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Key Points

• OTSSP167 has
antileukemic properties
in T-ALL by inducing
cell cycle arrest and
apoptosis.

• OTSSP167 controls
leukemia burden in
xenografts from
patients with T-ALL
and exhibits a
synergistic effect with
standard drug therapy.
Novel drugs are needed to increase treatment response in children with high-risk T-cell

acute lymphoblastic leukemia (T-ALL). Following up on our previous report on the

activation of the MAP2K7-JNK pathway in pediatric T-ALL, here we demonstrate that

OTSSP167, recently shown to inhibit MAP2K7, has antileukemic capacity in T-ALL.

OTSSP167 exhibited dose-dependent cytotoxicity against a panel of T-ALL cell lines with IC50

in the nanomolar range (10-50 nM). OTSSP167 induces apoptosis and cell cycle arrest in

T-ALL cell lines, associated at least partially with the inhibition of MAP2K7 kinase activity

and lower activation of its downstream substrate, JNK. Other leukemic T-cell survival

pathways, such as mTOR and NOTCH1 were also inhibited. Daily intraperitoneal

administration of 10 mg/kg OTSSP167 was well tolerated, with mice showing no

hematological toxicity, and effective at reducing the expansion of human T-ALL cells in a

cell-based xenograft model. The same dosage of OTSSP167 efficiently controlled the

leukemia burden in the blood, bone marrow, and spleen of 3 patient-derived xenografts,

which resulted in prolonged survival. OTSSP167 exhibited synergistic interactions when

combined with dexamethasone, L-asparaginase, vincristine, and etoposide. Our findings

reveal novel antileukemic properties of OTSSP167 in T-ALL and support the use of

OTSSP167 as an adjuvant drug to increase treatment response and reduce relapses in

pediatric T-ALL.
Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, representing
about 15% of pediatric leukemia cases.1,2 Although the 5-year event-free survival of childhood ALL has
improved to more than 85% in most centers,3 the prognosis of patients with refractory or relapsed
T-ALL is dismal. Because relapsed leukemia remains the leading cause of cancer-related mortality in
children,4-8 it is necessary to develop alternative drugs with antileukemic capacity and low toxicity for
these patients who are at high-risk.

The development of alternative therapies requires the identification of novel actionable targets.
Genomic analysis of 675 pediatric patients with cancer revealed that the MAPK pathway was one of
the most affected and potentially druggable events.9 Within MAPK signaling, MAP2Ks activate the
effector kinases (extracellular signal-regulated kinase 1/2 [ERK1/2]), c-JUN NH2-terminal protein
kinase (JNK), ERK5, and p38 at the end of the cascade and regulate cell proliferation, differentiation,
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and survival.10 Our group described aberrant activation of the
kinase MAP2K7, a component of a 3-tier signaling cascade
associated with epigenetic silencing of the transcription factor
KLF4, in pediatric patients with T-ALL.11 Because JNK is the sole
substrate of MAP2K7, we initially studied the antileukemic prop-
erties of JNK inhibition using the JNK-IN-8 compound and 2
adenosine triphosphate (ATP)–competitor JNK inhibitors tested in
phase I/II clinical trials.12,13 Although JNK inhibition could control
leukemia burden in a mouse model of T-ALL, their low specificity
and potency prevented significant improvements in survival by
reaching sustained therapeutic concentrations with minimal
toxicity.11,14 We recently studied the compound 5Z-7-oxozeaenol
in T-ALL because this chemical compound inhibited MAP2K7
through a covalent reaction with cysteine 218.15 Although more
potent than JNK inhibitors, 5Z-7-oxozeaenol toxicity limited the
capacity of this compound to control leukemia efficiently in pre-
clinical mouse models.16

Although OTSSP167 was described as an inhibitor of the maternal
embryonic leucine zipper kinase (MELK),17,18 the analysis of
kinome studies deposited in the Library of Integrated Network-
based Cellular Signatures (LINCS) shows a broad spectrum of
kinase inhibition. OTSSP167 has been described as anticarcino-
genic in solid tumors, such as adrenocortical carcinoma, breast
cancer, glioma, cervical cancer, teratoid/rhabdoid tumors, adeno-
carcinoma, and lung squamous cell carcinoma.19-23 OTSSP167
has also been studied in blood cancers, such as chronic myeloid
leukemia, B cell lymphoma, and chronic lymphocytic leukemia.18,24

