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Abstract: Information theory provides robust measures of multivariable interdependence,
but classically does little to characterize the multivariable relationships it detects. The Partial
Information Decomposition (PID) characterizes the mutual information between variables by
decomposing it into unique, redundant, and synergistic components. This has been usefully applied,
particularly in neuroscience, but there is currently no generally accepted method for its computation.
Independently, the Information Delta framework characterizes non-pairwise dependencies in genetic
datasets. This framework has developed an intuitive geometric interpretation for how discrete
functions encode information, but lacks some important generalizations. This paper shows that the
PID and Delta frameworks are largely equivalent. We equate their key expressions, allowing for
results in one framework to apply towards open questions in the other. For example, we find that
the approach of Bertschinger et al. is useful for the open Information Delta question of how to deal
with linkage disequilibrium. We also show how PID solutions can be mapped onto the space of delta
measures. Using Bertschinger et al. as an example solution, we identify a specific plane in delta-space
on which this approach’s optimization is constrained, and compute it for all possible three-variable
discrete functions of a three-letter alphabet. This yields a clear geometric picture of how a given
solution decomposes information.

Keywords: partial information decomposition; information delta; synergy; co-information;
non-pairwise dependence

1. Introduction

The variables in complex biological data frequently have nonlinear and non-pairwise dependency
relationships. Understanding the functions and/or dysfunctions of biological systems requires
understanding these complex interactions. How can we reliably detect interdependence within
a set of variables, and how can we distinguish simple, pairwise dependencies from those which are
fundamentally multivariable?

An analytical approach formulated by Williams and Beer frames these questions in terms
of the Partial Information Decomposition (PID) [1]. The PID proposes to decompose the mutual
information between a pair of source variables X and Y and a target variable Z, I(Z : X, Y), into four
non-negative components:

I(Z : X) = UX + R

I(Z : Y) = UY + R

I(Z : X, Y) = UX + UY + R + S

(1)

Entropy 2020, 22, 1333; doi:10.3390/e22121333 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3004-7593
http://www.mdpi.com/1099-4300/22/12/1333?type=check_update&version=1
http://dx.doi.org/10.3390/e22121333
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1333 2 of 18

The constituent terms proposed are: the unique informations, UX and UY, which represent the
amounts of information about Z encoded by X alone and by Y alone; the redundant information,
R, which is the information about Z encoded redundantly by both X and Y; and the synergistic
information S, which is the information about Z contained in neither X or Y individually, but encoded
by X and Y taken together. An illustration of this decomposition, the associated governing equations,
and examples characterizing each type of information are all shown in Figure 1. It was shown that PID
components can distinguish between dyadic and triadic relationships which no conventional Shannon
information measure can distinguish [2].

(A)

(B)
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Figure 1. (A) Visualization of the Information Decomposition (adapted from [3]) and its governing
equations. The system is underdetermined. (B) Sample binary datasets which contain only one type of
information. For (i), where Z = X, X contains all information about Z and Y is irrelevant, such UX

is equal to the total information and all other terms are zero. For (ii), where Z = X = Y, X and Y are
always identical and thus the information is fully redundant. For (iii), where Z is the XOR function of
X and Y, both X and Y are independent of Z, but fully determine its value when taken jointly.

The problem with this approach is that its governing equations form an underdetermined system,
with only three equations relating the four components. To actually calculate the decomposition,
an additional assumption must be made to provide an additional equation. Williams and Beer
proposed a method for the calculation of R in their original paper, but this has since been shown
to have some undesirable properties [1]. Much of the subsequent work in this domain consisted of
attempts to define new relationships or formulae to calculate the components, as well as critiques of
these proposed measures [3]. These proposed measures include (as an incomplete list): a measure
based on information geometry [4]; an intersection information based on the Gács-Körner common
information [5]; the minimum mutual information [6]; the pointwise common change in surprisal [7];
and the extractable shared information [8].

Another noteworthy putative solution is that of [9], which requires solving an optimization
problem over a space Q of probability distributions, but is rigorous in that it directly follows from
reasonable assumptions about the unique information. However, it is unclear how to sensibly
generalize this approach to larger numbers of variables. Nonetheless, there has been considerable
interest in using the PID approach to gather insights from real datasets, particularly within the
neuroscience community [10–15].

