
����������
�������

Citation: Gau, Y.-C.; Yeh, T.-J.; Hsu,

C.-M.; Hsiao, S.Y.; Hsiao, H.-H.

Pathogenesis and Treatment of

Myeloma-Related Bone Disease. Int.

J. Mol. Sci. 2022, 23, 3112. https://

doi.org/10.3390/ijms23063112

Academic Editor: Giacomina Brunetti

Received: 14 February 2022

Accepted: 9 March 2022

Published: 14 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Pathogenesis and Treatment of Myeloma-Related Bone Disease
Yuh-Ching Gau 1,2 , Tsung-Jang Yeh 1,2 , Chin-Mu Hsu 1 , Samuel Yien Hsiao 3 and Hui-Hua Hsiao 1,4,5,6,*

1 Division of Hematology and Oncology, Department of Internal Medicine,
Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; cheesecaketwin@gmail.com (Y.-C.G.);
aw7719@gmail.com (T.-J.Y.); e12013@gmail.com (C.-M.H.)

2 Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University,
Kaohsiung 80708, Taiwan

3 Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA; ucdsacnyu@gmail.com
4 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
5 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
6 Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: huhuhs@kmu.edu.tw; Tel.: +816-7-3162429

Abstract: Multiple myeloma is a hematologic malignancy of plasma cells that causes bone-destructive
lesions and associated skeletal-related events (SREs). The pathogenesis of myeloma-related bone
disease (MBD) is the imbalance of the bone-remodeling process, which results from osteoclast
activation, osteoblast suppression, and the immunosuppressed bone marrow microenvironment.
Many important signaling cascades, including the RANKL/RANK/OPG axis, Notch signaling, the
Wnt/β-Catenin signaling pathways, and signaling molecules, such as DKK-1, sclerostin, osteopontin,
activin A, chemokines, and interleukins are involved and play critical roles in MBD. Currently,
bisphosphonate and denosumab are the gold standard for MBD prevention and treatment. As
the molecular mechanisms of MBD become increasingly well understood, novel agents are being
thoroughly explored in both preclinical and clinical settings. Herein, we will provide an updated
overview of the pathogenesis of MBD, summarize the clinical management and guidelines, and
discuss novel bone-modifying therapies for further management of MBD.

Keywords: myeloma; myeloma bone disease; osteoclastogenesis; bisphosphonates; denosumab;
novel agents

1. Introduction

Multiple myeloma (MM), also known as plasma cell myeloma, is the second-most
common hematological malignancy and is characterized by the malignant proliferation of
monoclonal plasma cells in the bone marrow, leading to bone destruction, marrow failure,
and associated end organ damage (hypercalcemia, renal insufficiency, anemia, or bone
lesions) [1]. According to statistics for the United States, MM accounts for about 1.8% of all
cancers and 18% of hematologic malignancies. MM is most frequently diagnosed in people
aged 65 to 74 years; the median age is 69 years [2]. The incidence of MM is increasing
worldwide, but the rate of increase is greatest in Asia. In Taiwan, the age-adjusted incidence
of MM increased by 13% between 2007 and 2012 [3]. The overall survival of patients with
MM has improved significantly in the last two decades because of novel therapeutic agents,
but it remains an incurable disease in the majority of patients. For newly diagnosed patients,
the median overall survival is approximately six years [4].

MM-related bone disease (MBD) is a hallmark of MM. More than 80% of MM patients
develop osteolytic bone lesions at diagnosis [5]; these patients are at high risk of skeletal-
related events (SREs), including pathological fractures, spinal cord compression, and the
need for surgical or radiotherapeutic intervention [6]. Up to 60% of MM patients will
develop pathologic fracture during the disease course [7]. SREs have a negative impact on
patient survival, quality of life, and public health costs [6].
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The pathogenesis of MBD is the imbalance and uncoupling of the bone-remodeling
process, due to the dysregulation of the bone marrow microenvironment [8,9], increased
osteoclast formation and activity, and osteoblast suppression [10]. Both the direct and indi-
rect interactions between MM cells and osteocytes, osteoclasts, osteoblasts, immune cells,
and bone mesenchymal stem cells (BMSCs) participate in the complex pathogenesis event.