OTSSP167 has been tested in clinical trials, including a phase 1
study of solid metastatic tumors, a safety study of breast cancer,
and 2 open trials to evaluate the bioavailability of oral OTSSP167
and intravenous administration in leukemia (acute myeloid leuke-
mia, ALL, advanced myelodysplastic syndrome, myeloproliferative
neoplasm, and chronic myeloid leukemia). We decided to study
OTSSP167 in T-ALL because it was identified as a potential
MAP2K7 inhibitor in the LINCS program. And most importantly, a
small screen using a thermal shift assay revealed OTSSP167
among 9 compounds with strong binding and inhibition of MAP2K7
and potency within a submicromolar range.25

Here, we describe the antileukemic properties of OTSSP167 in
pediatric T-ALL using cell lines and patient samples. We show that
OTSSP167 is cytotoxic in T-ALL cells via the induction of G2/M
and G1/S cell cycle arrest and apoptosis associated with the
inhibition of MAP2K7 kinase activity. In vivo studies establish high
tolerance in mice and a significant capacity to control leukemia
burden in cell-based and patient-derived xenograft studies. Drug
combination studies revealed synergistic effects of OTSSP167
combined with drugs used in standard therapy. Our study warrants
further testing of OTSSP167 as an adjuvant agent in combination
with standard chemotherapy in frontline therapy or as a salvage
agent in refractory and relapsed leukemia.

Methods

T-ALL cell lines

T-ALL cell lines (MOLT-3, JURKAT, KOPT-K1, P12-Ichikawa,
DND41, RPMI-8402, ALL-SIL, CCRF-CEM, LCL) were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum.
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Cells were tested for mycoplasma and authenticated using short
tandem repeat fingerprinting every 6 months.

Cytotoxicity assays

Cell lines were plated in triplicates at a cell density of 2 × 104 cells
per well (96-well plate) and cultured for 48 hours in the presence of
OTSSP167 (MedChemExpress) or vehicle control (dimethyl sulf-
oxide [DMSO]). Cell viability was measured using CellTiter-Glo
Luminescent Cell Viability Assay. The half-maximal inhibitory con-
centration (IC50) was calculated using nonlinear regression anal-
ysis via GraphPad software.

Apoptosis was measured using the FITC Annexin V apoptosis
detection kit (Becton-Dickinson #559763). DNA content was
determined by nuclei staining with propidium iodine. Flow cytom-
etry analysis was conducted using FACS Canto (Becton-Dickinson
Bioscience) and FlowJo software (TriStar).

For drug combination, cells were plated with OTSSP167 and drugs
used in remission induction (vincristine [VCN], L-asparaginase
[ASNase], and dexamethasone [Dex]). Cytotoxicity was measured as
described above, and the data were analyzed using Combenefit [32].

In vitro kinase assay

Purified human MAP2K7 (Origene, 320 nM) was preincubated
with a dead-JNK2 fragment (350 nM) in the presence of different
concentrations of OTSSP167 or vehicle for 30 minutes. Afterward,
ATP (100 μM final concentration) was added to initiate kinase
activity for 30 minutes. Kinase activity was measured as the gen-
eration of adenosine diphosphate (ADP) using the ADP-GLO kit
(Promega #V6930), and luminescence was determined using a
96-well plate Luminoskan ascent reader.