Independently, an alternative approach to many of these same questions has been formulated
focusing on devising new information theory-based measures of multivariable dependency. In genetics,
non-pairwise epistatic effects are often crucially important in determining complex phenotypes,
but traditional methods are sensitive only to pairwise relationships; thus there is particular
interest in methods to identify the existence of synergistic dependencies within genetic datasets.
Galas et al. [16,17] quantified the non-pairwise information between genetic loci and phenotype data
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with the Delta measure, ∆(Z : X, Y). Briefly, given a set of variables {X, Y, Z}, ∆(Z : X, Y) quantifies
the change in co-information when considering the variables {X, Y, Z} as opposed to only {X, Y}
(we hereafter denote ∆(Z : X, Y) as ∆Z, ∆(X : Y, Z) as ∆X, and so on). In its simplest application,
the magnitudes of {∆X , ∆Y, ∆Z} can be used to detect and quantify non-pairwise interactions [16,17].

Recent work showed that the delta values encode considerable additional information about
the dependency. Sakhanenko et al. [18] defined the normalized delta measures ~δ = (δX, δY, δZ),
which define an “information space”, and considered the δ-values of all possible discrete functions
Z = f (X, Y). Fully mapping the specific example set of functions where {X, Y, Z} are all discrete
variables with 3 possible values, they found that the 19,683 possible functional relationships
Z = f (X, Y) mapped onto a highly structured plane in the space of normalized deltas (as shown
in Figure 2). Different regions of this plane corresponded to qualitatively different types of
functional relationships; in particular, completely pairwise functions such as Z = X and completely
non-pairwise functions such as Z = XOR(X, Y) were mapped onto the extremes of the plane
(see Figure 2; note that this paper defines “XOR” for a ternary alphabet as XOR(X, Y) ≡ (X +Y)mod3).
Since discrete variables such as these occur naturally in genetics, this suggests that relationships
between genetic variables may be usefully characterized by their ~δ-coordinates, with useful intuitive
value. The difficulty of this in practice is that the coordinates are constrained to this plane only when X
and Y are statistically independent, which is not the case in many real datasets, e.g., in genetic datasets
in the presence of linkage disequilibrium.

Figure 2. A geometric interpretation of the Information Deltas, as developed in [18]. (A) Consider
functions where each variable has an alphabet size of three possible values. There are 19,683 possible
functions f (X, Y). If the variables X and Y are independent, these functions map onto 105 unique points
(function families) within a plane in δ-space. (B) Sample functions and their mappings onto δ-space.
Functions with a full pairwise dependence on X or Y map to opposite lower corners, whereas the fully
synergistic XOR (i.e., the XOR-like ternary extension XOR(X, Y) ≡ (X + Y)mod3) is mapped to the
uppermost corner.

In this paper, we show that the Partial Information Decomposition approach and Information
Delta approach are largely equivalent, since their component variables can be directly related.
The ~δ-coordinates can be written explicitly in terms of PID components, which leads us to an intuitive
understanding of how ~δ-space encodes PID information by casting them into a geometric context.
We then apply our results to two different approaches to solving the PID problem, first one from
Bertschinger et al. [9] and then from Finn and Lizier [19]. We show that the sets of probability
distributions, Q, used by Bertschinger can be mapped onto low-dimensional manifolds in ~δ-space,
which intersect with the ~δ-plane of Figure 2. This approach is theoretically useful for the Delta
information framework, since it factors out X, Y dependence in the data, thereby accounting for
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linkage disequilibrium between genetic variables. We suggest an approach for the analysis of genetic
datasets which would return both the closest discrete function underlying the data and its PID in the
Bertschinger solution, and which would require no further optimization after the initial construction
of a solution library. This realization thus yields a low-dimensional geometric interpretation of this
optimization problem, and we compute the solution for all possible three-variable discrete functions
of alphabet size three. For these same functions, we then compute the PID components using the
Pointwise PID approach of Finn and Lizier [19]. This visualization yields an immediate comparison of
how each solution decomposes information. Since our derived relationship between the frameworks
is general, it could be similarly applied to any putative PID solution as demonstrated here. Code to
replicate these computations and the associated figures is freely available [20].

2. Background

2.1. Interaction Information and Multi-Information

An important body of background work, which served as a foundation for both the Information
Decomposition and Information Delta approaches, involves the Interaction Information, I I. I I can be
thought of as a multivariable extension of the mutual information [21]. Unlike the mutual information,
however, the interaction information can assume negative values. What does it mean for the interaction
information to be negative? It was once common to interpret I > 0 as implying a synergistic interaction,
and I < 0 as implying a redundant interaction between the variables. As detailed in [1] and discussed
in the following sections, this interpretation is mistaken. Interactions can be both partly synergistic
and partly redundant, and the interaction information indicates the balance of these components.

