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Abstract

Objectives Idiopathic inflammatory myopathies (IIM) are a class of autoimmune diseases with high heterogeneity that
can be divided into different subtypes based on clinical manifestations and myositis-specific autoantibodies (MSAs). How-
ever, even in each IIM subtype, the clinical symptoms and prognoses of patients are very different. Thus, the identification
of more potential biomarkers associated with IIM classification, clinical symptoms, and prognosis is urgently needed.
Methods Plasma and urine samples from 79 newly diagnosed IIM patients (mean disease duration 4 months) and 52
normal control (NC) samples were analysed by high-performance liquid chromatography of quadrupole time-of-flight
mass spectrometry (HPLC-Q-TOF-MS)/MS-based untargeted metabolomics. Orthogonal partial least-squares discrimi-
nate analysis (OPLS-DA) were performed to measure the significance of metabolites. Pathway enrichment analysis was
conducted based on the KEGG human metabolic pathways. Ten machine learning (ML) algorithms [linear support vec-
tor machine (SVM), radial basis function SVM, random forest, nearest neighbour, Gaussian processes, decision trees,
neural networks, adaptive boosting (AdaBoost), Gaussian naive Bayes and quadratic discriminant analysis] were used
to classify each IIM subtype and select the most important metabolites as potential biomarkers.
Results OPLS-DA showed a clear separation between NC and IIM subtypes in plasma and urine metabolic profiles.
KEGG pathway enrichment analysis revealed multiple unique and shared disturbed metabolic pathways in IIM main
[dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM)]
and MSA-defined subtypes (anti-Mi2+, anti-MDA5+, anti-TIF1γ+, anti-Jo1+, anti-PL7+, anti-PL12+, anti-EJ+, and
anti-SRP+), such that fatty acid biosynthesis was significantly altered in both plasma and urine in all main IIM subtypes
(enrichment ratio > 1). Random forest and AdaBoost performed best in classifying each IIM subtype among the 10 ML
models. Using the feature selection methods in ML models, we identified 9 plasma and 10 urine metabolites that con-
tributed most to separate IIM main subtypes and MSA-defined subtypes, such as plasma creatine (fold change = 3.344,
P = 0.024) in IMNM subtype and urine tiglylcarnitine (fold change = 0.351, P = 0.037) in anti-EJ+ ASS subtype. Six-
teen common metabolites were found in both the plasma and urine samples of IIM subtypes. Among them, some were
correlated with clinical features, such as plasma hypogeic acid (r = �0.416, P = 0.005) and urine malonyl carnitine
(r = �0.374, P = 0.042), which were negatively correlated with the prevalence of interstitial lung disease.
Conclusions In both plasma and urine samples, IIM main and MSA-defined subtypes have specific metabolic signa-
tures and pathways. This study provides useful clues for understanding the molecular mechanisms, searching potential
diagnosis biomarkers and therapeutic targets for IIM.
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Introduction

Idiopathic inflammatory myopathies (IIM) comprise a class
of systemic autoimmune diseases characterised by chronic
muscle weakness, inflammation, and extramuscular
manifestations.1 IIM are rare disorders with the prevalence
ranging from approximately 2.3 to 20 per 100 000 persons
around the world, but severely affect patients’ quality of life.2

These disorders can be mainly classified into six subtypes:
dermatomyositis (DM), anti-synthetase syndrome (ASS),
polymyositis (PM), inclusion body myositis (IBM), immune-
mediated necrotizing myopathy (IMNM), and overlap
myositis. However, certain clinical or histopathological
manifestations overlap among these subtypes. Therefore,
myositis-specific autoantibodies (MSAs) are used to diagnose
and classify IIM. For example, anti-MDA5 + DM is correlated
with amyopathic myositis and interstitial lung disease (ILD);
anti-TIF1γ + DM has a higher risk of cancer, and anti-
Mi2 + DM presents with severe muscle manifestations.3

Due to the high heterogeneity of IIM, identifying valuable
biomarkers associated with disease classification, clinical
symptoms, and prognosis is urgently needed.

Recently, with the development of immunometabolism, it
has been reported that disturbed energy metabolism can
result in irreversible muscle damage.4 Proteomics and
targeted lipidomic analysis have indicated that some pro-
teins and metabolites related to glycolysis and fatty acid
metabolism are disturbed in the muscle and serum of DM
and PM patients.5,6 Our previous study also found that mul-
tiple glycolysis processes are dysregulated in the muscle tis-
sues of DM/PM.6

Metabolomics is an increasingly used approach in the
post-genomics era and performs qualitative and quantita-
tive analysis of small-molecule metabolites that explain
the final response to genomic, transcriptomic, proteomic,
or environmental changes. It can describe the metabolic
status in physiological or pathological conditions and pro-
vide valuable insights into the early-stage pathogenesis of
disease.7 Metabolomics also presents promising prospects
for discovering new biomarkers, guiding individualised ther-
apies, and predicting therapeutic effects. The application of
metabolomics in autoimmune diseases such as gout and
rheumatoid arthritis has attracted much attention.8,9 In a
previous study, NMR-based metabolomics was performed
to identify the metabolic changes in the sera and muscle
tissues of IIM patients. It revealed that serum and muscle
tissue metabolites had the potential to distinguish IIM from
NC and active IIM from inactive IIM.10 However,
disease-specific metabolic profiles have not been studied
in IIM subtypes.

