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Abstract

Transcriptome-wide association studies (TWASs) have been developed to nominate

candidate genes associated with complex traits by integrating genome-wide association

studies (GWASs) with expression quantitative trait loci (eQTL) data. However, most

existing TWAS methods evaluate the marginal association between a single gene and the

trait of interest without accounting for other genes within the same genomic region or

the same gene from different tissues. Additionally, false-positive gene-trait pairs can arise

due to correlations with the direct effects of genetic variants. In this study, we intro-

duce TWASKnockoff, a new knockoff-based framework for detecting causal gene-tissue

pairs using GWAS summary statistics and eQTL data. Unlike marginal testing in tradi-

tional TWAS methods, TWASKnockoff examines the conditional independence for each

gene-trait pair, considering both correlations in cis-predicted expression across genes and

correlations between gene expression levels and genetic variants. TWASKnockoff estimates

the theoretical correlation matrix for all genetic elements (cis-predicted expression across

genes and genotypes for genetic variants) by averaging estimations from parametric boot-

strap samples and then performs knockoff-based inference to detect causal gene-trait pairs

while controlling the false discovery rate (FDR). Through empirical simulations and an
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application to type 2 diabetes (T2D) data, we demonstrate that TWASKnockoff achieves

superior FDR control and improves the average power in detecting causal gene-trait pairs

at a fixed FDR level.

1 Introduction

Genome-wide association studies (GWASs) have achieved remarkable success in detecting tens

of thousands of genetic variants that are associated with complex traits [1]. However, the

causal genes mediating the effects of genetic variants on the trait are rarely ascertainable by

analyzing GWAS data alone [2]. This interpretation challenge has motivated the development

of methods to prioritize causal genes at the GWAS loci.

Several methods have been proposed to leverage multi-omic data to nominate candidate

genes from GWASs. One family of such methods is transcriptome-wide association studies

(TWASs) [3, 4], which utilize expression reference panels (cohorts with gene expression and

genotype data) to discover gene–trait associations from GWASs [5]. First, predictive models of

expression variation are learned based on expression reference panels to predict gene expression

for each individual in the GWAS cohort. However, most existing TWASs evaluate the marginal

association between a single gene and the trait of interest without accounting for other genes

within the same genomic region or the same gene from different tissues [5, 6]. The marginal

testing approach does not account for the correlation among gene expressions within a genomic

region, which can result in the identification of multiple gene associations in a localized area

and an increased rate of false signals [7, 8]. Additionally, false-positive gene-tissue pairs can

arise due to linkage disequilibrium (LD) between expression quantitative trait loci (eQTLs)

and nearby genetic variants (e.g., single nucleotide polymorphisms, often called cis-SNPs),

resulting in correlations between gene expressions and the direct effects of genetic variants

[5, 9, 10].

To reduce false positives in marginal TWASs and prioritize the mapping of causal genes,

several methods have been developed to jointly model a small number to a few dozen genes
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that reside in the same region [7]. Specifically, GIFT (Gene-based Integrative Fine-mapping

through conditional TWAS) examines one genomic region at a time, jointly models the gene

expression levels of all genes in the focal region, and performs TWAS conditional analysis in

a maximum likelihood framework [11]. GIFT explicitly models the gene expression correla-

tion and cis-SNP LD across different genes in the region and accounts for the uncertainty in

the constructed gene expression in the GWAS cohort. However, GIFT assumes the absence

of direct effect of genetic variants, which can lead to power loss and inflated false positives.

Analysis of GWAS summary statistics for 42 traits and cis-eQTL summary statistics for 48

tissues from the Genotype-Tissue Expression (GTEx) suggested that averaging across traits,

only 11±2% of heritability was mediated by assayed gene expression levels [9]. Consequently,

GIFT’s assumption that the quantitative trait of interest is a linear combination of the ex-

pression levels of all genes in a local region may not be met in real-world data applications.

Model-X knockoffs is a broad and flexible variable selection framework in high-dimensional

settings [12, 13], enabling practitioners to select variables that retain dependence with the re-

sponse conditional on all other covariates while controlling the false discovery rate (FDR). Sev-

eral knockoff-based methods have been developed for genetic applications, especially GWASs

[14, 15]. Additionally, TWAS-GKF, a knockoff-based method, has been proposed to iden-

tify candidate trait-associated genes at the genome-wide level without accounting for non-

mediated genetic variants [16]. However, the use of knockoff-based inference to jointly model

candidate genes together with the direct effects of genetic variants within a local region re-

mains unexplored.

We introduce TWASKnockoff, a new knockoff-based framework designed to identify causal

genes for the trait of interest using GWAS summary statistics and eQTL data. TWASKnock-

off extends the knockoff inference to identify disease-causing genes. Unlike the marginal

testing performed in traditional TWAS methods, TWASKnockoff examines the conditional

independence for each gene-trait pair, considering both correlations in cis-predicted expression

across genes and correlations between gene expression levels and genotypes of genetic variants.
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TWASKnockoff begins by constructing gene expression prediction models using eQTL data,

employing basic statistical methods such as elastic net and lasso regression. These models are

used to predict summary statistics of gene expression in the GWAS cohort. Methodologically,

we derive the correlation matrix for all genetic elements, including cis-predicted expression

across genes and genotypes for genetic variants. TWASKnockoff approximates this theoreti-

cal correlation matrix by averaging estimations from parametric bootstrap samples. Finally,

TWASKnockoff applies the GhostKnockoff procedure [17, 18] to select causal gene-trait pairs

while maintaining FDR control.

We performed simulations and real data analyses for type 2 diabetes (T2D) to compare

the performance of TWASKnockoff with GIFT in FDR control and power. TWASKnockoff

outperformed GIFT by achieving superior FDR control and enhanced the average power for

detecting genes causally associated with complex traits at a fixed FDR level. Besides, the

improved estimation of the correlation matrix through bootstrap sampling further improved

the performance of TWASKnockoff.