For a set of variables νn = {X1, ..., Xn}, I I can be defined as [22]:

I I(νn) = − ∑
τi⊆νn

(−1)|νn |−|τi |H(τi) (2)

where |νn| is the total number of variables in the set, and the sum is over all possible subsets τi
(where |τi| is the total number of variables in each subset). H(τi) is the joint entropy between
the variables in subset τi. The interaction information, I I, is very similar to a measure called the
co-information, CI [23]. These measures differ only by their sign: for an even number of variables they
are identical (e.g., I I(X, Y) = CI(X, Y)), and for an odd number of variables they are of opposite sign.

CI(νn) = − ∑
τi⊆νn

(−1)|τi |H(τi) = (−1)|νn | I I(νn) (3)

An additional, useful measure is the “multi-information”, Ω, introduced by Watanabe [24],
sometimes called the “total correlation”, which represents the sum of all dependencies of variables
and is zero only if all variables are independent. For a set of n variables νn = {Xi} it is defined as:

Ω(νn) =
n

∑
i=1

H(Xi)− H(X1, . . . Xn) (4)

2.2. Information Decomposition

Consider a pair of “source variables” X,Y which determine the value of a “target variable” Z.
Assume that we can measure the mutual information each source carries about a target, I(Z : X) and
I(Z : Y) (which we abbreviate as IZ:X and IZ:Y), as well as the mutual information between the joint
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distribution of {X, Y} and Z, I(Z : X, Y) (which we abbreviate as IZ:XY). These mutual informations
can be written in terms of the entropies (which we abbreviate using subscripts, e.g., H(X, Y) ≡ HXY):

IZ:X = HX + HZ − HXZ

IZ:Y = HY + HZ − HYZ

IZ:XY = HXY + HZ − HXYZ

(5)

These mutual informations can be decomposed into components which measure how much of each
“type” of information they contain, as follows:

IZ:XY = UX + UY + R + S

IZ:X = UX + R

IZ:Y = UY + R

(6)

where UX and UY are the unique informations, R is the redundant information, and S is the synergistic
information, as described previously in Section 1. This is an underdetermined system which requires
an additional equation for the variables to render it solvable. Many of the current and previous efforts
to define such an equation (for example, several proposals on how to directly compute the value of R
from data), as well as the limitations of those efforts, have been nicely summarized in [3].

2.3. Solution from Bertschinger et al.

One solution to this problem came from Bertschinger et al. [9], who proposed that the unique
information be approximated as:

ŨX = min
q∈Q

I(Y, Z|X) (7)

Let Ψ be the set of all joint probability distributions of X, Y, and Z. Then we define Q as the set
of all distributions, q, which have the same marginal probability distributions p(X = x, Z = z) and
p(Y = y, Z = z) as our dataset. That is,

Q = {q ∈ Ψ|q(X = x, Y = y) = p(X = x, Y = y) ∧ q(Y = y, Z = z) = p(Y = y, Z = z)} (8)

Please note that in [9], this set of probability distributions is denoted as ∆P, which we change here
to Q to avoid notational confusion with the information deltas. Similarly, its elements are indicated by
Q in the original paper. Here we indicate the distributions, elements of the set Q, by a lowercase q for
consistency with our notation for probability distributions.

Put another way, we consider all possible probability distributions that maintain the marginals
p(X = x, Z = z) and p(Y = y, Z = z) implied by our data. The relationship between X and Y
(p(X = x, Y = y), and consequently the joint distribution p(X = x, Y = y, Z = z)) is allowed to vary.
The minimization criterion is perhaps more intuitive when written, equivalently, as:

ŨX = min
q∈Q

I(Y, Z|X) = min
q∈Q

[I I(X, Y, Z)− I I(y, z)] (9)

Thus, the unique information ŨX can be thought of as the smallest possible increase in the
interaction information when the variable X is added to the set {Y, Z}. For example, if there exists a
probability distribution in Q for which I I(Y, Z) = I I(X, Y, Z), then the addition of X adds no unique
information about Z and ŨX . The core assumption of this approach is that the unique and redundant
informations depend simply upon the marginal distributions p(X = x, Z = z) and p(Y = y, Z = z).
This solution is rigorous in the sense that the result follows directly from this assumption without any
ad-hoc assumptions for how the components are related.
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2.4. Information Deltas and Their Geometry