In this study, we performed an integrated analysis of
plasma and urine metabolomes in 79 newly diagnosed IIM
patients and identified a set of differentially expressed (DE)

metabolites among IIM subtypes. Based on these DE metab-
olites, we used 10 machine learning (ML) algorithms to iden-
tify specific metabolic biomarkers to classify main IIM sub-
types (DM, ASS, IMNM) and the MSA-defined subtypes
(anti-Mi2+, anti-MDA5+, anti-TIF1γ+, anti-Jo1+, anti-PL7+,
anti-PL12+, anti-EJ+, and anti-SRP+). We also found common
metabolites and functional pathways in both plasma and
urine in each IIM subtype and explored the correlations be-
tween metabolites and clinical parameters. This study applied
ML algorithms to systematically analyse the plasma and urine
metabolome and identified potential biomarkers in IIM
subtypes.

Materials and methods

Patients

In this study, a total of 79 newly diagnosed IIM patients,
namely, 45 DM [anti-Mi2+ (n = 8), anti-TIF1γ+ (n = 11), and
anti-MDA5+ (n = 26)], 27 ASS [anti-Jo1+ (n = 10), anti-PL7+
(n = 3), anti-PL12+ (n = 7), anti-EJ+ (n = 7)], and 7 IMNM
[anti-SRP+ (n = 5), anti-HMGCR+ (n = 2)] patients, and 52 nor-
mal control (NC) samples were enrolled at the Department of
Rheumatology and Immunology of Xiangya Hospital from
September 2018 to February 2021. The inclusion and exclu-
sion criteria of patients were described in the Supporting In-
formation. The demographic and clinical information of the
samples was listed in Table S1.

Sample preparation

Morning fasting blood and first morning midstream urine
samples were collected. Detailed procedures were described
in Data S1.

High-performance liquid chromatography of
quadrupole time-of-flight mass spectrometry-
based untargeted metabolomics analysis

Detailed procedures were described in Data S1.

Metabolomics date analysis

Data cleaning was performed using MetaboScape 3.0 soft-
ware, including noise reduction, peak detection, peak extrac-
tion, and alignment. Detailed procedures were described in
Data S1.
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Statistical analysis

The study design flow chart for metabolite-based model was
shown in Figure 1. The metabolic variables were normalized
using log transformation and Pareto scaling before analysis.
To identify the different metabolic profiles between the IIM
subtype patients and NC samples, we performed fold change
(FC) analysis and multivariate analyses using SIMCA 14.0 soft-
ware (Umetrics, Umeå, Sweden) and MetaboAnalyst 5.0
(https://www.metaboanalyst.ca/). In multivariate analysis,
supervised analysis orthogonal partial least-squares
discriminate analysis (OPLS-DA) was used to identify
important metabolites by the variable importance in the
projection (VIP) method. The metabolites with variable
importance were filtered out according to the FC higher
than 1.2 or less than 0.83 and VIP scores >1.0 in OPLS-DA.
Then, these metabolites were mapped to metabolic
pathway analysis. Pathway enrichment analysis was
conducted using MetaboAnalyst 5.0 based on the KEGG
human metabolic pathways. The correlation between
metabolites and clinical parameters was conducted by
Pearson’s or Spearman’s correlation using the R package
rstatix V.0.6.0 and correlation V.0.6.1. Bubble plots were
generated with the R package ggplot2 V.3.3.3.

ML model construction and specific metabolite
selection

ML algorithms were performed using Python. DE metabolites
(VIP scores>1.0, FC> 1.2 or<0.83) in each IIM subtype com-
pared with NC were included in ML model construction. To
construct the best classifiers for discriminating IIM subtypes,
we used 10 ML classifiers [linear support vector machines
(SVMs), radial basis function SVMs (RBF SVMs), random for-
ests, nearest neighbours, Gaussian processes, decision trees,
neural networks, adaptive boosting (AdaBoost), Gaussian na-
ive Bayes and quadratic discriminant analysis (QDA)].
Stratified threefold cross-validation was performed to esti-
mate the accuracy of each model. In detail, the samples were
stratified and divided into three parts in each IIM subtype, two
parts of patients were used as training dataset (containing
67% of the samples), and the other part of patients were used
as validation dataset (containing 33% of the samples). This
process (training and validation) was repeated 1000 times
with random allocation of patients in each IIM subtype. Then,
we compared the 10 different ML methods according to the
model accuracy scores (mean and 95% confidential interval)
and chose the optimal performance classifiers. In the end,
we used feature selection method in the ML models to select
the most important metabolites. Linear discriminant
analysis (LDA) plots were used to show the distribution of
IIM subtypes based on the ML selected metabolites. All
steps were performed with Python V.3.9.1, scikit-learn

V.0.24.2, NumPy V.1.19.5, Pandas V.1.2.1, and R package
MASS V7.3-53.

Results

Clinical characteristics of enrolled patients

Plasma and urine specimens were available from 52 NC
samples and 79 newly diagnosed IIM patients, namely, 45
with DM [anti-Mi2+ (n = 8), anti-TIF1γ+ (n = 11), and anti-
MDA5+ (n = 26)], 27 with ASS [anti-Jo1+ (n = 10), anti-PL7+
(n = 3), anti-PL12+ (n = 7), anti-EJ+ (n = 7)], and 7 with IMNM
[anti-SRP+ (n = 5), anti-HMGCR+ (n = 2)]. All the participants
were age-matched and sex-matched. The individual
demographic and clinical characteristics were provided in
Table S1.