Regarding the MBD therapeutics, the current guidelines suggests that bisphosphonates
(namely zoledronic acid or pamidronic acid) should be administered to all patients with
active MM, regardless of the presence of MBD in imaging study; denosumab, a humanized
monoclonal antibody directed against RANKL, is used for patients with MBD on imaging
or for patients with renal impairment [11]. In addition, novel agents have been developed
from the understanding of the molecular pathways of MBD pathogenesis.

Here, we review the pathogenesis, treatment modalities, and preclinical research and
clinical trials for investigating novel bone-modifying agents for MBD management.

2. Increased Bone Resorption by Osteoclasts
2.1. RANKL/RANK/OPG Axis

The pathogenesis of MBD is primarily in the upregulation of osteoclast differenti-
ation and activity resulting in unbalanced bone resorption, which causes characteristic
osteolytic lesions [12]. The two main factors required for osteoclast differentiation are
macrophage-colony stimulating factor (M-CSF) and receptor activator of NFκB (RANK)
ligand (RANKL) [13,14]. The key pathway, receptor activator of nuclear factor-κB ligand
(RANKL)/RANK/osteoprotegerin (OPG), regulates the formation of multinucleated os-
teoclasts from their precursors, as well as their activation and survival in normal bone
remodeling [15,16]. Osteocytes produce the majority of RANKL, but activated lymphocytes,
BMSCs, and endothelial cells also produce RANKL. RANKL promotes osteoclast activity
by binding to RANK on the membrane of osteoclastic lineage cells [15]. OPG, a soluble
decoy receptor and a member of the TNF receptor family [17], is secreted by osteoblasts,
BMSCs, and osteocytes; it protects bone from excessive resorption by binding to RANKL
and preventing it from binding to RANK [15].

MM cells degrade OPG through the membrane syndecan (CD138)-1 system [18].
The RANKL/OPG ratio is a critical regulator of the bone resorption rate; increased
RANKL/OPG is found in the MM microenvironment and serum RANKL/OPG is neg-
atively correlated with patient survival [15,19,20]. Increased osteoclast activity, induced
by osteoclast-derived osteopontin and vascular endothelial growth factor (VEGF) from
myeloma cells, appears to contribute both to the increased angiogenesis and tumor growth
in MM [18,21].

2.2. Notch Signaling Pathway

The Notch signaling pathway is also implicated in MM-induced osteoclastogene-
sis [22,23]. Four transmembrane receptors (Notch 1–4) are included in the Notch family,
and they bind to their ligands (Jagged 1,2 and Delta-like 1,3,4) expressed by neighboring
cells. The Notch family, expressed in the membranes of MM cells, and its activation by
homotypic or heterotypic interactions and the subsequent intracellular cascade are important
for the differentiation of pre-osteoclasts, which trigger the secretion of angiogenic factors
by BMSCs [22]. The inhibition of Notch pathway causes decreased MM cell proliferation,
induces MM cell apoptosis, and inhibits osteoclastogenesis [24]. The systemic inhibition of
Notch with γ-secretase inhibitors (GSIs) decreases multiple myeloma tumor growth. A novel
agent forbone-targeted Notch inhibition (BT-GSI) has both anti-myeloma and anti-resorptive
properties, and is under investigation [25].