Consider a set of three variables νn = {X, Y, Z}. Using Equation (3), we can write the
co-information in terms of the entropies:

CI(X, Y, Z) = HX + HY + HZ − HXY − HXZ − HYZ + HXYZ (10)

The differential interaction information ∆Z is the change in the interaction information when a
given variable Z is added to the set. This can be written in terms of CI and then the conditional
mutual information:

∆Z(νn) = CI(X, Y, Z)− CI(X, Y) = −I(X, Y|Z) (11)

These measures can be normalized by the multi-information for the three variables, Ω(X, Y, Z)
(which we abbreviate as ΩXYZ), which by Equation (4) we can write in terms of the entropies as:

ΩXYZ = HX + HY + HZ − HXYZ (12)

The normalized measures are then:

δX = −∆X/ΩXYZ, δY = −∆Y/ΩXYZ, δZ = −∆Z/ΩXYZ (13)

If Z is a function of X and Y, and if X and Y are i.i.d., then ~δ = (δX, δY, δZ) lies within a highly
structured plane, where different regions of the plane correspond to qualitatively different types of
interactions. Figure 2 shows the mapping of all possible functions onto this highly structured plane.

The normalized deltas can be expressed as:

δX = 1− IX:Y + IZ:X
ΩXYZ

=
−HX + HXY + HXZ − HXYZ

ΩXYZ

δY = 1− IX:Y + IZ:Y
ΩXYZ

=
−HY + HXY + HYZ − HXYZ

ΩXYZ

δZ = 1− IZ:X + IZ:Y
ΩXYZ

=
−HZ + HXZ + HYZ − HXYZ

ΩXYZ

(14)

The normalized deltas can also be written in terms of joint mutual informations, as follows:

δX =
1

ΩXYZ
(−HX + HXY + HXZ − HXYZ)

=
1

ΩXYZ
(−HX + HXY + HXZ − HXYZ + (HX + HY + HZ − HXYZ)−ΩXYZ)

=
1

ΩXYZ
(HY + HZ + HXY + HXZ − 2HXYZ −ΩXYZ)

=
1

ΩXYZ
((HZ + HXY − HXYZ) + (HY + HXZ − HXYZ)−ΩXYZ)

=
IZ:XY + IY:XZ

ΩXYZ
− 1

(15)

We can write all normalized deltas in this form:

δX =
IZ:XY + IY:XZ

ΩXYZ
− 1

δY =
IZ:XY + IX:YZ

ΩXYZ
− 1

δZ =
IY:XZ + IX:YZ

ΩXYZ
− 1

(16)
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By inverting previous equations, we can then write:

IZ:XY =
ΩXYZ

2
(δX + δY − δZ + 1) (17a)

IZ:X =
ΩXYZ

2
(−δX − δZ + δY + 1) (17b)

IZ:Y =
ΩXYZ

2
(−δY − δZ + δX + 1) (17c)

Specifically, Equation Set (16) can be inverted to yield Equation (17a), and Equation Set (14) can be
inverted to yield Equations (17b) and (17c).

3. PID Mapped into Information Deltas

3.1. Information Decomposition in Terms of Deltas

With Equations (6) and (17), we can equate the expressions for the mutual informations in their
delta and information decomposition forms:

ΩXYZ
2

(+δX + δY − δZ + 1) = R + UX + UY + S

ΩXYZ
2

(−δX + δY − δZ + 1) = R + UX

ΩXYZ
2

(+δX − δY − δZ + 1) = R + UY

(18)

From the above relations we can derive:

S− R =
ΩXYZ

2
(δX + δY + δZ − 1) (19)

In other words, the difference between the synergy and the redundancy increases as we get farther
from the origin in δ-space. Also:

UX −UY = ΩXYZ(δY − δX) (20)

so the distance from the diagonal in the (δX, δY)-plane is proportional to the difference between the
unique informations. These striking relationships are visualized in Figure 3.