Plasma metabolomic profiles in IIM main subtypes

LC-MS and gas chromatography (GC)-MS-based untargeted
metabolomics were used to study the plasma metabolomic
profiles. After filtering metabolites that were absent in more
than 20% of the samples, 149 and 440 metabolites were an-
notated in negative and positive modes, respectively. Then,
OPLS-DA was applied to further identify the metabolomic
profile alterations in IIM subtypes, which was widely used
to identify important metabolites by the variable importance
in the VIP method. OPLS-DA showed a clear separation of the
NC from the other three IIM subtypes in both positive and
negative modes (Figure 2A and 2B). Next, we performed FC
analysis on each IIM subtype compared with the NC group.
Given VIP > 1.0 and FC > 1.2 or <0.83, a total of 117 metab-
olites were identified in each IIM subtype (DM vs. NC, ASS vs.
NC, IMNM vs. NC). The UpSet plot and Tables S2 and S3
showed the unique and common DE metabolites in IIM sub-
type (Figure 2C).

Furthermore, KEGG pathway enrichment analysis was used
to reveal the function of these DE metabolites. The biosyn-
thesis of unsaturated fatty acid (UFA) pathway was
significantly altered in all the IIM subtypes; linoleic acid
metabolism, pentose phosphate pathway, pyrimidine
metabolism, and purine metabolism were enriched in DM,
fatty acid biosynthesis was obviously altered in ASS, the
amino acid metabolism (phenylalanine metabolism, phenylal-
anine, tyrosine and tryptophan biosynthesis, glycine, serine
and threonine metabolism, arginine biosynthesis, and
lysine degradation), and ubiquinone and other terpenoid–
quinone biosynthesis were predominantly changed in IMNM
(Figure 2D).

To select the most specific metabolites in each IIM sub-
type, the 117 DE metabolites were included in the 10 ML
algorithms. From these ML classifiers, the random forest
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Figure 1 Study design flow chart for metabolite-based model. An untargeted metabolomics analysis was carried out in the plasma and urine cohort of
79 newly diagnosed idiopathic inflammatory myopathies (IIM) patients and 52 normal control (NC) samples. Orthogonal partial least-squares discrim-
inate analysis (OPLS-DA) and fold change analysis were performed to measure the significance of metabolites. Then, the differentially expressed me-
tabolites were included in 10 machine learning models to identify potential biomarkers in each IIM subtype. Pathway enrichment analysis was
conducted based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) human metabolic pathways. The correlation between the shared metab-
olites in the plasma and urine samples of the IIM patients and clinical parameters was conducted by Pearson’s or Spearman’s correlation.
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Figure 2 Plasma metabolomic profiles in main IIM subtypes. (A and B) The orthogonal partial least-squares discriminate analysis (OPLS-DA) score plots
of plasma metabolomics data compared dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM)
to normal control (NC) samples in positive (A) and negative (B) ion mode, respectively. (C) The UpSet plot analysis based on the selected important
metabolites in plasma [variable importance in the projection (VIP) > 1, fold change (FC) > 1.2 or <0.83]. (D) KEGG pathway analysis of exclusively
important metabolites in each main IIM subtype. (E) The linear discriminant analysis (LDA) plot based on the Top 30 metabolites in random forest
machine model. (F) The most specific metabolite identified by the random forest machine model to classify plasma samples from NC, DM, ASS, and
IMNM, respectively (P value compared with NC, *, <0.05; **, <0.01; ***, <0.001, ****, <0.0001).
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model performed the best based on accuracy scores (mean
and 95% confidential interval) (Table S4). Then, we used
random forest feature selection method and identified the
most important metabolites to classify IIM main subtypes.
Using the Top 30 metabolites, LDA plot showed a clear sep-
aration among DM, ASS, IMNM, and NC (Figure 2E). The
Top 10 metabolites were listed in Table S5. Among them,
the levels of caproic acid, phosphoribosyl pyrophosphate,
and myristic acid were lowest in NC, DM and ASS,
respectively, and the creatine has the highest level in
IMNM (Figure 2F).

Plasma metabolomic profiles in the MSA-defined
IIM subtypes

The NC group and MSA-defined IIM subtypes showed a
clear separation in OPLS-DA model (Figure 3A and 3B). A
total of 196 metabolites (VIP > 1.0 and FC > 1.2 or
<0.83) were selected for further analysis. The exclusive
and common DE metabolites in each MSA-defined IIM sub-
type compared with the NC were shown in the UpSet plot
and Table S6 (Figure 3C), followed by a KEGG pathway en-
richment analysis with the exclusive DE metabolites. Di-
verse pathways were significantly dysregulated in
MSA-defined IIM subtypes, such as cysteine and methionine
metabolism in the anti-EJ + DM; arginine biosynthesis in
the anti-MDA5 + DM; phenylalanine, tyrosine, and trypto-
phan biosynthesis in the anti-Mi2 + DM; and taurine and
hypotaurine metabolism in the anti-TIF1γ + DM. (Figure
3D). Based on the 196 DE metabolites, the random forest
model achieved the best discrimination of MSA-defined
IIM subtypes among the 10 ML models (Table S7). The
LDA plot showed a clear separation of each group using
the Top 12 most important metabolites (Figure 3E). The
Top 10 metabolites were shown in Table S8. Among them,
high levels of caproic acid in all MSA-defined IIM subtypes,
increased anandamide in anti-EJ + ASS, low levels of
orciprenaline-3-O-sulfate in anti-Jo1 + ASS, decreased
lysoPC_14:0_0:0_in anti-MDA5 + DM, low levels of oleic
acid in anti-Mi2 + DM, down-regulated uridine 5-diphos-
phate in anti-TIF1γ + DM, up-regulated prostaglandin D3
in anti-PL12 + ASS, and the highest creatine levels in anti-
SRP + IMNM were found (Figure 3F).