2 Methods

We consider a GWAS with n1 individuals and an eQTL study with n2 individuals. TWAS-

Knockoff estimates the test statistics for genetic elements (including gene expression levels

and non-mediated genetic variants) within a genomic region under a two-level model:

y =

K∑
k=1

G̃kαk +Xtβ + ϵ, G̃k = Xtγk, (1)

Gk = Xeγk + ek, (2)

where y denotes the n1-vector of quantitive trait of interest, K denotes the total number of

genes, Xt denotes the n1 × p matrix of genotypes for SNPs within this region in the GWAS

cohort, Xe denotes the n2 × p matrix of genotypes for the same p cis-SNPs in the gene
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expression study, Gk is the n2-vector of the observed gene expression of gene k, G̃k is the

n1-vector of the predicted gene expression of gene k, αk denotes the scalar effect of cis-gene

expression in gene k on trait of interest, and γk is the p-vector of causal cis-eQTL effect sizes

of genetic variants on gene expression in gene k. Both ϵ and ek are vectors of error terms

following independent normal distributions. For each γk, we only consider the cis-SNPs for

gene k, and set the effect sizes of other SNPs to zero. Without loss of generality, we assume

y, Xt, Xe, and Gk have already been standardized.

Suppose G = [G1, . . . ,GK ] is the matrix of gene expression levels, α = [α1, . . . , αK ]T is

the K-vector of the effects of gene expression levels on the trait of interest, γ = [γ1, . . . ,γK ]

is the p×K matrix of cis-eQTL effect sizes of each variant on all gene expression levels. Thus

we can rewrite the above model into:

y = G̃α+Xtβ + ϵ, G̃ = Xtγ, (3)

G = Xeγ +E, (4)

where E = [e1, . . . , eK ] is the n2 ×K matrix of random errors.

2.1 Effect size estimates for cis-eQTL

Based on G and Xe, we can estimate the effect size γk for each gene k, denoted as γ̂k. The

gene expression level for gene k in the GWAS population can then be estimated as

Ĝk = Xtγ̂k, (5)

An accurate estimation γ̂k should produce Ĝk that closely approximates the true gene expres-

sion level for gene, i.e., G̃k. To estimate γk, we employed the elastic net regression method.

However, in certain cases, the elastic net could not select any significant variables, resulting

in noninformative predictions for G̃k. To address this limitation, we implement the following
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procedure to estimate γk:

1. First, we fit the eQTL model (2) using the elastic net regression method. The penalty

parameter is selected to minimize the cross-validation error.

2. If the elastic net model fails to identify any significant variables, we use ridge regression

to fit the eQTL model, again selecting the penalty parameter to minimize the cross-

validation error.

2.2 Improved correlation matrix estimate

Suppose Ĝ = [Ĝ1, . . . , ĜK ] = Xtγ̂ is the matrix of estimated gene expression levels in the

GWAS cohort, where γ̂ = [γ̂1, . . . , γ̂K ]. We want to solve the variable selection problem

under model (1) using the knockoff framework, which requires an accurate estimation of the

correlation structure for all genetic elements.

Let G = [G1, . . . , GK ]T represent the vector of imputed gene expression levels for K genes

in GWAS, and Xt = [Xt,1, ..., Xt,p]
T denote the random vector of standardized genotypes for p

SNPs in GWAS. Therefore, we have G = γ̂TXt. We define genetic elements W = [GT , XT ]T ,

containing both gene expression levels and non-mediated genetic variants. To perform variable

selection via knockoff, we need to model the covariance matrix of all the genetic elements:

Ω = Cov(W ) =

 Cov(γ̂TXt) Cov(γ̂TXt, Xt)[
Cov(γ̂TXt, Xt)

]T
Cov(Xt)

 . (6)

If the genotype matrixXt is observable, we can directly estimateΩ by computing the empirical

covariance matrix of [Ĝ,Xt]. However, in most cases, instead of directly observing Xt, we

only have access to an estimate of the LD matrix, denoted as R̂, which is derived from an

external reference panel. Here, R represents the true LD matrix. Under the scenario that γ̂
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is fixed, Ω can be estimated as follows:

Ω̂ =Ĉov(W |γ̂)

=

 Ĉov(γ̂TXt|γ̂) Ĉov(γ̂TXt, Xt|γ̂)[
Ĉov(γ̂TXt, Xt|γ̂)

]T
Ĉov(Xt)


=

γ̂T R̂γ̂ γ̂T R̂

R̂γ̂ R̂

 .

Although this empirical approach to calculatingΩ is straightforward and intuitive, it overlooks

the randomness introduced by the estimation of the size of the cis-eQTL effect, γ̂. This

simplification inevitably results in a biased estimation of both the covariance matrix among

imputed gene expression levels and the covariance matrix between imputed gene expression

levels and genotypes. To improve the accuracy of Ω estimation, it is important to recognize

that γ̂ is a random matrix following a certain distribution. The covariance matrix of genetic

elements can then be calculated by the law of total covariance:

Cov(γ̂TXt) =E[Cov(γ̂TXt|γ̂)] + Cov(E[γ̂TXt|γ̂])

=E[γ̂TCov(Xt)γ̂] + Cov(γ̂TEXt)

=E[γ̂TRγ̂],

(7)

Cov(γ̂TXt, Xt) =E[Cov(γ̂TXt, Xt|γ̂)] + Cov(E[γ̂TXt|γ̂],E[Xt|γ̂])

=E[γ̂TCov(Xt)] + Cov(γ̂TEXt,EXt)

=E[γ̂TR].

(8)

Assume that the coefficients estimated by the eQTL study are given by γ̂(0) = [γ̂
(0)
1 , ..., γ̂

(0)
K ].