Figure 3. As shown in Equations (23) and (24), the δ-space encodes the balance of synergy/redundancy
along one diagonal, and the balance of unique information in each source along the other.
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3.2. Relationship between Diagonal and Interaction Information

Considering again Equation (19) and using Equation (13), we can write:

S− R =
ΩXYZ

2
(δX + δY + δZ − 1)

= −1
2
(∆X + ∆Y + ∆Z + ΩXYZ)

= −1
2
((HX − HXY − HXZ + HXYZ) + (HY − HXY − HYZ + HXYZ)

+ (HZ − HXZ − HYZ + HXYZ) + (HX + HY + HZ − HXYZ))

= −(HX + HY + HZ − HXY − HXZ − HYZ + HXYZ)

= I I(X, Y, Z)

(21)

where I I(X, Y, Z) is the interaction information between the variables. This replicates the important
result that I I(X, Y, Z) = S− R from the original Williams and Beer paper [1].

3.3. The Function Plane

When the variables are related by a discrete function (as defined in [18]), and X and Y are i.i.d.,
the function will lie on a plane defined by:

δZ = δX + δY − 1 (22)

Thus, the distance d of a coordinate above the plane is given by

d = δZ − δX − δY + 1 = −(δX + δY − δZ + 1) + 2 (23)

And so from Equation (18):
Ω
2
(2− d) = R + UX + UY + S (24)

4. Solving the PID on the Function Plane

4.1. Transforming Probability Tensors within Q

As noted previously, there is no generally accepted solution for completing and computing the set
of PID equations. Our results connecting the PID to the information deltas have therefore, up to this
point, been agnostic on this question. All equations in the previous section follow from the basic PID
formulation, and the delta coordinate equations. This means they are true for any putative solution,
but also brings us no closer to an actual solution to the PID problem; we can still only compute the
differences between PID components. We therefore now extend our analysis by using the solution of
Bertschinger et al. [9] to fully compute the PID for the functions in Figure 2. We wish to emphasize,
however, that the following approach could be used equally well to gain a geometric interpretation of
any alternate solution to the PID.

Consider a probability tensor for an alphabet size of N:

PN =


 p111 · · · p1N1

...
. . .

...
pN11 · · · pNN1

 , ... ,

 p11N · · · p1NN
...

. . .
...

pN1N · · · pNNN


 (25)

where we use the notation pijk = p(X = i, Y = j, Z = k). What transformations are permissible that
will preserve the distribution within the set Q (as defined in Equation (8))? Please note that we can
obtain the marginal distributions simply by summing over the appropriate tensor index. For example,
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summing along the first index yields the marginal distribution p(Y = y, Z = z). To stay in Q, then,
we require that the sums along the first and second indices both remain constant.

For an alphabet size of N = 2, we can parameterize the set of all possible transformations
quite simply:

P2 =

[[
p111 + α p121 − α

p211 − α p221 + α

]
,

[
p111 + β p121 − β

p211 − β p221 + β

]]
(26)

All possible changes to each layer of the tensor can be captured with a single parameter.
For example, increasing p111 will require that p121 and p211 be decreased by the same amount, as the
row and column sums must remain constant (which, in turn, determines p221). Each layer can be
modified independently, and thus the second layer has an independent parameter.

For a given probability tensor with N = 2, then, the probability tensor for any distribution in Q
can be fully parameterized with two parameters, and thus the corresponding coordinates in delta-space
are at most two-dimensional. In practice, we find that N = 2 functions have delta-coordinates that are
restricted to a one-dimensional manifold.

Consider, for example, the AND function:

P2 =

[[
1 1
1 0

]
,

[
0 0
0 1

]]
(27)

We can describe all possible perturbations which remain in Q by the parameterization:

P2 =

[[
1/4 + α 1/4− α

1/4− α 0 + α

]
,

[
0 + β 0− β

0− β 1/4 + β

]]
(28)

However, it can be seen that we must have β = 0, as all probabilities must remain in the range
p ∈ [0, 1]. The parameter α, on the other hand, can fall within the range α ∈ [0, 1/4]. Since all
possible perturbations can be captured by varying a single parameter, Q must therefore be mapped to
a one-dimensional manifold in δ-space.