Urine metabolomic profiles in IIM main subtypes

Urine metabolomics has been a promising approach for the
discovery of non-invasive biomarkers in response to specific
diseases or therapeutic intervention.11 Untargeted metabolo-
mics analysis of LC-MS and GC-MS was also performed in the
matched IIM urine samples. After data pre-pressing, 335 and
588 metabolites were annotated in negative and positive

modes, respectively. OPLS-DA showed a clear separation be-
tween IIM main subtypes and NC (Figure 4A and 4B). In total,
169 metabolites were identified as DE metabolites in IIM
main subtypes compared with the NC group (VIP > 1.0 and
FC > 1.2 or<0.83). Figure 4C and Tables S9 and S10 revealed
the distinctive and intersecting DE metabolites. KEGG path-
way enrichment analysis found distinguished pathways in
each IIM main subtype, such as sulfur metabolism in DM, ly-
sine degradation in ASS, and phosphonate and phosphinate
metabolism in IMNM (Figure 4D). To better identify the most
specific metabolites in each IIM main subtype, 169 metabo-
lites were included in 10 ML models, and the AdaBoost model
had the highest degree of accuracy (Table S11). Then, we
identified the most specific metabolites in each IIM main sub-
type by the feature selection method. Using the Top 30 me-
tabolites, the LDA plot showed a clear division among each
group (Figure 4E). The Top 10 metabolites were listed in
Table S12. Among them, the levels of dodecanoic acid,
isovalerylglucuronide, aminoadipic acid, and beta-alanine
were highest in the NC, DM, ASS, and IMNM group, respec-
tively (Figure 4F).

Urine metabolomic profiles in the MSA-defined IIM
subtypes

In the urine metabolic profiles, OPLS-DA also revealed a clear
separation among MSA-defined IIM subtypes (anti-EJ+, anti-
Jo1+, anti-MDA5+, anti-Mi2+, anti-TIF1γ+, anti-PL7+, anti-
PL12+, and anti-SRP+) in negative and positive modes (Figure
5A and 5B). Given VIP > 1.0 and FC > 1.2 or <0.83, 269 DE
metabolites in total were identified in MSA-defined IIM sub-
types, and the number of unique and shared DE metabolites
in each group was plotted in Figure 5C and Tables S13 and
S14. KEGG pathway enrichment analysis also showed specific
pathways in each subtype, such as cysteine and methionine
metabolism in anti-Jo1 + ASS; arginine biosynthesis in anti-
MDA5 + DM; valine, leucine, and isoleucine biosynthesis in
anti-Mi2 + DM; ubiquinone and other terpenoid–quinone
biosynthesis in anti-PL12 + ASS; D-arginine and D-ornithine
metabolism in anti-PL7 + ASS; and one carbon pool by folate
in anti-SRP + IMNM (Figure 5D). Based on the 269 DE metab-
olites, 10 ML models were constructed, and the AdaBoost
model performed the best with accuracies >80% to classify
MSA-defined IIM subtypes (Table S15). Using the AdaBoost
feature selection method, the most specific metabolites in
each group were identified. Based on the Top 12 metabolites,
the LDA plot showed clear clusters among these MSA-defined
IIM subtypes (Figure 5E). The Top 10 variables were shown in
Table S16, high levels of dodecanoic acid in NC, decreased
levels of tiglylcarnitine in anti-EJ + ASS, low levels of 2-
phenylethanol glucuronide in anti-Jo1 + ASS, down-regulated
acetamide levels in anti-MDA5 + DM, increased beta-alanine
levels in anti-Mi2 + DM, the lowest levels of tyramine
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Figure 3 Plasma metabolomic profiles in the MSA-defined IIM subtypes. (A and B) The Orthogonal partial least-squares discriminate analysis (OPLS-
DA) score plots of plasma metabolomics data compared anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2+, anti-TIF1γ+, anti-PL12+, and anti-SRP + IIM patients
to normal control (NC) samples in positive (A) and negative (B) ion mode, respectively. (C) The UpSet plot analysis based on the selected important
metabolites in plasma (VIP > 1, FC> 1.2 or <0.83). (D) KEGG pathway analysis of exclusively important metabolites in each IIM subtype. (E) The linear
discriminant analysis (LDA) plot based on the Top 12 metabolites in random forest machine model. (F) The most specific metabolite identified by the
random forest machine model to classify plasma samples from NC, anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2+, anti-TIF1γ+, anti-PL12+, and anti-
SRP + IIM patients, respectively (P value compared with NC, *, <0.05; **, <0.01; ***, <0.001, ****, <0.0001).
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Figure 4 Urine metabolomic profiles in main IIM subtypes. (A and B) The orthogonal partial least-squares discriminate analysis (OPLS-DA) score plots
of urine metabolomics data compared dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM)
to normal control (NC) samples in positive (A) and negative (B) ion mode, respectively. (C) The UpSet plot analysis based on the selected plasma im-
portant metabolites (VIP > 1, FC > 1.2 or <0.83). (D) KEGG pathway analysis of exclusively important metabolites in each IIM subtype. (E) The linear
discriminant analysis (LDA) plot based on the Top 30 metabolites in the AdaBoost machine model. (F) The most specific metabolites used by the
AdaBoost machine model to classify urine samples from NC, DM, ASS, and IMNM, respectively (P value compared with NC, *, <0.05; **, <0.01;
***, <0.001, ****, <0.0001).
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Figure 5 Urine metabolomic profiles in the MSA-defined IIM subtypes. (A and B) The orthogonal partial least-squares discriminate analysis (OPLS-DA)
score plots of urine metabolomics data compared anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2+, anti-TIF1γ+, anti-PL12+, anti-PL7+, and anti-SRP + IIM
patients to normal control (NC) samples in positive (A) and negative (B) ion mode, respectively. (C) The UpSet plot analysis based on the selected urine
important metabolites (VIP> 1, FC> 1.2 or<0.83). (D) KEGG pathway analysis of exclusively important metabolites in each IIM subtype. (E) The linear
discriminant analysis (LDA) plot based on the top 12 metabolites in the AdaBoost machine model. (F) The most specific metabolites identified by the
AdaBoost machine model to classify urine samples from NC, anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2+, anti-TIF1γ+, anti-PL12+, anti-PL7+, and anti-
SRP+ myositis patients, respectively (P value compared with NC, *, <0.05; **, <0.01; ***, <0.001, ****, <0.0001).
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glucuronide in anti-TIF1γ + DM, up-regulated levels of
5,6-dihydrouridine in anti-PL12 + ASS, the lowest levels of
D-ornithine in anti-PL7 + ASS, and the highest levels of
N-acetyl-L-aspartic acid in anti-SRP + IMNM were found
(Figure 5F).