Using parametric bootstrap samples, we generate a total of B bootstrap estimates, denoted
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as γ̂(b) = [γ̂
(b)
1 , ..., γ̂

(b)
K ], b = 1, ..., B, by resampling residuals:

γ̂(b)
g = f(Xe,Xeγ̂

(0)
g + ê(b)g ),

where ê(b)g is randomly sampled from a normal distribution with mean zero and variance

estimated by Var(Gg − Xeγ̂
(0)
g ). The function f denotes the method used to estimate the

eQTL effect sizes based on observed data, such as elastic net or ridge regression.

Therefore, we can estimate (7) and (8) by:

Ĉov(γ̂TXt) =
1

B + 1

B∑
b=0

γ̂(b)T R̂γ̂(b), (9)

Ĉov(γ̂TXt, Xt) =
1

B + 1

B∑
b=0

γ̂(b)T R̂. (10)

By substituting equations (9) and (10) into (6), we derive an improved estimation of Ω,

referred to as the bootstrap estimation of the correlation matrix in this manuscript. We fixed

the number of bootstrap samples B = 9 throughout this project. The effectiveness of the

bootstrap estimation in increasing accuracy and stability for both gene-gene and gene-SNP

correlations was demonstrated through simulations (see Supplementary materials for more

details).

2.3 Variable selection via TWASKnockoff

We first give a brief review of model-X knockoffs and GhostKnockoff. Considering a very

general conditional model where the response y can depend in an arbitrary fashion on the

covariates X1, . . . , Xp, and the observations (Xi1, . . . , Xip, yi), i = 1, . . . , n, are independently

and identically distributed. Model-X knockoffs aims to discover which variables are truly

associated with the response while controlling the FDR.

To implement model-X knockoffs, the first step is to construct an n × p matrix X̃ of
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knockoffs such that the following two conditions hold:

1. (Xj , X̃j , X−j , X̃−j)
d
= (X̃j , Xj , X−j , X̃−j), ∀ 1 ≤ j ≤ p.

2. X̃ ⊥ Y |X.

In other words, for each feature Xj , we construct a “knockoff” feature X̃j to imitate the cor-

relation structure of the original features. After that, the feature statistic Tj = Tj([X, X̃, y])

is computed for each pair of original and knockoff variables, and a large positive value of Tj

provides evidence against the hypothesis that Xj is null.

To control the FDR below the desired level q, the knockoff filter selects the variables

{j : Tj ≥ T}, where

T = min

{
t :

1 + #{j : Tj ≤ −t}
#{j : Tj ≥ t} ∨ 1

≤ q

}
.

For each covariate Xi with feature statistic Ti, the q-value is defined as

qi = min
t≤Ti

1 + #{j : Tj ≤ −t}
#{j : Tj ≥ t} ∨ 1

.

Selecting covariates at a target FDR level q is equivalent to selecting variants with qi < q.

Model-X knockoffs requires individual-level data to perform variable selection. To address

this limitation, GhostKnockoff modified the original knockoff framework to allow efficient

knockoff-based inference using freely available GWAS summary statistics and LD information,

which can directly generate the knockoff feature statistics per variant without the need to

generate individual-level knockoffs.

The TWAS summary statistics z-scores for a specific gene k can be calculated using the

GWAS summary statistic z-scores, the LD matrix, and the predicted effect sizes for cis-eQTLs:

zk =
zTgwasγ̂k√
γ̂T
k R̂γ̂k

,

where zgwas is the p-vector of GWAS summary statistic z-scores across variants in the risk
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region. By combining TWAS and GWAS summary statistics together with the correlation

matrix of all genetic elements, we can perform variable selection under FDR control through

the GhostKnockoff framework.

Under the model assumptions of TWASKnockoff, genetic variants can influence traits of

interest through two distinct mechanisms. First, variants can act as cis-eQTLs for genes that

are causal to the trait of interest. Second, variants can exert a direct effect on the trait without

mediation through gene expression levels. To mitigate the power loss caused by conflating

these two causal pathways, we exclude cis-eQTLs identified during gene expression mapping

from the knockoff model of all genetic elements. Specifically, we remove significant genetic

variants identified by the elastic net model in the gene expression prediction step. For genes

where no significant variants are selected, we retain all cis-SNPs in the model.

3 Simulation

3.1 FDR control via TWASKnockoff

Effective control of the FDR often requires a sufficiently large number of discoveries. When

the number of genes is adequate, variable selection and the calculation of q-values can be

performed directly based on the feature statistics of the estimated gene expression levels,

Ĝ. However, the number of candidate genes within a given risk region is often too small

to enable direct FDR control. To address this limitation, we adopt an alternative approach

that performs variable selection across all genetic elements, including both imputed gene

expressions and cis-SNPs. This method controls the FDR of all genetic elements and then

identifies the set of genes from the significant variants. The key idea is to leverage the larger set

of genetic variants to facilitate effective FDR control for genes when the number of candidate

genes is insufficient.

We conducted a simulation study to demonstrate that TWASKnockoff achieves effective

FDR control by jointly modeling candidate genes and cis-SNPs within risk regions. We
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simulated both gene expression levels and quantitative phenotypes based on 1,000 and 20,000

unrelated European samples from the UK Biobank (UKBB), respectively. We randomly

selected 100 risk regions on chromosome 1, each containing 100 adjacent and non-overlapping

candidate genes. The proportion of causal genes contributing to the trait of interest was set

at 20%. Each candidate gene contains 20 cis-SNPs from the common part of the UKBB and

HapMap3 datasets. We assumed that there existed two eQTLs for each candidate gene, which

explained 20% variation of the gene expression level. For simplicity, we excluded the direct

effect of non-mediated SNPs. The total heritability explained by causal genes within the risk

region was fixed at 0.1.

We compared the performance of two variable selection strategies in controlling the FDR

within TWASKnockoff:

1. Gene-based selection: Identifying significant genes based solely on feature statistics

of gene expression levels.