The layers of a probability tensor become significantly harder to parameterize for N = 3.
Consider a single layer of a probability tensor:p111 p121 p131

p211 p221 p231

p311 p321 p331

 ≡
a b c

e d f
g h i

 (29)

The permissible transformations to this layer can be parameterized by: a + α b + β c− α− β

e + γ d + δ f − γ− δ

g− α− γ h− β− δ i + α + β + γ + δ

 (30)
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subject to the constraints that: 

0 ≤ (a + α) ≤ 1

0 ≤ (b + β) ≤ 1

0 ≤ (e + γ) ≤ 1

0 ≤ (d + δ) ≤ 1

0 ≤ (c− α− β) ≤ 1

0 ≤ ( f − γ− δ) ≤ 1

0 ≤ (g− α− γ) ≤ 1

0 ≤ (h− β− δ) ≤ 1

0 ≤ (i + α + β + γ + δ) ≤ 1

(31)

Clearly, these relations are too complicated to lend any immediate insight into the problem.
However, it is a simple matter to use the above inequalities to calculate permissible values of parameters
(α, β, γ, δ) and to plot out the corresponding delta coordinates. This is done for randomly generated
sample functions in Figure 4. In this case, the delta coordinates have a complex distribution but are
nonetheless restricted to a plane in delta-space (the vertically oriented red plane in Figure 5).

Figure 4. An example mapping of the Bertschinger set Q to δ-space for a randomly chosen function f .
A set Q consists of all probability distributions p(X = x, Y = y, Z = z) that share the same marginal
distributions p(X = x, Z = z) and p(Y = y, Z = z). Each Q maps onto a set of points with a complex
distribution, but which is constrained to a simple plane in δ-space.

4.2. δ-Coordinates in Q Are Always Restricted to a Plane

In the N = 2 case, delta-coordinates were parameterized by a single variable such that they must
be restricted onto a line. In the N = 3 example, they are restricted onto a plane. Will larger alphabets
map Q onto a three-dimensional volume? If not, is it possible to get a non-planar two-dimensional
manifold, or are coordinates always restricted to a plane? We will now prove that Q is always
constrained to a plane, regardless of the alphabet size.
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Lemma 1. In any set Q as defined previously, the following entropies remain constant: all individual entropies
HX , HY and HZ; the joint, 2-variable entropies containing Z, namely HXZ and HYZ. The only entropies which
vary within a particular Q then are HXY and HXYZ.

Proof. The definition of Q preserves the marginal distributions by construction. HXZ and HYZ
being constant is a trivial consequence of holding p(X = x, Z = z) and p(Y = y, Z = z) constant,
which is the condition defining Q. From these constant marginal distributions, we can calculate
the distributions p(X = x), p(Y = y) and p(Z = z), which are therefore also constant, as are their
corresponding entropies.

Only two entropic quantities vary between the different distributions in Q. By considering just
their effect on the delta coordinates, we can now show the following:

Theorem 1. In any set Q of distributions with equal marginal distributions p(X = x, Z = z) and
p(Y = y, Z = z), the delta-coordinates (δX, δY, δZ) will be restricted to a plane. This is true for any
alphabet size.

Proof. We begin by making several notational definitions to simplify the algebra which follows,
first from the joint entropies which vary within Q:

d ≡ HXYZ − HXY

h ≡ HXYZ

We then define quantities which collect the constant entropy terms:

c1 ≡ HX + HY + HZ

c2 ≡ −HX + HXZ

c3 ≡ −HY + HYZ

c4 ≡ −HZ + HXZ + HYZ

In terms of these quantities we can now write the normalized delta coordinates as follows:

δX =
c2 − d
c1 − h

δY =
c3 − d
c1 − h

δZ =
c4 − h
c1 − h

Solving for d in the δX and δY equations yields:

δY(c1 − h)− c3 = δX(c1 − h)− c2

And the δZ equation allows us to solve for h:

h =
c4 − c1δZ

1− δZ
=⇒ (c1 − h) =

c1 − c4

1− δZ

Plugging this into the equation above yields an equation which simplifies to:

(c1 − c4)(δX − δY) + (c3 − c2)(1− δZ) = 0 (32)

Since c1, c2, c3 and c4 are all constant over Q, this defines a plane in δX , δY, δZ space.
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Equation (32) not only shows that the points in Q are bound to a plane, but it also implies that this
plane always contains the line defined by δX = δY and δZ = 1. Therefore for any function in Figure 2,
we can trivially compute the plane in which the corresponding Q is contained.

Figure 5. The same function’s Q mapped onto δ-space as in Figure 4, viewed from a different angle.
Q is constrained to a plane in δ-space. This plane, highlighted in red, contains the δ-coordinates of
the function f (indicated by the red dot) as well as the line(δX = δY , δZ = 1) (indicated by the solid
red line).