Common pathways and metabolites in the plasma
and urine of IIM main subtypes

We performed KEGG pathway analysis based on the impor-
tant metabolites (VIP > 1) by comparing the global
metabolomic profiles of the DM, ASS, and IMNM patients
with the NC. Common perturbed pathways in the plasma
and urine samples of IIM main subtypes were ranked by en-
richment ratio. From these pathways, all IIM main subtypes
(DM, ASS, and IMNM) exhibited disturbed retinol metabo-
lism, pyrimidine metabolism, fatty acid biosynthesis, and
biosynthesis of unsaturated fatty acids. In DM, purine
metabolism, fatty acid elongation, and fatty acid degradation
were exclusively altered. In IMNM, amino acid metabolism
(tyrosine metabolism, lysine degradation, glycine, serine and
threonine metabolism, arginine biosynthesis, arginine and
proline metabolism), glycerophospholipid metabolism (phos-
phonate and phosphinate metabolism, glycerophospholipid
metabolism), and aminoacyl-tRNA biosynthesis were pre-
dominantly changed (Figure 6A). Moreover, we also found
common DE metabolites in both the plasma and urine
samples of IIM main subtypes, such as up-regulated throm-
boxane B2 (TXB2) in DM, increased TXB2 and decreased
myristic acid levels in ASS and up-regulated TXB2, creatine,
phosphorylcholine, proline betaine and down-regulated (S)-
3,4-dihydroxybutyric acid levels in IMNM. Among them, the
TXB2 levels were increased in all the IIM main subtypes in
both plasma and urine (Figure 6B).

Common pathways and metabolites in the plasma
and urine of MSA-defined IIM subtypes

From the enrichment metabolic pathway analysis (VIP > 1) of
MSA-defined IIM subtypes, pyrimidine metabolism and fatty
acid biosynthesis were disturbed in all seven MSA-defined
IIM subtypes (anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2+,
anti-TIF1γ+, anti-PL12+, and anti-SRP+). In anti-EJ + ASS, purine
metabolism, glycerolipid metabolism, fructose and mannose
metabolism, cysteine and methionine metabolism, and bio-
synthesis of unsaturated fatty acids were significantly
enriched. Obvious changes in sulfur metabolism, retinol
metabolism, purine metabolism, glycerolipid metabolism,
phosphonate and phosphinate metabolism, and fructose and
mannose metabolism were found in anti-Jo1 + ASS. Purine
metabolism, the pentose phosphate pathway, and arginine