2. Gene and SNP-based selection: Identifying significant genes based on feature statis-

tics of all genetic elements, including genes and cis-SNPs.

The performance of these strategies was assessed in terms of FDR control and power (Figure

1). We tested various feature statistics within TWASKnockoff, including lasso coefficients

(lasso), lasso coefficients with approximated λ (lasso.approx.lambda), marginal empirical

correlations (marginal), the element-wise square of z-scores (squared.zscore), and posterior

inclusion probability produced by SuSiE [19] (susie). The correlation matrix of genetic

elements was estimated using parametric bootstrap samples. Both strategies demonstrated

effective FDR control relative to the q-value threshold. However, selecting significant genes

solely based on feature statistics of estimated gene expression levels resulted in an FDR closely

aligned with the q-value threshold. In contrast, the gene and SNP-based selection approach

was more conservative, resulting in stricter FDR control. Additionally, feature statistics

derived from lasso regression outperformed other methods, achieving a significantly lower

FDR while maintaining comparable power.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.05.636660doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.05.636660
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene based All variants based
P

ow
er

F
D

R

0.25 0.50 0.75 0.25 0.50 0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

q−value threshold

Feature statistic

lasso

lasso.approx.lambda

marginal

squared.zscore

susie

Figure 1: Comparison between two FDR control strategies. The FDR of genes was
controlled within genes only (left) and all genetic elements (right) in TWASKnockoff, with
the correlation matrix estimated with parametric bootstrap samples. In this simulation, all
the heritability was explained by causal genes within the risk region, and we considered five
feature statistics in the GhostKnockoff framework.

The same simulation was also performed using the empirical estimation of the correlation

matrix (Figure S??). The results further validated that variable selection based on all genetic

elements effectively controlled the FDR. The degree of conservativeness in FDR control was

largely influenced by the comparability between the proportion of causal elements within the

gene set and those within the SNP set (see Supplementary Materials for additional details).
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3.2 Comparison of TWASKnockoff with GIFT

We conducted extensive simulations to evaluate the performance of TWASKnockoff and com-

pare it with GIFT. These simulations used imputed genotype data from the UKBB and

involved simulated gene expression levels and quantitative phenotypes based on 1,000 and

50,000 unrelated participants of white British ancestry, respectively. We randomly selected

100 risk regions on chromosome 1, each containing K adjacent but non-overlapping candidate

genes. Each candidate gene contained 100 HapMap3 cis-SNPs, of which two were selected

as eQTLs, explaining 20% of the variation in gene expression level. The causal status of

each candidate gene was simulated using a binomial distribution B(K,Pe), where the success

probability Pe was fixed at 0.2. To ensure that each risk region included at least one causal

gene, if the binomial distribution produced no causal genes, the first gene was set to be causal.

Gene expression levels and phenotypes were simulated following the two-level model de-

scribed below:

Gk = Xekγk + ek, ek ∼ Nn2(0, (1− h2e)In2),

G̃k = Xtkγk,

y =

K∑
k=1

G̃kαk +Xtβ + ϵ, ϵ ∼ Nn1(0, σ
2In1),

where y is the quantitative trait of interest, Xt is an n1× p matrix of standardized genotypes

for the p SNPs from the risk region in the GWAS, Xek is an n2 × pk matrix of standardized

genotypes for the same pk cis-SNPs of the k-th candidate gene in the eQTL study, and Xtk is

an n1 × pk matrix of standardized genotypes for the same pk cis-SNPs of the k-th candidate

gene in the GWAS cohort. We denote he as the variation explained by cis-eQTL for gene

expression levels, Gk is the gene expression level for the k-th candidate gene in the eQTL

study, and G̃k is the gene expression level for the k-th candidate gene in the GWAS cohort.

We denote γk as the eQTL effect size, which has non-zero elements only at ne eQTLs. For
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each eQTL, we sampled the effect size from a normal distribution N(0, h
2
e

ne
). We assumed that

the probability for any SNP within the given risk region to have a non-mediated effect on the

trait of interest is Pt. The total number of non-mediated SNPs, nnmv, was randomly sampled

from a Poisson distribution Pois(p0Pt), where p0 is the total number of genetic variants that

are not eQTLs. For each non-mediated SNP j, the effect size βj was sampled from a normal

distribution N(0,
h2
p

nnmv
). For all other SNPs, the non-mediated effect size was set to zero.

Additionally, we assigned αk to be a fixed constant c if the k-th gene was causal and αk = 0

otherwise.

To evaluate the performance of TWASKnockoff under different parameter settings, we

considered two key parameters. The first parameter is the total proportion of phenotypic

variance explained by genetic elements in the candidate region, denoted as h2. The second

parameter is the proportion of heritability attributable to gene expression, denoted as re. As-

suming the total number of causal genes is K1, we solved the following equations to determine

the values of c, h2p, and σ2 in order to control h2 and re at the desired levels:

K1c
2 + h2p + σ2 = 1,

h2 =
K1c

2h2e + h2p
K1c2 + h2p + σ2

,

re =
K1c

2h2e
K1c2h2e + h2p

.

Solving these equations, we obtain:

h2p = h2(1− re),

c =

√
reh2

K1h2e
,

σ2 = 1− (1− re)h
2 − reh

2

h2e
.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.05.636660doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.05.636660
http://creativecommons.org/licenses/by-nc-nd/4.0/


We performed simulations for each combination of h2 ∈ {1%, 2%, 4%} and re ∈ {20%, 50%, 100%}.

The default settings for other parameters were as follows: n1 = 50, 000, n2 = 1, 000, K = 10,

h2e = 0.2, ne = 2, Pt = 0.01, Pe = 0.2, pk = 100 for k = 1, ...,K. Notably, when re = 100%,

there were no non-mediated effects, aligning with the model assumptions of GIFT.