Immunoblot analysis

Cells were lysed with sodium dodecyl sulfate (SDS) lysis buffer
containing 10 mM Tris, pH 7.4, 1% SDS, and 1 mM PMSF and
supplemented with Halt Protease and Phosphatase Inhibitor
Cocktail (Thermo Fisher Scientific). Protein lysates were electro-
phoresed using SDS-polyacrylamide gel electrophoresis and
transferred to a polyvinylidene difluoride membrane using the
iBLOT system. Antibodies corresponding to the following target
proteins were used at a 1:1000 dilution: MELK (#2274), phospho-
MAP2K7 (#4171), MAP2K7 (#4172), phospho–stress-activated
protein kinase/JNK (SAPK/JNK, clone 81E11, #4668), SAPK/JNK
(#9252), phospho–activating transcription factor 2 (phospho-
ATF2, #15411), ATF2 (#9226), poly (ADP-ribose) polymerase
(PARP, #9542, 1:10 000 dilution), cleaved caspase-3 (#9664),
phospho-H2AX (#9719), phospho-Cdc2 (#9111), Cdc2 (#9112),
Cyclin B1 (#4138), checkpoint kinase 1 (CHK1, #2306), polo-like
kinase 1 (#4513), phospho-S6 (#2215), S6 (#2217), Notch1
(#3608), and HES1 (#11988). Secondary antibodies crosslinked
with horseradish peroxidase (anti-rabbit immunoglobulin G #7074
and anti-mouse immunoglobulin G #7076) were used for the
respective primary antibodies at concentrations of 1:20 000 to
1:50 000. Loading control β-actin (#643807) crosslinked with
horseradish peroxidase (BioLegend) was used at a 1:500 000
dilution. Protein detection was performed using West Femto
Maximum Sensitivity Substrate (Thermo Fisher Scientific) and
Amersham Hyperfilm ECL (GE Healthcare).
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Activation of MAP2K7 in T-ALL cell lines

KOPT-K1 cells were treated with 400 mM sorbitol for 1 hour, then
OTSSP167 (30, 60, 90 nM) was added for 3 hours, followed by
cell lysis for immunoblot analysis.

Cell-based and patient-derived xenograft

Bone marrow samples from patients with T-ALL were collected
during diagnosis at the Texas Children’s Cancer and Hematology
Center. Samples were collected after written informed consent was
obtained from all patients under a research protocol approved by the
institutional review board. Leukemic blasts were transplanted into
10-week-old female NSG mice (0.5-1.0 × 106 cells per mouse).
Peripheral blood sampled from the tail vein was routinely monitored
for human CD45+ cells via flow cytometry. Human leukemic cells
were collected from the femur, tibia, and spleen, examined for human
CD45 surface antigen expression, and viably frozen. Finally, NSG
mice were injected with T-ALL PDX cells (0.5 × 106) and random-
ized into 2 groups (administration of vehicle or 10 mg/kg
OTSSP167) when leukemic cells reached 1% to 5% in the blood.
Mice were monitored at the end of each week for expansion of
human CD45+ cells in the peripheral blood via flow cytometry.

To evaluate drug toxicity, OTSSP167 (10 mg/kg) was prepared in
10% DMSO and 90% of a 20% solution of sulfobutylether-
β-cyclodextrin (SBE-β-CD) and administered intraperitoneally every
day from Monday to Friday for 2 weeks, and mice were monitored
for body weight and complete blood counts. To study the efficacy
of OTSSP167 in inhibiting leukemic growth, NSG mice were
transplanted with KOPTK-1 cells labeled with firefly luciferase
(2.5 × 105) and treated with vehicle (DMSO/SBE-β-CD) or
OTSSP167 (10 mg/kg). Leukemia progression was evaluated by
measuring the bioluminescence at the end of each week using
the IVIS Imaging System (Xenogen). Images were acquired in
anesthetized mice 10 minutes after intraperitoneal injection with
50 mg/kg D-luciferin.

Reverse phase protein array (RPPA)

Cell lysates, serial dilutions of standards, and positive and negative
controls were arrayed on nitrocellulose-coated slides (Grace Bio-
Labs) using the Quanteriz 2470 Arrayer. Each slide was probed
with a validated primary antibody plus a biotin-conjugated sec-
ondary antibody. Signal detection was amplified using an Agilent
GenPoint staining platform and visualized by DAP colorimetric
reaction. The slides were scanned, analyzed, and quantified to
generate spot intensity using customized software (Array-Pro
Analyzer, Media Cybernetics). Each dilution curve was fitted with a
logistic model (RPPA SPACE developed at MD Anderson). The
protein concentrations were then normalized for protein loading.
The corrections factor was calculated and normalized across sets
via replicates-based normalization using an invariant set of control
samples to adjust for batch differences between identical
controls.26

Statistical analysis

All sample sizes (n values) indicated in each figure legend corre-
spond to independent biological replicates. Unpaired two-tailed
Student t test was used for statistical analysis. P values were
determined using GraphPad software. Results with a P value <.05
were considered statistically significant.
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Results