biosynthesis appeared to be involved in the biological pro-
cesses of the MDA5 + DM. In anti-Mi2 + DM, multiple amino
acid metabolism pathways, vitamin B6 metabolism, primary
bile acid biosynthesis, pantothenate and CoA biosynthesis,
glutathione metabolism, galactose metabolism and
aminoacyl-tRNA biosynthesis were profoundly affected. Sulfur
metabolism, retinol metabolism, glycerolipid metabolism,
fructose and mannose metabolism, and fatty acid metabolism
were enriched in the anti-PL12 + ASS. In SRP + IMNM, sulfur
metabolism, retinol metabolism, pyrimidine and purine me-
tabolism, phosphonate and phosphinate metabolism,
glyoxylate and dicarboxylatemetabolism, glycolysis/gluconeo-
genesis, glycerophospholipid metabolism, the citrate cycle
[tricarboxylic acid (TCA) cycle], and amino acid metabolism
were significantly changed. Dysregulation of sulfur
metabolism, retinol metabolism, pyrimidine and purine
metabolism, primary bile acid biosynthesis, glyoxylate and
dicarboxylatemetabolism, fructose andmannosemetabolism,
and fatty acid and amino acid metabolism were implicated in
anti-TIF1γ + DM (Figure 7A). Moreover, we also found over-
lapped metabolites (VIP > 1, FC > 1.2 or<0.83) in the
plasma and urine samples of the MSA-defined IIM subtypes,
such as glyceraldehyde and myristic acid in anti-EJ + ASS,
TXB2, phosphorylcholine, glyceraldehyde, trans-aconitic
acid and myristic acid in anti-Jo1 + ASS, TXB2 and myristic acid
in anti-MDA5 + DM, N-acetyl-L-aspartic acid, creatine,
pyridoxal 5′-phosphate, malonyl-carnitin, and galactitol in
anti-Mi2 + DM, TXB2, palmitic acid, and myristic acid in
anti-PL12 + ASS, phosphorylcholine and pyruvic acid in
anti-SRP + IMNM, and TXB2 and hypogeic acid in anti-
TIF1γ + DM (Figure 7B).

Correlations between metabolites and clinical
parameters

To evaluate the relationships between metabolites alter-
ations and clinical parameters, correlation analysis was per-
formed on the common metabolites in the plasma and urine
samples of the IIM patients. Creatine was found to be posi-
tively associated with plasma creatine kinase (CK), CO2 com-
bining power (CO2CP), glutamic–pyruvic transaminase (ALT),
total cholesterol (TC), and high-density lipoprotein (HDL).
The level of plasma hypogeic acid was negatively correlated
with the prevalence of interstitial lung disease (ILD). Plasma
trans-aconitic acid showed a strongly positive association
with the prevalence of Gottron’s rash/sign and a negative
association with the plasma CO2CP (Figure 8A–C).
Moreover, plasma N-acetyl-L-aspartic acid showed a positive
association with plasma CK levels and CO2CP (Figure S1A).
In the urine samples of the IIM patients, our results
revealed that (S)-3,4-dihydroxybutyric acid was negatively
correlated with plasma direct bilirubin (DBIL) and positively
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correlated with IgA and platelets (PLTs) (Figure 8D). Urine
palmitic acid and malonylcarnitine showed a strongly nega-
tive association with complement3 (C3) and the prevalence

of ILD, respectively (Figure 8E and 8F). Urine glyceraldehyde
was negatively related to urine pondus hydrogenii (PH)
(Figure S1B).

Figure 6 Common pathways and metabolites in the plasma and urine of main IIM subtypes. (A) KEGG pathway analysis of the dysregulated pathways
in both the plasma and urine of dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM) patients
compared with normal control (NC) samples based on important metabolites (VIP > 1). (B) The important metabolites altered in both plasma and
urine of DM, ASS, and IMNM patients, respectively (VIP > 1, FC > 1.2 or <0.83).
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Discussion

Metabolomics is emerging as a useful method for diagnos-
ing and identifying therapeutic targets for a variety of
diseases.12 Our study first systematically analysed the me-
tabolome profiles in IIM main and MSA-defined subtypes

in both plasma and urine samples and applied ML algo-
rithms to identify the most specific metabolites in each
subtype. We found unique metabolite signatures in the pa-
tients with IIM main subtypes (DM, ASS, IMNM) and MSA-
defined subtypes (anti-EJ+, anti-Jo1+, anti-MDA5+, anti-Mi2
+, anti-TIF1γ+, anti-PL12+, anti-PL7+, and anti-SRP+).

Figure 7 Common pathways and metabolites in the plasma and urine of the MSA-defined IIM subtypes. (A) KEGG pathway analysis of the dysregu-
lated pathways in both the plasma and urine of the seven pairs (anti-EJ+ vs. NC, anti-Jo1+ vs. NC, anti-MDA5+ vs. NC, anti-Mi2+ vs. NC, anti-PL12+
vs. NC, anti-SRP+ vs. NC, and anti-TIF1γ+ vs. NC) (VIP > 1). (B) The important metabolites altered in both plasma and urine of anti-EJ+, anti-Jo1+,
anti-MDA5+, anti-Mi2+, anti-PL12+, anti-SRP+, and anti-TIF1γ + IIM patients, respectively (VIP > 1, FC > 1.2 or <0.83).
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Potential metabolic biomarkers in IIM main
subtypes

In plasma, phosphoribosyl pyrophosphate was specifically
decreased in DM, myristic acid was specifically decreased in
ASS, and creatine was significantly increased in IMNM.
Phosphoribosyl pyrophosphate, also known as PRPP, is a
rate-limiting substrate for de novo and salvage purine synthe-
sis. It plays an important role in the cell cycle regulation of pu-
rine synthesis.13 Reduced phosphoribosyl pyrophosphate may
affect myocyte development in DM. Myristic acid is an satu-
rated fatty acid (SFA), and moderate intake of myristic acid
has beneficial lipidic effects.14 In a mouse model of congenital
Type 2 diabetes, chronic administration of myristic acid im-
proved hyperglycaemia and reduced body weight. Moreover,
myristic acid could increase glucose uptake in C2C12 myotube

cells.15,16 Moderate supplementation with myristic acid may
also have a positive effect on muscle inflammation and perfor-
mance by regulating energy metabolism in ASS patients. Cre-
atine was up-regulated in both the plasma and urine samples
of the IMNM patients. The plasma creatine levels were
strongly correlated with CO2CP and the serum levels of CK,
ALT, TC, and HDL, whereas the urine creatine levels did not
correlate with clinical indices, suggesting that the creatine
level in the plasma of IMNM patients may be a better bio-
marker. This phenomenon may arise from the fact that the in-
creased circulating creatine most likely results from damaged
muscle cell leakage, whereas circulating creatine exceeds the
renal threshold, resulting in creatinuria.17