3.2.1 Simulation with the in-sample LD matrix

We first assessed the performance of TWASKnockoff and GIFT when the in-sample LD matrix

was available. For TWASKnockoff, we utilized summary statistics and the in-sample LD

matrix, considering two representative feature statistics: lasso and squared.zscore. To

ensure a fair comparison, we used individual-level data as input for GIFT.

The performance of TWASKnockoff and GIFT was evaluated in terms of statistical power

and FDR control when genetic elements in the region explained 1% of phenotypic variance

(Figure 2). When re = 1, meaning all heritability was explained through gene expression

levels, the model assumptions of GIFT were satisfied. Under this scenario, GIFT effectively

controlled the FDR at the desired level and achieved high power. In contrast, TWASKnockoff

exhibited a more conservative behavior, attributable to its inclusion of non-mediated genetic

variants for FDR control.

Although GIFT performed well under the extreme condition where all heritability was

mediated through gene expression (re = 1), it is important to recognize that, in most realistic

scenarios, a substantial portion of heritability is not mediated by gene expression. When

non-mediated effects of genetic variants were present (re = 20% or re = 50%), GIFT failed

to control false discoveries, exhibiting an inflated FDR of up to 60% even under the strictest

q-value thresholds. These uncontrolled false discoveries naturally led to a higher power, which

can be explained as follows: GIFT’s inability to account for direct genetic effects resulted in

false discoveries when non-mediated causal SNPs and the eQTLs of non-causal genes were lo-

cated in the same LD block. Additionally, non-mediated causal SNPs within the cis-region of

causal genes amplified the signal, increasing the likelihood of detection. In contrast, TWAS-
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Figure 2: Comparison of TWASKnockoff and GIFT in simulated data with the
in-sample LD matrix when h2 = 0.01. We assess the performance of GIFT and TWAS-
Knockoff with two feature statistics: lasso coefficients (TK-lasso) and squared z-scores (TK-
squared.zscore). For each feature statistic, we consider two estimation methods (empirical
estimation and bootstrap samples) of the correlation matrix of genetic elements. The q-value
threshold is selected from 0.1 to 0.9, with the black dashed line indicating the theoretical q-
value level. For GIFT, we applied the Benjamini-Hochberg (BH) correction to perform FDR
control.
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Knockoff successfully controlled the FDR below the threshold by accounting for both the

mediated effects of gene expression and the direct effects of non-mediated genetic variants.

For both feature statistics (lasso and squared.zscore), the empirically estimated correlation

matrix produced more conservative results, with lower FDR and reduced power. Notably, for

TWASKnockoff using lasso, as the q-value threshold increased, both power and FDR stabilized

rather than continuing to grow. This phenomenon arises from lasso’s sparse variable selection

property: for non-significant variables, the knockoff method with lasso tends to assign feature

statistics of zero. Consequently, these non-significant variables are excluded from considera-

tion regardless of the q-value threshold applied. Similar patterns were observed across various

simulation settings with different total heritabilities (h2), as shown in the Supplementary

Figures.

To further compare the performance of TWASKnockoff and GIFT in identifying causal

genes, we varied the threshold of test statistics for different methods (feature statistics for

TWASKnockoff and p-values for GIFT) and evaluated the statistical power while control-

ling the FDR at a fixed level (Figure 3 A) when 50% of the heritability was explained by

gene expression. TWASKnockoff consistently achieved a higher statistical power compared to

GIFT. Moreover, estimating the correlation matrix via bootstrap sampling further enhanced

the power of TWASKnockoff compared to using the empirical correlation matrix.

3.2.2 Simulation with the 1KG dataset as reference panel

To enhance the realism of the simulation settings, we also evaluated the performance of

TWASKnockoff and GIFT using an external reference panel from the 1000 Genomes (1KG)

Phase 3 dataset [20] (details provided in the Supplementary Materials). For GIFT, we utilized

the summary statistics-based version (GIFT-ss), which takes summary statistics and LD

matrices as input. Simulations were conducted to compare TWASKnockoff with GIFT in

terms of statistical power and FDR control when the LD structure was inaccurate (Figure

4). When the reference panel provided an inaccurate LD structure, GIFT failed to maintain
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Figure 3: Comparison of TWASKnockoff and GIFT in power at fixed FDR = 0.2
with the in-sample LD matrix (A) and the external reference panel (B). We assess
the performance of GIFT and TWASKnockoff with the feature statistic squared z-score (TK).
For TWASKnockoff, we consider two estimation methods (empirical estimation and bootstrap
samples) of the correlation matrix of genetic elements. We vary the total heritability (h2),
with the proportion of heritability explained by gene expression (re) fixed at 0.5.
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FDR control even when the simulation setting satisfied the model assumption of GIFT (re =

1). In contrast, TWASKnockoff demonstrated superior FDR control under these conditions.

Notably, TWASKnockoff based on squared z-scores exhibited greater stability with respect

to inaccuracies in the external reference panel compared to lasso-based feature statistics. We

further extended these simulations across a range of settings with varying total heritabilities

(h2) (see Supplementary Figures). As total heritability increased, both GIFT and lasso-based

TWASKnockoff exhibited higher FDR along with increased power.

We also evaluated the power of TWASKnockoff, with squared z-scores as the feature

statistics, in comparison to GIFT at a fixed FDR of 0.2 (Figure 3 B). GIFT exhibited a

substantial reduction in power when the in-sample LD matrix was replaced by an external

reference panel. Furthermore, GIFT’s power dropped to zero in scenarios with a high total

heritability, indicating its inability to control the FDR below 0.2, irrespective of the chosen

q-value threshold.