OTSSP167 inhibits cell viability in human T-ALL cells

by inducing apoptosis and G2/M cell cycle arrest

We investigated the role of OTSSP167 in T-ALL based on our
report that pediatric patients showed an aberrant activation of the
MAP2K7-JNK pathway and the information that the MELK inhibitor
OTSSP167 inhibits MAP2K7.11,25 Firstly, immunoblot analysis
showed that MELK is expressed in T-ALL cell lines, with elevated
expression in KOPT-K1, MOLT-3, and RPMI-8402 (Figure 1A).
MAP2K7 is expressed in all T-ALL cell lines, as previously
described by our group (Figure 1A).11 Cell viability assays showed
dose-dependent cytotoxicity of OTSSP167 in a panel of T-ALL cell
lines, with IC50s ranging from 10 nM (KOPT-K1) to 57 nM (DND-
41) (Figure 1B-C). The IC50s for T-ALL cell lines are summarized in
Figure 1C. The specificity of OTSSP167 to leukemic cells was
evaluated by comparing cell viability in KOPT-K1 cells with a
nonleukemic lymphoblastoid cell line (LCL) (Figure 1D). Compar-
ative analysis of MAP2K7-JNK inhibitors against the KOPT-K1 cell
line demonstrated that OTSSP167 (IC50 12 nM) is more potent
than 5Z-7-Oxozeaenol (IC50 0.81 μM) and JNK-IN8 (IC50 8.55 μM)
(Figure 1E).11,16 This difference in potency was also evident in
other cell lines, such as ALL-SIL and RPMI-8402 (supplemental
Figure 1). Collectively, the compound OTSSP167 emerges as a
powerful antileukemic agent in T-ALL.

To further investigate the cause of OTSSP167-induced cytotox-
icity, we evaluated the induction of apoptosis through flow cyto-
metric detection of annexin V. Treatment of T-ALL cells with
OTSSP167 (15 nM, 48 hours) induced significant apoptosis,
particularly in KOPT-K1 and ALL-SIL cells (Figure 2A-B). Cell lines
with an IC50 more than 50 nM (eg, JURKAT and DND-41) do not
show a significant increase in apoptosis because the dose of
OTSSP167 was lower than their IC50; however, higher
OTSSP167 concentrations (50 and 100 nM) induced apoptosis in
these cell lines (supplemental Figure 2). Immunoblot analysis
revealed that OTSSP167 induces the cleavage of both PARP and
caspase 3, especially in the cell lines showing a significant induc-
tion of annexin V in response to OTSSP167 treatment (Figure 2C).
Similarly, proteomic analysis by RPPA of KOPT-K1, MOLT-3, and
P12-Ichikawa cell lines treated with vehicle or OTSSP167 (15 nM
for 48 hours) revealed increased cleavage of caspases of the
extrinsic pathway of apoptosis and annexin V in response to
OTSSP167 treatment (Figure 2D). The RPPA also shows dereg-
ulation of other cellular pathways (supplemental Figure 3).

OTSSP167 has been described to alter cell cycle progression in
bladder cancer cells through G1/S arrest via the p53 pathway.27

We used propidium iodide nuclear staining to determine the
effect of OTSSP167 on the cell cycle of T-ALL cells. Incubation of
T-ALL cell lines with 15 nM OTSSP167 for 48 hours increased the
percentage of cells in the G2/M phase of the cell cycle in the cell
lines with lower IC50 (Figure 3A-B; supplemental Figure 4). The
cell cycle arrest is more significant at 50 nM OTSSP167 in most
cell lines (supplemental Figure 5). Some T-ALL cell lines also show
a concomitant G1 arrest associated with an increase in G1 and a
reduction in cyclin E (supplemental Figures 5 and 6). Although
immunoblot analysis showed OTSSP167 increased the phos-
phorylation of Cdc2 and cyclin B1 (Figure 3C), higher OTSSP167
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3



A

K
O

P
TK

–1
A

LL
-S

IL
M

O
LT

–3
R

P
M

I-8
4

02
C

C
R

F-
C

E
M

P
12

 Ic
hi

ka
w

a
JU

R
K

AT
D

N
D

–4
1

MELK

MAP2K7

-Actin

B

0.0
0

50

100
KOPT-K1

IC50 10.6 nM

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

ALL-SIL
IC50 15.3 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

RPMI-8402
IC50 23.8 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

MOLT-3
IC50 23.5 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

CCRF-CEM
IC50 24.7 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

JURKAT
IC50 51.0 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

P12 Ichikawa
IC50 25.0 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

DND-41
IC50 57.0 nM

0.0
0

50

100

0.5 1.0

Log10OTSSP167 (nM)