In urine, isovalerylglucuronide, aminoadipic acid, and
beta-alanine were specifically increased in the DM, ASS, and
IMNM patients, respectively. Isovalerylglucuronide has only

Figure 8 Correlations between metabolites and clinical parameters.(A and B) Spearman’s or Pearson’s correlation analysis was carried out to assess
the associations between clinical parameters and the shared metabolites in the plasma (A–C) and urine (D–F) samples of dermatomyositis (DM),
anti-synthetase syndrome (ASS), immune-mediated necrotizing myopathy (IMNM), and myositis-specific autoantibody (MSA)-defined IIM subtypes
(VIP > 1, FC > 1.2 or <0.83).
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been reported in the urine of patients with isovaleric acidemia
when the amount of urinary 3-hydroxyisovaleric acid excre-
tion is high.18 Aminoadipic acid is closely associated with
oxidative stress and reactive oxygen species production.19

Similarly, beta-alanine can act as a mitochondrial toxin that
reduces cellular respiration and oxidative phosphorylation.20

Up-regulated aminoadipic acid and beta-alanine may lead to
deficits in energy-generating metabolic pathways in skeletal
muscle by damaging mitochondria, finally contributing to
muscle inflammation, weakness, and fatigue.21

In both the plasma and urine samples, TXB2, myristic acid,
creatine, phosphorylcholine, proline betaine, and (S)-3,4-
dihydroxybutyric acid were changed. Of those six metabo-
lites, TXB2 was increased in all types of myositis. TXB2 is a sta-
ble metabolite of thromboxane A2 (TXA2), which is derived
from cyclooxygenase (COX) and PLTs. TXA2 has been linked
to cardiovascular diseases, Type 1 and 2 diabetes, chronic in-
flammatory diseases, and tumour metastasis.22,23 Consistent
with our study, increased expression of enzymes in the COX
pathway was discovered in muscles from DM/PM patients.24

These prostanoid signalling molecules play an important role
in muscle inflammation and atrophy. Elevated (S)-3,4-
dihydroxybutyric acid has previously been identified in the
serum of patients with dementia and may serve as a predic-
tive biomarker.25 We found decreased (S)-3,4-
dihydroxybutyric acid in both the plasma and urine of the
IMNM patients. Moreover, the expression level of urine (S)-
3,4-dihydroxybutyric acid was negatively correlated with the
plasma DBIL level and positively correlated with the IgA and
PLT levels, which may participate in the early pathogenesis
of IMNM.

Potential metabolic biomarkers in MSA-defined IIM
subtypes

We also identified the most specific metabolites in the
plasma of the MSA-defined IIM subtypes. Plasma oleic acid
was exclusively down-regulated in the anti-Mi2 + DM pa-
tients. Oleic acid, a monounsaturated fatty acid, has an
anti-inflammatory effect on collagen-induced arthritis and
can also increase Type 1 fibre levels in C2C12 myotubes.26,27

Although the role of anti-Mi2 autoantibodies in anti-
Mi2 + DM is still unclear, the autoantigen Mi2 is associated
with muscle cell differentiation.3 We hypothesize that de-
creased oleic acid expression may affect this process. Prosta-
glandin D3, a kind of prostaglandin that mediates muscle in-
flammation and atrophy, was only up-regulated in the
plasma of anti-PL12 + ASS patients.28

Tiglylcarnitine, which is the most abundant group of carni-
tines in tissues and biofluids, was expressed at the lowest
levels in the urine of anti-EJ + ASS patients.29 It is also de-
creased in the blood of patients with familial Mediterranean
fever, metabolic syndrome, Type 2 diabetes, and cardiovascu-

lar diseases.30,31 Supplementation with some short-chain car-
nitines has been studied as a treatment for a variety of dis-
eases, and tiglylcarnitine may also have a beneficial effect
on anti-EJ + ASS patients. Uridine 5-diphosphate, a compo-
nent of nucleotide metabolism, has been identified to be el-
evated in multiple malignancies, suggesting rapid tRNA deg-
radation due to metabolic interactions between the tumour
and host.32 Significant up-regulation of 5,6-dihydrouridine
was evident in the anti-PL12 + ASS, but no studies have re-
ported the relationship between the level of 5,6-
dihydrouridine and the risk of cancer in anti-PL12 + ASS.