2.3. Chemokines: CCL-3 (MIP-1α)/CCR1, CCR5

Chemokine (C-C motif) ligand 3 (CCL-3), also called macrophage inflammatory
protein-1α (MIP-1α), is a chemokine with inflammatory and chemokinetic properties
secreted by MM plasma cells that plays a critical role in the pathogenesis of MBD [26].
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The binding of CCL-3 to its G-protein coupled receptors, CCR1 and CCR5, activates the
ERK and AKT signaling pathways and contributes to the development of bone disease
in MM by supporting tumor growth and regulating osteoclast differentiation [26,27]. In
MM human cell lines with translocation t(4;14), the overexpression of fibroblast growth
factor receptor 3 (FGFR3) is induced by MIP-1α promoter activity, as well as the MIP-
1α gene and protein expression/secretion [28]. CCL3 induces osteoclast formation in a
RANK/RANKL-dependent manner both in vivo and in vitro studies [29,30]. A higher level
of CCL-3 in the bone marrow is positively associated with the increased presence of oste-
olytic bone disease [31]. On the other hand, CCL3 also inhibits osteoblastogenesis through
the Runx2/osterix pathway and causes the suppression of mineralization activation and
osteocalcin expression [32]. Treatment with the CCR1-specific antagonist MLN3897 inhibits
the interaction of multiple myeloma cells and osteoclasts and impedes osteoclastogenesis
in vitro [33].

2.4. Chemokines: CCL-20(MIP-3α)/CCR6

Chemokine (C-C motif) ligand 20 (CCL-20), also known as macrophage inflammatory
protein-3α (MIP-3α), and its receptor CCR6 are upregulated in the bone microenvironment
by MM cells and contribute to osteoclast formation and osteolytic bone lesions in MM
patients [34]. The CCL-20 level in the bone marrow has a significant predictive value for
osteolytic bone lesions [31].

2.5. BTK and CXCL-12 (SDF-1)/CXCR4

Bruton’s tyrosine kinase (BTK) is a nonreceptor tyrosine kinase of the TEC family and
plays a crucial role in oncogenic signaling that is critical for the proliferation and survival of
leukemic cells in many B cell malignancies and osteoclast differentiation [35,36]. CXCL-12
[stromal cell-derived factor-1 (SDF-1)] is a homeostatic chemokine that binds primarily to
the CXC receptor 4 (CXCR4; CD184) [37]. After CXCL-12 and CXCR4 binding, the homing
of myeloma cells and osteoclastogenesis are triggered [38]. BTK is found to be expressed in
MM cells, and has a positive correlation with CXCR4 expression. In an in vitro study, BTK
inhibition reduced the migration of myeloma cells toward SDF-1 [39]. The interesting role
of BTK activity in myeloma cell clonogenicity and metastasis and in osteoclast-mediated
bone resorption may have therapeutic potential in MBD. The BTK inhibitor ibrutinib is now
in use in combination with other anti-myeloma agents in relapse and refractory clinical
trial settings.

2.6. Annexin II (AnxA2, A2)

Annexin II (AnxA2, A2) is a Ca2+-dependent, anionic phospholipid-binding protein that
belongs to the ubiquitous multigene annexin family, expressed on most of the endothelial
cells, mononuclear macrophage, marrow cells, and some tumor cells [40]. Preclinical studies
show that AnxA2 is highly expressed in myeloma cells from MM patients and can promote
myeloma cell growth, reduce apoptosis in myeloma cell lines, and increase osteoclast
formation [41,42]. Higher AnxA2 expression in myeloma cells is associated with significantly
more adverse prognostic features, and inferior event-free and overall survival [42].

2.7. Osteopontin (OPN)

Osteopontin (OPN) is a non-collagenous matrix protein produced by a variety of cells,
including osteoblasts, osteoclasts, and several types of tumor cells [43]. OPN is associated
with inflammation and tissue remodeling [44]. Osteoclast-derived OPN and VEGF from
myeloma cells cooperatively enhance angiogenesis and induce osteoclastogenic activity by
vascular endothelial cells [45]. High OPN expression correlates with higher tumor burden,
and greater bone destruction [46]; OPN may also play a critical role in MM progression
and osteoclastogenesis [47].
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2.8. Interleukins (IL-3, IL-6, IL-17)
2.8.1. Interleukin 3 (IL-3)

Interleukin 3 (IL-3) acts as a bifunctional cytokine that indirectly increases osteoclasto-
genesis and suppresses osteoblastogenesis in MM cells in vitro [48]. The IL-3 level in bone
marrow serum significantly elevated in MM patients. IL-3 can induce osteoclastogenesis
in human bone marrow cultures, which was inhibited by a blocking antibody to IL-3 [49].
In addition, IL-3 influences indirectly the growth of osteoclasts by inducing activin A
production [48] and increasing RANKL and MIP-1α [49].