Ce
ll v

iab
ilit

y (
%

)

1.5 2.0 2.5

C D E

0

KOPT-K1

JURKAT

DND-41

P12 Ichikawa

CCRF-CEM

RPMI-8402

MOLT-3

ALL-SIL

20

IC50 concentration (nM)
40 60

IC50: 14 nM

OTSSP167 (nM)

Ce
ll V

iab
ilit

y (
%

)

0
0

50

100

50

LCL

KOPT-K1

100

OTSSP167

5Z7Oxo

JNK-IN-8

IC50: 12 nM  0.81 M  8.55 M

Drug (nM)

Ce
ll V

iab
ilit

y (
%

)

1 10
100

1000

10000

100000
0

50

100

Figure 1. OTSSP167 inhibits cell viability in T-ALL cell lines. (A) Expression of MELK and MAP2K7 kinases in T-ALL cell lines. (B) Cell viability assays in T-ALL cell lines

treated with OTSSP167 for 48 hours (n=3). IC50 is indicated for each cell line. Cell viability assays were averaged from 3 independent experiments performed in triplicates.

(C) Potency of OTSSP167 in the panel of T-ALL cell lines. (D) Cytotoxicity in a leukemic cell line compared with an LCL (nonleukemic). (E) Comparative potency of JNK-IN-8, 5Z-

7Oxozeaenol (5Z7O), and OTSSP167 in KOPT-K1 cells.
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Figure 2. OTSSP167 induces cell death in T-ALL cell lines. (A) Representative flow cytometric analysis of annexin V staining for KOPT-K1 and ALL-SIL cell lines (15 nM

OTSSP167, 48 hours). (B) Percentage of annexin V–positive cells upon OTSSP167 treatment (15 nM, 48 hours) is shown for all cell lines (n=3). The data represent 3

independent experiments and the mean and standard deviation. (C) Immunoblot analysis of cleaved PARP and caspase 3 in T-ALL cells treated with vehicle or 15 nM OTSSP167

for 48 hours. (D) Proteomic analysis by RPPA phase showing deregulation of proapoptotic proteins induced by treatment of KOPT-K1, MOLT-3, and P12-Ichikawa cell lines with

OTSSP167 (15 nM, 48 hours). * P < .05, **P <. 01, ***P < .001 (two-tailed Student t test).
concentrations inhibited the phosphorylation of cyclin B1 (not
shown). The RPPA analysis revealed an increase in H2AX with a
reduction in several regulators of the G2/M checkpoint. A dose-
dependent decrease of CHK1 and polo-like kinase 1 with an
increase in phosphorylated H2AX was confirmed by immunoblots
in the 3 cell lines (Figure 3E). Altogether, OTSSP167 induces DNA
damage, cell cycle arrest, and apoptosis in T-ALL cell lines.