4.3. PID Calculation for All Functions

For the set of probability distributions Q, Bertschinger et al. [9] provide the following estimators
for the PID components:

ŨX = min
q∈Q

ΩXYZδY

ŨY = min
q∈Q

ΩXYZδX

R̃ = max
q∈Q

CI(X, Y, Z)

S̃ = IZ:XY −min
q∈Q

IZ:XY

(33)

If we numerically compute the set Q for a given function f (i.e., by generating a distribution such
as the one shown in Figure 4 via the parameterization of Equation (30)), these estimators are trivially
consistent. Figure 6 shows the computed values of the PID components for all of the functions shown
in Figure 2. There is a clear geometric interpretation here: Functions in the lower left/right corners
consist almost entirely of ŨX and ŨY, respectively. Functions approaching the top corner become
increasingly synergistic with a higher proportion of S. Functions are most redundant towards the
lower center of the plane, though no single function is primarily R.
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Figure 6. All functions Z = f (X, Y) (with alphabet sizes of 3) mapped onto a plane in δ-space, as in
Figure 2. Each function is colored by the fraction of the total information in each PID component,
as computed using the solution of [9]. There is a clear geometric structure to the decomposition which
matches the previously discussed intuition about δ-space.

4.4. Alternate Solutions: Pointwise PID

The Pointwise Partial Information Decomposition (PPID) of Finn and Lizier [19] is an alternate
approach to solving the PID problem. It is motivated by the fact that the entropy and mutual
information can be expressed as the expectation value of pointwise quantities, which measure the
information content of a single event. For example, the event (X, Z) = (x1, z1) has the associated
pointwise mutual information:

i(x1 : z1) = log
p(X = x1|Z = z1)

p(X = x1)
(34)

and the overall mutual information between the two variables is the expectation value of this pointwise
quantity, taken over all possible events. It is important to note that while the overall mutual information
is non-negative, the pointwise mutual information can be negative. Finn and Lizier decompose this
pointwise quantity into two non-negative components, the “specificity” i+(x1 → z1) and “ambiguity”
i−(x1 → z1), and argue that:

i(x1 : z1) = i+(x1 → z1)− i−(x1 → z1)

i+(x1 → z1) = h(x1) = − log p(X = x1)

i−(x1 → z1) = h(x1|z1) = − log p(X = x1|Z = z1)

(35)
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They similarly decompose the redundancy R into a pointwise specific redundancy r+ and
pointwise specific ambiguity r−, and argue for the following definitions:

r+min(a1, ..., ak → z) = min
ai

i+(ai → z)

r−min(a1, ..., ak → z) = min
ai

i−(ai → z)
(36)

where {ai} are the values of each of the source variables in a particular realization (e.g., if we have
two source variables X, Y predicting Z, then the event (X, Y, Z) = (x1, y2, z3) has {ai} = {x1, y2}).
The expectation value of the difference of these quantities then yields the redundancy:

R =
〈
r+min − r−min

〉
(37)

from which the rest of the PID components follow. See [19] for a full discussion of motivations
and Axioms which these definitions satisfy (including a discussion of the relationship between this
formulation and that of Bertschinger et al. [9], and how the many aspects of [19] are arguably pointwise
adaptations of the assumptions in [9]).

One consequence of this approach is that the PID components are no longer non-negative. There is
extensive discussion of the interpretation of this in [19], but one example, RDNERR, is particularly
informative. In our probability tensor notation, we can write this function as:

PRDNERR =

[[
3/8 1/8

0 0

]
,

[
0 0

1/8 3/8

]]
(38)

This can be interpreted as follows: X is always equal to Z. Y is usually equal to Z, but occasionally
(with probability 1/4) makes an error. What should we expect the PID components to be, in this
case? The PPID yields (R, Ux, Uy, S) = (1, 0,−0.81, 0.81), which implies the following interpretation:
the information about Z is encoded redundantly by both X and Y, but Y carries unique misinformation
about Z due to its tendency to make errors. If all components were strictly positive, we would likely
draw a different conclusion: both X and Y encode some information about Z, with X encoding additional
unique information. In this way, different solutions will lead to slightly different interpretations about
the nature of the relationship between the variables.