2.8.2. Interleukin 6 (IL-6)

Interleukin 6 (IL-6), an inflammatory cytokines, can modulate skeletal homeostasis
and osteoclast differentiation [50]. IL-6 stimulates osteoclast differentiation only when IL-6
binding with soluble IL-6 receptor (sIL-6R) via enhancing the expression of RANKL and
OPG, but decreasing RANK expression [51]. In addition, IL-6 enhances bone resorption by
promoting the proliferation of Dickkopf-1 (DKK-1)-secreting myeloma cells, but DKK-1
secretion is blocked after IL-6 neutralizing agents [52].

2.8.3. Interleukin 17 (IL-17)

Interleukin-17 (IL-17) and IL-17-producing cells (T-helper cells, Th17) play important
roles in inflammation and the immune response [53]. Research conducted in MM cell
models shows that IL-17–producing T cells induce osteoclast activation and that IL-17
production directly correlates with lytic bone disease, irrespective of the tumor burden,
indicating that the Th17 T-cell phenotype is a key predictor of lytic bone disease in MM [54].

2.9. TGFβ Superfamily and Activin-A

Activin-A is a dimeric multifunctional glycoprotein that belong to the transform-
ing growth factor-β (TGF-β) superfamily and regulates a broad spectrum of biological
functions, including bone remodeling [55]. Activin-A has growth stimulatory effects on
osteoclasts by inducing RANK expression and activating the NF-κB pathway [56], and med-
icates osteoblast function inhibition [57,58]. Increased bone marrow plasma activin A levels
are associated with MM patients developing extensive osteolytic disease [57]. In addition,
higher circulating Activin-A in myeloma patients is correlated with more advanced disease
and poorer prognosis [59]. In preclinical studies in mouse models, the administration of
anti-Activin-A agents, the Activin-A chimeric inhibitor (RAP-011) derived from the fusion
of the extracellular domain of activin receptor IIA and the constant domain of the murine
IgG2a or a soluble Activin-A receptor type IIA fusion protein (ActRIIA.muFc) successfully
inhibits osteolytic bone lesions developing by both inhibiting osteoclastogenesis and stim-
ulating osteoblastogenesis [60]. A Phase II clinical trial investigating MM patients with
osteolytic lesions treated with Sotatercept (ACE-011) combined with other anti-MM agents
revealed that it was safe and well tolerated [61].

2.10. TNF (Tumor Necrosis Factor) Superfamily

TNF-α is one of the most potent osteoclastogenic cytokines produced in inflammation,
and directly targets macrophages within a stromal environment that expresses permissive
levels of RANKL [62]. B-cell-activating factor of the TNF family (BAFF; also known
as B lymphocyte stimulator and TNFSF-13B), is secreted and expressed predominantly
by macrophages, dendritic cells, osteoclasts, and BMSCs, and provides a key survival
signal for the maturation of peripheral B cells that play a regulatory role in osteoblast
differentiation [63,64]. The ligation of BAFF to its receptor can cause constitutive activation
of either the canonical or non-canonical NF-κB pathways, resulting in the upregulation of
anti-apoptotic proteins and the downregulation of pro-apoptotic proteins [64,65], enhanced
MM cell survival, and MBD progression [66,67]. A Phase II clinical trial of the anti-BAFF
monoclonal antibody, tabalumab, used in previously treated MM, did not show PFS benefit
compared to placebo [68].
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3. Suppression of Bone Formation by Osteoblasts
3.1. Wnt/β-Catenin Signaling Pathway