Inhibition of MAP2K7 by OTSSP167 in T-ALL

OTSSP167 is a MELK inhibitor that can also inhibit MAP2K7.25 In
addition to reducing MELK protein, OTSSP167 (50 nM) treatment
substantially inhibited the phosphorylation of JNK and downstream
ATF2 in all T-ALL cell lines (Figure 4A). Next, we investigated direct
MAP2K7 inhibition in a biochemical assay using purified human
MAP2K7 protein and dead-JNK2 as a substrate. The measurement
of ADP production shows dose-dependent inhibition of MAP2K7
kinase activity with a 160 nM IC50, within a low nanomolar range as
previously reported (Figure 4B).25 These data suggest that the
observed cytotoxic effect may be mediated at least in part through
MAP2K7 inhibition in T-ALL cells. To further support this model, we
tested the capacity of OTSSP167 to inhibit MAP2K7 acutely
activated by metabolic stress. Treatment of T-ALL cells with
400 mM sorbitol increases MAP2K7-mediated phosphorylation of
426 BRIDGES et al
JNK, which OTSSP167 inhibits in a dose-dependent manner
(Figure 4C). Retroviral expression of the constitutively activated
fusion protein MAP2K7-JNK2 in JURKAT and P12-Ichikawa cell
lines (supplemental Figure 7) is inhibited by OTSSP167, further
supporting that OTSSP167 can inhibit the MAP2K7 pathway in
T-ALL cells (Figure 4D). The cytotoxicity of KOPT-K1 cells to
OTSSP167 (IC50: 11 nM) and the MELK inhibitor MELK-8a (IC50:
10 μM), which has higher specificity to MELK than to
OTSSP167,28 suggests that low concentrations of OTSSP167
likely induce cell death in T-ALL cells independently of MELK
inhibition (Figure 4E). Because OTSSP167 is a broad-spectrum
kinase inhibitor, we performed an unbiased proteomic analysis of
T-ALL cell lines treated with OTSSP167 to assess plasticity. RPPA
analysis of T-ALL cells treated with 15 nM OTSSP167 revealed the
inhibition of other cellular pathways with a critical role in T-ALL
cells, such as mTOR and NOTCH1 (Figure 4F).29-31 Immunoblot
analysis of phosphorylated S6 and HES1 and downstream targets
of mTOR and NOTCH1 confirmed that OTSSP167 inhibits
phosphorylation of the ribosomal protein S6 and the levels of HES1
in T-ALL cells (Figure 4G). Interestingly, a low kinase specificity of
OTSSP167 could have a therapeutic benefit in T-ALL by potentially
targeting other pathways, in addition to MAP2K7-JNK, involved in
the proliferation and survival of T-ALL cells.
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
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In vivo antileukemic properties of OTSSP167 in

human T-ALL

OTSSP167 is currently being tested in clinical trials for safety,
bioavailability, and efficacy in solid tumors and hematological
malignancies. Because of its broad inhibitory spectrum, we studied
the toxicity of OTSSP167 before evaluating its effectiveness in
T-ALL preclinical mouse models. C57BL/6 mice were administered
Monday to Friday for 2 weeks and monitored for body weight to
indicate general animal well-being and complete blood counts.
Interestingly, OTSSP167 was well tolerated at a dose of 10 mg/kg
without causing gross alterations in body weight (Figure 5A) or
blood counts (Figure 5B). Next, we evaluated the efficacy of
OTSSP167 in a cell-based xenograft model based on the injection
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of KOPT-K1 cells labeled with firefly luciferase into NSG mice that
were randomized into 2 groups for treatment with vehicle (10%
DMSO and 90% SBE-β-CD) and OTSSP167 (10 mg/Kg). Mice
were monitored by whole-body bioluminescence imaging at the
end of each week. The group treated with OTSSP167 showed a
significant delay in the spread of leukemic cells (Figure 5C) and a
considerable reduction of leukemia burden based on luminescence
on days 14 and 21 of treatment (Figure 5D). Most importantly, mice
treated with OTSSP167 showed a significantly prolonged survival
(n=5, P=.0031) with a median survival of 36 days compared with
23 days in the control group (Figure 5E). Collectively, these data
demonstrate the efficacy of OTSSP167 in controlling the expan-
sion of leukemic cells in vivo with minimal toxicity.
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The patient-derived xenograft (PDX) model is a preclinical model
that closely correlates with clinical success. Hence, we tested
OTSSP167 with a panel of T-ALL PDXs generated in our laboratory
using lymphoblasts collected from children diagnosed with T-ALL
leukemia at the Texas Children’s Hospital and who entered remis-
sion or relapse (supplemental Figure 8). T-ALL PDX cells were
injected into NSG mice and randomized into 2 groups when the
human leukemic blasts were over 1% to 2% in peripheral blood.
Treatment of PDX01 mice with OTSSP167 (10 mg/kg, Monday-
Friday) for 3 weeks prevented the expansion of human leukemic
blasts in blood compared with the vehicle control (Figure 6A-C).
Despite treated mice showing a regrowth of T-ALL cells after dis-
continuing treatment, the overall survival improved significantly with
a 3-week treatment regimen (Figure 6C-D). To evaluate the clear-
ance of leukemic T cells in different tissues at the end of treatment,
NSG mice carrying the PDX02 cells (relapsed T-ALL) were moni-
tored during OTSSP167 treatment in blood and post mortem in the
bone marrow and spleen. OTSSP167 controlled leukemia burden,
and, in contrast to OTSSP167-treated mice, all mice administered
with vehicle died during treatment, suggesting a similar survival as
PDX01 (Figure 6E; supplemental Figure 9). At the end of drug
administration, analysis of bonemarrow showed an ~50% reduction
of human CD45+ cells in the bone marrow (Figure 6E) and a smaller
spleen (supplemental Figure 9). Analysis of another PDX04 shows a
similar control of leukemia burden during treatment with a significant
reduction of humanCD45+ cells in the bone marrow (Figure 6F) and
reduced splenomegaly (supplemental Figure 10). Figure 6G sum-
marizes the leukemia burden at the end of treatment in the PDX
model. Finally, the immunoblot analysis of phosphorylated JNK and
HES1 in PDX01 and PDX04 cells treated in vitro with OTSSP167
shows inhibition of the MAP2K7 and NOTCH1 pathways
(Figure 6H). Altogether, OTSSP167 can efficiently inhibit the
expansion of patient T-ALL cells in vivo. Higher concentrations or
longer treatments may be required to eliminate leukemic T cells in
the bone marrow efficiently.

