-PCR was performed on ABI 7900HT (Applied Biosystems,

USA) using SYBR Green I and the requisite primer sets (Table S1

in Text S1) for Oryza sativa-specific open reading frames including

PR1a, PR5, peroxidase, and tubulin.

Surface inoculation assays on leaf explants
A 20 ml drop of residual solvent control or purified ATS (,5 ng)

was inoculated onto detached rice (CO39) or barley leaf blade and

incubated for 48 to 72 h. Barley leaf blades incubated for 72 h

were tested for cell viability by staining with Trypan Blue (Sigma

Aldrich, USA). Similarly, rice (CO39) leaf blades incubated with

ATS, digoxin, or residual solvent control for 48 h were examined

for H2O2 production by taking ultrathin sections of the inoculated

area, followed by staining with cerium chloride (CeCl3) as

described [51].

Host penetration assays
Approximately 1000 conidia per 10 ml droplet from the wild-

type strain (Guy11) were inoculated to test the penetration of rice

leaf sheath cells. To test the effect of ATS on penetration ability,

103 wild-type conidia resuspended in 10 ml of either sterile plain

(control) or ,5 ng ATS-containing de-ionised water were

inoculated onto rice leaf sheath for 24–30 h under humid

conditions. To test the effect of Ca+2 on penetration efficiency,

required concentration of CaCl2 was added to the inoculated area

at either 7 or 23 hpi in a separate experiment. M. oryzae invasion of

the host tissue was quantified through aniline blue-stained

penetration pegs (papillary callose deposits by the host) underneath

the appressoria or by directly observing penetration hyphae using

DIC optics. Aniline blue-stained callose papillae were observed by

epifluorescent illumination (360 nm excitation) on an Olympus

IX71 microscope.

Blast disease inhibition assay
Approximately 200 conidia (in 20 ml H2O) from the wild-type

Guy11 strain were inoculated on barley (or rice) leaf explants to

study the disease reaction in the presence or absence of digoxin

(200 mM). Blast disease symptoms or HR reaction (if any) were

scored by direct and/or microscopic observation at 6 dpi.

Statistical analyses
Statistical data involving analysis of transcript levels of PR genes

or appressorial function in the presence of excess Ca+2 or ATS

were evaluated by one-way ANOVA (analysis of variance) or the

Student’s T-test.

Supporting Information

Text S1 Supporting figures and tables. Details about (a)

purification, ELISA assay, and estimation of ATS (b) testing and

MIC of ATS and related steroidal glycosides (Digoxin, Digox-

igenin, Ouabain) on yeast (c) Relationship between ATS, Tef2 and

the F-actin cytoskeleton. (d) Effect of ATS on zebrafish heart

function (e) Yeast strains and oligonucleotide primers used in this

study.
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Video S1 Heart rate in zebrafish larvae treated with
residual solvent.
(MOV)

Video S2 Heart rate in ATS-treated zebrafish larvae.
(MOV)

Video S3 Morphology and dynamics of the GFP-labelled
F-actin cytoskeleton in S. pombe treated with residual
solvent.
(MOV)

Video S4 Effect of ATS on the F-actin cytoskeleton in
wild-type S. pombe.
(MOV)

Video S5 F-actin cytoskeleton in wild-type S. pombe
treated with digoxin.
(MOV)

Video S6 F-actin cytoskeleton in the tef2D S. pombe
cells.
(MOV)

Video S7 Effect of excess Ca+2 on the F-actin cytoskel-
eton in wild-type S. pombe.

(MOV)
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