In Figure 7, we compute the PPID for all functions Z = f (X, Y) and map them onto ~δ-space,
just as we did in Figure 6. Comparing Figures 6 and 7 immediately highlights key differences in how
each method decomposes information. For example: in Figure 6, the top corner is purely synergistic,
the lower-left corner has information solely in X, and the lower-right corner has information solely
in Y; in Figure 7, the top corner has zero redundancy, the lower-left corner has misinformation in Y,
and the lower-right corner has misinformation in X.

It is not our goal here to argue which result is more correct. Instead, we wish to highlight
how comparing Figures 6 and 7 readily yields subtle insights into how the two approaches differ
in decomposing information. It also yields immediate insights into the subtleties of how we might
interpret coordinates in ~δ-space.
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Figure 7. The same set of all 3-letter functions Z = f (X, Y) mapped onto a plane in δ-space, as in
Figure 6. The colorscale shows the amount of information in each component, now computed using
the pointwise solution of Finn and Lizier [19]. In this formulation, the PID components are the average
difference between two subcomponents, the specificity and ambiguity, and can be negative when the
latter exceeds the former. Visualizing this solution immediately highlights the differences in how it
decomposes the information of functions and leads to an alternate interpretation of δ-space.

5. Conclusions

The key overall result of this paper is that the PID problem can be mapped directly into the the
previously defined “information landscape” represented by the “delta space” of [18]. This theoretical
framework is simple and has a geometric interpretation which was well worked out previously.
The simple set of relations between the frameworks, as explicated in Equation (18) and visualized in
Figure 3, anticipates a much deeper set of geometric constraints.

We build upon this general relationship using the solution of Bertschinger et al. [9].
Using this solution, we parameterize the permissible transformations to a discrete function to
numerically generate the distribution set Q, and prove in Theorem 1 that this set is mapped onto
a plane in delta-space. The optimization problem defined by this approach is cast in terms of our
variables in Equation (33), and the various extrema can be extracted directly from our parameterization
and mapping procedure. Code which replicates these computations and generates the figures within
this paper is freely available[20].

These results suggest the following approach for computation of the PID components, if using
the solution from [9], and given the added assumption that there is some function Z = f (X, Y) which
best approximates the relationship between variables. The steps are these:

1. Construct a library (set) of distributions {Q1, Q2, . . . , QN} for all functions, fi(X, Y). Specifically,
record the δ-coordinates spanned by each distribution (e.g., as plotted in Figure 4) along with the
corresponding function and its PID component values.
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2. For a set of variables in data for which we wish to find the decomposition, compute its
δ-coordinates and then match them to the closest Qi. This will then immediately yield the
corresponding function and PID components.

If this approach proves to be practical, it would have several clear advantages. First,
the computational cost of the library construction would only need to be done once, and not need to be
repeated for any subsequent analysis. The cost of the library construction is itself quite tractable
(for example, exactly this computation was done to generate Figure 6). Second, this solves an
open problem in the use of Information Deltas for which the source variables are not independent,
for example, in applications to genetics in the presence of linkage disequilibrium. Specifically,
this approach relaxes the common assumption in [18] that X and Y must be statistically independent.

The practical application of this approach to data analysis requires further development, which is
beyond the scope of this paper. Specifically, the actual data will contain noise such that the computed
δ-coordinates will not lie perfectly within any distribution of Q set. The naïve approach of simply
taking the closest Qi may therefore be insufficient in general. Future work will characterize the
response of δ-coordinates to various levels of noise within the data, to enable the computation of
p(Qi|~δ, α) (i.e., the probability that variables belong to the set Qi given their observed coordinates ~δ
and some noise level α).

Future work will extend the approach of ~δ to larger sets of variables, so as to fully characterize a
higher-dimensional ~δ-space and its relationship to the PID. Much of the complexity of each framework
is contained in considering these higher-order relationships. Future work will also consider additional
solutions to the PID problem beyond the solutions of [9,19] considered here. All equations in Section 3
are general and agnostic to the precise solution used for the actual PID computation, and it should be
straightforward to generate figures similar to Figure 6 for different solutions to show how they differ in
mapping information components onto the function plane. This will provide interpretable geometric
comparisons between solutions and also immediately highlight all functions for which results offer
differing interpretations, as seen in Figures 6 and 7. We anticipate that this direct comparison of how
different solutions map the information content of discrete functions will provide a powerful visual
tool for understanding the differing consequences of putative solutions, and thus our unification of
these frameworks will be useful in resolving the open question of how best to compute the PID.
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