We evaluated the effect of combining OTSSP167 with drugs
commonly used to treat pediatric T-ALL, such as VCN, ASNase, Dex,
and etoposide.5 This is critical because a new drug will be admin-
istered as an adjuvant rather than as a single agent. In P12-Ichikawa
cells, we detected synergism between OTSSP167 and dexameth-
asone, analyzed using CompuSyn32 and Combenefit visualization of
drug interactions (supplemental Figure 11).33 A synergistic effect of
combining OTSSP167 with Dex, ASNase, or VCN was observed in
KOPTK-1 cells (Figure 7A-C). Strikingly, a combination of
OTSSP167 with a mixture of VCN, ASNase, and Dex displayed a
strong synergism in KOPTK-1 cells, suggesting that OTSSP167
could be used in multidrug therapy (Figure 7D). The combination
with etoposide was synergistic in MOLT-3 cell lines (Figure 7E).
Finally, the specificity of OTSSP167 for leukemic cells was evalu-
ated by comparing its cytotoxicity with that in normal bone marrow
cells, which showed lower toxicity than normal blood cells
(Figure 7F). Collectively, these data indicate that although the use of
OTSSP167 is promising, further clinical studies are warranted.

Discussion

Identification of novel targets is necessary for developing targeted
therapies for T-ALL. The prognosis has substantially improved for
most patients with T-ALL through advances in risk assessment and
430 BRIDGES et al
intensified multidrug chemotherapy. However, the poor outcome of
patients with refractory or relapsed disease supports the devel-
opment of antileukemic drugs with high potency and low toxicity to
withstand aggressive multidrug treatment regimens.

The genomic analysis of a large cohort of children with cancer
identified MAPK signaling and cell cycle control as potentially
druggable events.9 Thus, the activation of kinase-driven signaling
pathways in patients with leukemia warrants studies of pharmaco-
logical inhibition to control leukemia. For example, the tyrosine kinase
inhibitor ponatinib has been investigated in relapsed/refractory
Philadelphia chromosome–positive ALL.34 PI3K/AKT is one of the
most activated T-ALL pathways caused by PTEN mutations.35 The
finding that mutations in IL7R, JAK1, JAK3, or STAT5B activate the
JAK-STAT pathway led to the clinical evaluation of the JAK inhibitor,
ruxolitinib.36,37 More recently, it was shown that the MAPK-ERK
pathway is activated in IL7R-mediated steroid-resistant T-ALL, and
therefore MEK inhibition with selumetinib enhances response to
steroids.38 Similarly, we described the activation of the kinase
MAP2K7 via epigenetic silencing of KLF4 in pediatric T-ALL.11 Thus,
studies combining expression with genomic and epigenetic land-
scapes will reveal actionable pathways for therapeutic targeting not
regulated through gene mutations.