We proposed 13 overlapping metabolite changes in the
plasma and urine of MSA-defined IIM subtypes, including
three fatty acids, namely, myristic acid, palmitic acid, and
hypogeic acid; two amino acids, namely, N-acetyl-L-aspartic
acid and creatine; glyceraldehyde; TXB2; phosphorylcholine;
trans-aconitic acid; pyridoxal 5-phosphate; malonyl-carnitin;
galactitol; and pyruvic acid. In the anti-TIF1γ + DM patients,
the long-chain fatty acid hypogeic acid (cis-7-hexadecenoic
acid, 16:1n-9) was significantly increased in the plasma and
urine samples. Interestingly, plasma hypogeic acid was nega-
tively correlated with the percentage of ILD in IIM patients.
Hypogeic acid is a possible biomarker for foamy cell forma-
tion during atherosclerosis and exerts an anti-inflammatory
effect in immune cells.33 Adult DM patients are at risk of met-
abolic syndrome, and whether anti-TIF1γ + DM patients have
a higher risk of developing the disease warrants future
studies.34 Pyruvic acid was obviously decreased in the plasma
and urine of anti-SRP + IMNM patients. Pyruvic acid is the
end product of glycolysis and is the central metabolite in
the TCA cycle.35 The anomalous expression of pyruvic acid
in anti-SRP + IMNM patients may reflect dysfunction of the
mitochondrial respiratory chain. Given the high heterogene-
ity of IIM, a combined ML algorithm and metabolomics anal-
ysis offers the prospect of identifying metabolically defined
IIM subtypes. The specific metabolites in each group have a
high accuracy of disease prediction and are useful in IIM
subsetting.

Potential mechanism exploration

From the metabolic pathway enrichment analysis, specific
pathways were also revealed in both the plasma and urine
samples in the IIM subtypes. In all the main IIM subtypes,
we found general disturbed metabolic pathways, such as ret-
inol metabolism, pyrimidine metabolism, and fatty acid bio-
synthesis pathways. In the DM patients, fatty acid
metabolism-related pathways were enriched the most. Con-
sistent with our previous results, down-regulated HDL and
up-regulated triglyceride levels were common in the serum
of the DM patients.36 Many amino acid metabolic pathways
were disturbed in the plasma and urine profiles of the IMNM
patients, including tyrosine metabolism, lysine degradation,
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glycine, serine and threonine metabolism, arginine biosyn-
thesis, and arginine and proline metabolism. The synthesis
of arginine and tyrosine metabolism has been associated with
inflammatory reactions.37 The lysine degradation pathways
are confined to the mitochondria, ultimately yielding two
acetyl-CoAs via the mitochondrial saccharopine pathway.38

Glycine can be converted to serine and threonine, and serine
can flux to the TCA cycle, finally inhibiting adenosine triphos-
phate production.39 Taken together, the significantly dis-
turbed amino acid metabolic pathways in the IMNM patients
may correlate with abnormal muscle mitochondrial function
and inflammation.

In both the plasma and urine profiles of the MSA-defined
IIM subtypes, diverse pathways were dysregulated. Among
them, pyrimidine metabolism and fatty acid biosynthesis
were involved in most of the MSA-defined IIM subtypes. In
anti-Mi2 + DM, amino acid biosynthesis and metabolism
were enriched the most, participating in the synthesis of
proteins, nucleic acids, and lipids and energy generation
and contributing to inflammation, immunity, insulin resis-
tance, and obesity.37,39,40 Many lipid metabolism pathways,
including glycerolipid metabolism, fatty acid elongation,
fatty acid degradation, fatty acid biosynthesis, and biosyn-
thesis of unsaturated fatty acids, were significantly
perturbed in anti-PL12 + ASS. Interestingly, the
glycerolipid/free fatty acid (GL/FFA) cycle is integrated by
lipolysis. Lipids are not only an essential part of energy
metabolism but also participate in multiple biological pro-
cesses. Disturbed lipid metabolism is strongly associated
with metabolic syndrome, inflammation, and the pathogen-
esis of senescence and cancers.41 Our results suggested that
the disturbances in lipid metabolism were likely related to
the processes of anti-PL12 + ASS.

Limitations

There are some limitations in our study. First, to discard ex-
ogenous metabolites related to diets, drugs and treatments
that guaranteed robust metabolite markers, metabolites
absent in 20% or more samples were removed from the
analysis. This filtering criterion was a common method for
dealing with missing data in untargeted metabolomics
analysis42,43 but that may also eliminate some IIM
subtype-specific metabolite markers. Further studies are
needed to focus on the validation of potential biomarkers
in the metabolites absent in 20% or more samples. Second,
our study focused on the metabolomic profiles in the plasma

and urine of newly diagnosis IIM patients and applied ML al-
gorithms to classify IIM subtypes to search potential bio-
markers. However, we did not analysis the metabolites alter-
ations in the IIM follow-up cohort, which might response to
disease activities and drug treatment. In addition, as muscle
tissue is the most important organ involved in IIM, combined
analysis of the muscle tissue metabolomic profiles might
provide more valuable clues for IIM pathologic mechanism
research.

Conclusion

Taken together, by applying ML algorithms to the metabo-
lome data, we identified specific plasma and urine metabo-
lites that can classify IIM main subtypes and MSA-defined
IIM subtypes. We also discovered the overlapped key metab-
olites and perturbed metabolic pathways in the plasma and
urine of each subtype. Our study reveals the plasma and
urine metabolic signatures in IIM, which may provide useful
clues in understanding the molecular mechanisms and search
potential biomarkers for the diagnosis and prognosis of IIM
subtypes. These newly detected metabolic biomarkers and
pathways may also serve as promising therapeutic targets
in IIM, such as dietary supplementation with taurine to re-
duce oxidant stress catabolism and dietary supplementation
or pharmacological intervention to regulate the ratio imbal-
ance of SFAs.
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