In contrast, TWASKnockoff demonstrated remarkable stability when using the external

reference panel. This robustness can be attributed to TWASKnockoff’s use of a regularized

LD matrix for both in-sample LD and external reference panels, ensuring that the correlation

matrix for all genetic elements remained positive-definite. Specifically, TWASKnockoff applied

the following transformation to Ω̂:

Ω̃ = (1− λ)Ω̂+ λI,

where λ was set to 0.1. While this transformation could slightly reduce the accuracy of the

correlation structure—particularly for in-sample LD cases where the LD information is highly

accurate, replacing Ω̂ with Ω̃ when applying to TWASKnockoff ensured the positive-definite

property of correlation matrix and improved the stability of the algorithm.

Additionally, while TWASKnockoff accounted for non-mediated genetic variants along-

side the candidate genes, it still demonstrated superior computational efficiency compared to

GIFT. GIFT employs a parameter expansion version of the expectation-maximization (PX-
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Figure 4: Comparison of TWASKnockoff and GIFT in simulated data with the
external reference panel when h2 = 0.01. We assess the performance of GIFT and
TWASKnockoff with two feature statistics: lasso coefficients (TK-lasso) and squared z-scores
(TK-squared.zscore). For each feature statistic, we consider two estimation methods (empir-
ical estimation and bootstrap samples) of the correlation matrix of genetic elements. The
q-value threshold is selected from 0.1 to 0.9, with the black dashed line indicating the theoret-
ical q-value level. For GIFT, we applied the Benjamini-Hochberg (BH) correction to perform
FDR control.
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EM) algorithm to maximize the joint likelihood, which is computationally intensive. As shown

in Figure ??, TWASKnockoff required less computational time than GIFT, even when the

number of iterations for GIFT was set to 100, as recommended by GIFT v2.0. If the iteration

parameter is increased to 1,000, as suggested by GIFT v1.0, the computational time for GIFT

increases substantially (Figure ??). Although the bootstrap-based estimation of the correla-

tion matrix increased TWASKnockoff’s computational time, it remained faster than GIFT,

regardless of whether GIFT utilized individual-level data or summary statistics. Besides, this

bootstrap-based estimation step can be parallelized to further speed up the algorithm, which

is our future work.

4 Real data applications

We conducted a conditional TWAS analysis on type 2 diabetes (T2D) by integrating gene ex-

pression datasets from ten T2D-relevant tissues from the Genotype-Tissue Expression (GTEx)

Project v8 [21] with GWAS EUR ancestry meta-analysis summary statistics [22] (see Sup-

plementary materials for details). The GTEx dataset provided tissue-specific gene expression

levels and whole-genome sequencing data. The reference panel consisted of 503 unrelated

European samples from the 1KG dataset. Based on the T2D summary statistics, we defined

484 candidate regions. These candidate regions were constructed around significant genetic

association signals (p-value < 5 × 10−10), with the property that all SNPs within 250 Kb

upstream and downstream of each signal belonged to the same candidate region. Overlapping

regions were merged until no further overlap remained. For interpretability, we restricted our

analysis to protein-coding genes with available gene expression data in the GTEx dataset.

We compared the performance of TWASKnockoff with GIFT in identifying causal genes for

T2D while controlling the FDR using gene expression data from the ten T2D-related tissues.

For TWASKnockoff, we selected significant genes with q-values below 0.1. For GIFT, p-

values were adjusted using the Benjamini-Hochberg (BH) procedure, and genes with adjusted

p-values less than 0.1 were identified as significant. Among 48,989 candidate gene-tissue
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pairs, TWASKnockoff identified 359 pairs (corresponding to 240 unique genes), while GIFT

identified 11,879 gene-tissue pairs (corresponding to 2,135 unique genes) (Table 1).

Table 1: Summary of significant genes identified by TWASKnockoff and GIFT,
and the total number of candidate genes for each GTEx tissue.

Tissue TWASKnockoff GIFT Total

Adipose Subcutaneous 35 1,271 4,902
Whole Blood 40 1,207 4,899

Adipose Visceral Omentum 24 1,178 4,899
Pancreas 31 1,205 4,899

Breast Mammary Tissue 37 1,161 4,900
Liver 50 1,124 4,895

Muscle Skeletal 21 1,228 4,900
Colon Sigmoid 30 1,201 4,899

Colon Transverse 32 1,177 4,900
Small Intestine Terminal Ileum 59 1,127 4,896

To validate the identified genes, we compared our results with T2D-related genes listed in

GeneCards [23], a searchable, integrative database that provides comprehensive information

on all human genes. GeneCards assigns a relevance score to each risk gene, indicating the

strength of its association with the trait of interest. This score is calculated using Elastic-

search (https://www.elastic.co/elasticsearch), which employs the Boolean model for

document matching and the practical scoring function for relevance computation. For each

GTEx tissue analyzed, we calculated the baseline relevance score for all candidate genes and

the averaged relevance score of significant genes identified by TWASKnockoff and GIFT with

T2D (Figure 5). Across all T2D-related tissues, genes identified by both TWASKnockoff and

GIFT had higher average relevance scores compared to the baseline. However, the genes iden-

tified by TWASKnockoff consistently exhibited significantly higher relevance scores than those

identified by GIFT, suggesting that TWASKnockoff identified genes that were more strongly

associated with T2D. Notably, TWASKnockoff showed the most significant enrichment of

relevance scores in tissues closely related to T2D, such as subcutaneous adipose (where the

highest improvement was observed), whole blood, skeletal muscle, and pancreas.
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Figure 5: Tissue-specific averaged relevance scores for all candidate genes (base-
line) and significant genes identified by TWASKnockoff and GIFT.

We highlight the pancreas (362 GTEx samples) as an example tissue closely linked to T2D.