MAP2K7 (also known as MKK7) is a dual-specificity mitogen-
activated protein kinase that associates with its only downstream
target, JNK.10,39 An unidentified upstream MAP3K7 binds to
MAP2K7-JNK, and this complex is held together by the scaffold JNK
interacting protein. This pathway is activated by stress-associated
signals, such as UV radiation, inflammation, metabolism, and the
DNA damage response, which mediates the oncogenic stress
stimuli to p53.40 MAP2K7 is activated through phosphorylation of
serine and threonine residues in the SKAKT motif in the kinase
domain, whereas autoinhibition is controlled by the N-terminal reg-
ulatory helix.41,42 The regulatory N-terminal domain of MAP2K7
contains 3 docking sites that recognize and bind JNK. Activated
MAP2K7 phosphorylates the 3 isoforms, JNK1,JNK2 (both ubiqui-
tous expressions), and JNK3 (expression limited to the brain, heart,
and testis). JNK, in turn, activates cellular processes such as
apoptosis and transcriptional regulation.43,44 Early work shows JNK
inhibition causes cell cycle arrest and apoptosis in JURKAT cells,
and conversely, ectopic expression of fusion protein MAP2K7-JNK1
promotes cell cycle progression.45 Our group later reported that
genetic and epigenetic loss of the transcription factor KLF4 was
associated with the aberrant activation of MAP2K7 in pediatric
T-ALL and expansion of bulk leukemia and leukemia-initiating cells.11

Consequently, pharmacological inhibition of the MAP2K7-JNK
pathway would have antileukemic properties in T-ALL and poten-
tially target leukemia-initiating cells.

This study evaluated the antileukemic properties of the MELK
inhibitor OTSSP167 in T-ALL because of its capacity to inhibit
MAP2K7.25 Low nanomolar concentrations of OTSSP167 are
cytotoxic in most T-ALL cell lines by deregulating the G2/M and
G1/S checkpoints and inducing apoptosis. This alteration in the
cell cycle is consistent with the arrest observed in Map2k7−/−

mouse embryonic fibroblasts.46 The inhibition of MAP2K7 kinase
activity by OTSSP167, evaluated in a biochemical assay using full-
length human MAP2K7 protein, shows an IC50 of 160 nM. This is
consistent with a previous report showing OTSSP167 inhibits the
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
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Figure 6. Efficacy to target in vivo patient-derived xenografts. (A) Diagram of treatment of T-ALL PDX mice with OTSSP167 (10 mg/kg) daily for 3 weeks.

(B) Representative flow cytometric detection of human CD45 blasts at the end of each treatment week in T-ALL PDX01 (relapse) xenografts. (C) Monitoring human

CD45 expansion in individual T-ALL PDX mice (PDX01) treated with vehicle or OTSSP167 (n= 10 per group). (D) Overall survival of mice from the experiment in
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phosphorylation mimetic mutant MAP2K7 S287D/T291D with an
IC50 of 105 nM determined in an isothermal calorimetry and 60 nM
in a kinase assay.25 In this work, OTSSP167 was classified as a
type-I inhibitor that binds to the highly flexible ATP-binding site.25

The capacity to inhibit MAP2K7 was further supported by the
inhibition of JNK phosphorylation in T-ALL treated with sorbitol to
activate MAP2K7. In addition to MAP2K7 inhibition, OTSSP167
lowered the expression of MELK protein in the cell lines KOPT-K1,
ALL-SIL, and RPMI-8402. This finding suggests a low specificity of
OTSSP167 for MAP2K7. Analysis of KINOMEscan in the LINCS
indicates a broad spectrum of kinase inhibition for a relatively high
concentration of OTSSP167 (10 μM). These findings suggest that
OTSSP167 is not a specific inhibitor but offers high potency and
low toxicity, 2 highly desired features for clinical translation. Daily
administration of OTSSP167 (10 mg/kg) showed good tolerability
and efficient inhibition of leukemia expansion in cell-based and
patient-derived xenograft models. In addition to T-ALL, identifying
drugs that inhibit MAP2K7 will have broader applications because
this pathway is activated in several solid tumors, such as breast,
prostate, and glioma cancers.47-50 Analysis of adult T-ALL gene
expression shows higher MAP2K7 expression in patients with early
immature leukemia.51

Our results demonstrate that kinase inhibition with OTSSP167
represents a potential therapeutic strategy for patients with T-ALL
because of its high potency and low toxicity. Further studies are
needed to evaluate OTSSP167 combined with current intensified
chemotherapy in pediatric patients with T-ALL.
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
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