TWASKnockoff identified 31 significant genes with q-values less than 0.1 in the pancreas tis-

sue (Table 2), 28 of which have been associated with T2D according to GeneCards. Several

significant genes were strongly implicated in T2D susceptibility across multiple studies. For

instance, TWASKnockoff identified TCF7L2, the most potent locus for T2D risk. The asso-

ciation of TCF7L2 with T2D has been consistently replicated in multiple populations with

diverse genetic origins [24, 25]. Risk alleles of TCF7L2 are associated with reduced insulin

secretion due to impaired beta cell function [26]. TWASKnockoff also identified Tumor Necro-
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sis Factor-alpha (TNF-α), which is a pro-inflammatory cytokine that plays a critical role in

the development of insulin resistance and the pathogenesis of T2D [27, 28]. In addition, sev-

eral significant genes identified by TWASKnockoff have been recognized as key regulators for

pancreatic development and, consequently, the pathogenesis of T2D. For example, Cyclin D2

(CCND2) plays a key role in regulating the transition of β cells from quiescence to replication

and is essential for postnatal pancreatic β cell growth [29, 30, 31]. Moreover, overexpression

of IGF2BP2 was found to disrupt pancreatic development, impair β-cell repair, and pro-

mote the translation of insulin-like growth factor 2 (IGF2) [32, 33, 34]. IGF2 itself serves

as a key paracrine regulator of pancreatic growth and function, with its deletion leading to

acinar and β-cell hypoplasia, postnatal growth restriction, and maternal glucose intolerance

during pregnancy [35]. These findings demonstrate TWASKnockoff’s capability to identify

disease-causing genes that are functionally relevant to the target tissue.

To further illustrate the ability of TWASKnockoff to effectively control the FDR, we

compared its performance with GIFT in the risk region surrounding TCF7L2, the most potent

locus for T2D risk (Figure 6). This risk region includes six candidate genes with moderate

gene-gene correlations. Table 3 summarizes the feature statistics and q-values estimated by

TWASKnockoff for each candidate gene. Similarly, for GIFT, we report the causal effect

estimates, p-values, and q-values adjusted by the BH procedure. Using a q-value threshold of

0.1, TWASKnockoff identified only TCF7L2 as a significant gene in this region. In contrast,

GIFT yielded q-values below 0.1 for all candidate genes in the region. While other T2D-related

genes may exist in this region, the very small q-values reported by GIFT indicate the limitation

of this p-value-based method to control false discoveries effectively. These results demonstrate

TWASKnockoff’s robustness in maintaining FDR control even in high-risk genomic regions.

We conducted Gene Ontology (GO) enrichment analysis on the significant genes identified

by TWASKnockoff using gene expression data from four T2D-related tissues (Figure 7 A,

B, C, and D) that showed significantly enriched scores. With gene expression from the sub-

cutaneous adipose tissue, TWASKnockoff detected genes associated with cellular metabolic
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Table 2: Summary of significant genes identified by TWASKnockoff with GTEx
pancreas data in the T2D study.

Gene Chromosome Start position End position Feature statistic q-value

IGF2BP2 3 185643130 185825042 0.68352 0.07692
E2F3 6 20401879 20493714 0.26949 0.06250
LTA 6 31572054 31574324 0.12800 0.07692
TNF 6 31575565 31578336 0.18883 0.07692
LTB 6 31580525 31582522 0.18893 0.07692
NCR3 6 31588895 31593006 0.13114 0.07692
AIF1 6 31615217 31617021 0.17942 0.07692
BAG6 6 31639028 31652705 0.16928 0.07692

CSNK2B 6 31665227 31670343 0.11888 0.07692
LY6G6D 6 31715348 31717919 0.25873 0.07692
IQANK1 8 143734139 143790645 0.05699 0.06250
OPLAH 8 144051266 144063965 0.09714 0.06250
EXOSC4 8 144078648 144080648 0.09167 0.06250
MAF1 8 144104420 144107611 0.07918 0.06250

CDKN2B 9 22002903 22009305 0.15827 0.04348
TCF7L2 10 112950247 113167678 0.09386 0.09622

TH 11 2163929 2171815 0.30872 0.07143
TIGD3 11 65354751 65357613 0.04878 0.06667
ZNRD2 11 65570460 65573942 0.03135 0.06667
PCNX3 11 65615776 65637439 0.20085 0.06667

RNASEH2C 11 65714005 65720818 0.14465 0.06667
CCND2 12 4269771 4305353 0.14789 0.09211
TIGAR 12 4307763 4360028 0.19964 0.05556
INAFM2 15 40323692 40326715 0.15982 0.05263
CCDC9B 15 40331452 40340939 0.16795 0.05263
PHGR1 15 40351033 40356434 0.17449 0.05263
IGF2BP1 17 48997385 49056145 0.15005 0.09091

B4GALNT2 17 49132460 49176840 0.20097 0.09091
LRRC8E 19 7888505 7902021 0.09622 0.09091
MAP2K7 19 7903843 7914478 0.08997 0.09091
SNAPC2 19 7920338 7923250 0.11725 0.09091
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Figure 6: Information of the risk region around TCF7L2. We summarize the basic
information for the example region including 6 candidate genes on Chromosome 10, including
the correlation matrix of the gene expression level corresponding to each candidate gene (A),
the coordinates for candidate genes (B), and the heat map of LD structure in this region (C).
The colored square box in (C) corresponds to each gene with the same color in (B).

Table 3: Comparison of TWASKnockoff and GIFT for candidate genes in the
example risk region around TCF7L2.

Gene Feature statistics q-value (TW) Causal effect p-value (GIFT) q-value (GIFT)

ACSL5 0.0202 0.2061 0.089 4.2997e-7 5.1597e-7
ZDHHC6 -0.0138 1 2.1673 1.1348e-5 1.1348e-5
VTI1A 0.0104 0.227 -4.5894 1.3915e-146 4.1745e-146
TCF7L2 0.0939 0.0962 1.8131 0 0
HABP2 0 1 -0.2542 1.3804e-54 2.7607e-54
NRAP 0.0175 0.2117 0.2558 1.581e-9 2.3715e-9
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processes, particularly the regulation of the glucose metabolic process (Figure 7 A), which is

directly related to the pathogenesis of type 2 diabetes mellitus (T2DM) [36]. Furthermore,

genes detected in subcutaneous adipose were enriched in pathways regulating kinase activity,

a critical component of cellular functions such as metabolism and insulin signaling [37, 38].

In the pancreas, the identified gene set was significantly enriched in biological pathways as-

sociated with the response to osmotic stress and stimulus (Figure 7 C). Osmotic stress, often

a result of chronic hyperglycemia, has a profound impact on pancreatic β-cell function and

survival by increasing reactive oxygen species (ROS) production. This oxidative stress is

produced under diabetic conditions and is likely involved in the progression of pancreatic

β-cell dysfunction found in diabetes [39]. Additionally, the pancreas, particularly the insulin-

secreting β-cells, is central to responding to endogenous stimuli such as glucose [40] and free

fatty acids (FFAs) [41]. Exposure to excessive endogenous stimuli can lead to conditions

like Glucotoxicity and Lipotoxicity, leading to insulin resistance, β-cell apoptosis, and the

progression of T2D [42, 43].

With gene expression data from other T2D-related tissues, TWASKnockoff identified sig-

nificant genes that are enriched in biologically meaningful pathways. For example, genes

detected in whole blood were significantly enriched in pathways related to the response to

peptides (Figure 7 B). Specific peptide hormones, such as glucagon-like peptide 1 (GLP-1),

play a crucial role in blood sugar regulation by stimulating insulin secretion and suppressing

glucagon release [44, 45]. In skeletal muscle cells, TWASKnockoff identified significant genes

enriched in pathways regulating the nitrogen compound metabolic process (Figure 7 D). Pre-

vious studies have demonstrated the importance of the nitric oxide (NO) pathway in the

pathogenesis of diabetes, showing that preserving NO activity could contribute to delaying

the onset of insulin resistance and renal dysfunction caused by hyperglycemic stress [46]. Ad-

ditionally, genes related to the regulation of macromolecule metabolism were also significantly

enriched. Previous studies in individuals with and without diabetes have demonstrated the

protective effect of an increase in muscle mass on insulin resistance and metabolic syndrome
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Figure 7: GO analysis of significant genes with FDR < 0.1 detected by TWAS-
Knockoff for Subcutaneous Adipose (A), Whole Blood (B), Pancreas (C), and
Muscle Skeletal (D).

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.05.636660doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.05.636660
http://creativecommons.org/licenses/by-nc-nd/4.0/


[47, 48, 49]. Skeletal muscle plays a pivotal role in metabolism, serving as a primary target

for insulin and the predominant site for insulin-mediated glucose uptake in the postprandial

state [50]. Its functions in glucose uptake and energy metabolism, coupled with its importance

in exercise and metabolic health, underscore its critical role in metabolic diseases like T2D

[51]. These findings demonstrate TWASKnockoff’s ability to identify disease-causing genes

with biological functions closely tied to specific tissues, providing insights into tissue-specific

pathways underlying T2D.

5 Discussion

We present TWASKnockoff, a novel framework for detecting causal gene-tissue pairs by inte-

grating GWAS summary statistics with the gene expression reference panel. TWASKnockoff

evaluates the independence of each gene-trait pair, conditional on other genes as well as the

direct effects of genetic variants within the same local region. TWASKnockoff first builds gene

expression prediction models and then applies the knockoff procedure for variable selection.

Additionally, TWASKnockoff enhances the estimation of the correlation matrix for genetic

elements using parametric bootstrap samples. Through simulations and applications to the

T2D study across ten GTEx tissues, we have demonstrated the benefits of TWASKnockoff in

controlling the FDR and improving computational efficiency.

TWASKnockoff offers a flexible, conditional TWAS framework that can be integrated with

various statistical methods. For example, the current implementation employs the elastic

net to construct gene expression prediction models. However, alternative methods, such as

the sum of single-effects (SuSiE) regression model [19], which is an efficient fine-mapping

approach, could replace the elastic net to perform the detection of eQTLs and prediction of

gene expression levels. Extending TWASKnockoff to incorporate diverse statistical models

and comparing their performance in identifying causal gene-tissue pairs is an interesting topic

for future research.

Despite its strengths, several challenges remain for further development. First, while
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TWASKnockoff provides an effective solution for variable selection with a limited number

of genes, the use of genetic variants to assist in FDR control can result in overly conserva-

tive selections. To address this problem of power loss, we should increase the total number

of genes in the TWASKnockoff model. One possible approach is to integrate tissue-specific

RNA-seq data to detect causal gene-tissue pairs. This is feasible because TWASKnockoff

primarily requires accurate estimation of the correlation matrix for genetic elements, and its

computational complexity is largely determined by the number of cis-SNPs in a given region.

Consequently, TWASKnockoff can potentially be extended to a highly efficient method for

integrating RNA-seq data from multiple tissues and detecting causal gene-tissue pairs. Sec-

ondly, as noted in previous studies [52], the inherent randomness of the knockoff method can

result in variability in the selected sets of variables across different runs on the same dataset.

To mitigate this issue in practical applications, a derandomization approach can be employed,

which aggregates selection results across multiple knockoff iterations [53]. Incorporating this

strategy into TWASKnockoff could enhance its robustness and reliability.

6 Data availability

No data were generated in the present study. We used the UK Biobank genotype data

obtained from the UK Biobank resource https://www.ukbiobank.ac.uk/. We used the

GTEx data obtained at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs000424.v8.p2. The T2D GWAS summary statistics data are publicly

available at http://www.diagram-consortium.org/downloads.html. The 1000 Genomes

project data are available at https://www.cog-genomics.org/plink/2.0/resources.

7 Code availability

The TWASKnockoff framework is implemented in the R package TWASKnockoff, freely avail-

able at https://github.com/zxy0912/TWASKnockoff.
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