The Wnt signaling is very important in skeletogenesis as it promotes the proliferation,
expansion, and survival of immature osteoblastic cells [69]; it also plays an important role in
MBD pathogenesis [70]. The formation of the Wnt-Frizzled-low-density lipoprotein-related
protein (LRP) complex activates Wnt/β-catenin signaling in the canonical pathway by the
activation of Disheveled (Dvl), which inhibits glycogen synthase kinase 3β (GSK3β) from
phosphorylating β-catenin. The cytoplasmic level of β-catenin consequently rises, and
β-catenin translocates into the nucleus to bind with the transcriptional factor T-cell factor
(Tcf)/lymphoid enhancer-binding factor (Lef-1), upregulating the expression of target genes
such as cyclin D1, axin2, c-Myc, and peroxisome proliferator-activated receptor (PPARδ),
causing bone formation, and impeding bone resorption [71,72]. On the other hand, the
existence of Wnt antagonists, Dickkopfs-1 (DKK-1), sclerostin, and secreted frizzled-related
proteins (sFRPs), impairs osteoblastogenesis and blocks bone formation by impeding the
Wnt signaling cascade [69,72,73]. In MM, soluble canonical Wnt inhibitors produced from
MM cells and BMSCs that interrupt Wnt signaling are increased, which causes severe
osteoblast/osteoclast imbalance via the upregulation of the RANKL/OPG ratio [74–76].

3.2. DKK-1, Sclerostin

Dickkopf-1 (DKK-1) is a secreted protein, a member of the DKK family, and is important
in vertebrate development, including osteoblastogenesis [76]. DKK1 is secreted by MM cells
and BMSCs; it blocks the maturation of osteoblasts and the formation of mineralized matrix by
antagonizing the canonical Wnt pathway through binding to LRP5/6 [70–72,74–76]. In addition,
DKK-1 prevents the differentiation of MSCs into osteoblasts, and the undifferentiated MSCs
produce IL-6, which stimulates the proliferation of DKK1-secreting MM cells. This vicious cycle
continues, resulting in more extensive osteolytic lesions [52]. In MM, BMSCs produce increased
amounts of DKK-1 [77]. DKK-1 serum and bone marrow plasma concentrations correlate with
the extent of MBD [78]. Anti-DKK-1 strategies are valuable since high serum levels of DKK1
are correlated with osteolytic lesion formation. A variety of DKK-1 antibodies has emerged;
most have shown encouraging results in MM cell lines in both preclinical and clinical trials [76].
The DKK1-neutralizing antibody BHQ880 upregulates β-catenin levels, downregulates NF-κB
activity, increases osteoblast differentiation, neutralizes the negative effect of osteoblastogenesis,
and reduces IL-6 secretion [70,79]. In a Phase II trial, BHQ880 administered as a monotherapy
was well tolerated in previously untreated high- and intermediate-risk SMM patients with
increased anabolic bone activity [80]. The DKK1-DNA vaccine can be used for immunotherapy
of patients with MM, and was effective in reducing tumor burden in mice with established
MM in a preclinical study [81].

Sclerostin is a small glycoprotein expressed by the SOST gene, and is secreted by os-
teocytes during bone remodeling [82]. During bone formation, sclerostin binds to LRP5/6
to inhibit the Wnt signaling pathway, completing a negative feedback loop of osteogene-
sis [82,83]. Sclerostin competed with the type I and type II bone morphogenetic protein
(BMP) receptors for binding to BMPs, de-regulated BMP signaling, and suppressed the
mineralization of osteoblastic cells [84]. Sclerostin, also secreted by MM cells, mediates the
upregulation of RANKL and the downregulation of OPG in osteoblasts and contributes to
the suppression of bone formation in the MBD [73,85]. Dkk-1 and sclerostin have synergic
effects, resulting in osteoblast dysfunction [72]. Many clinical studies have shown the posi-
tive correlation the levels of circulating sclerostin and the presence of osteolytic fractures,
disease stage, and biochemical markers of bone remodeling in MM patients [86–88]. Anti-
sclerostin antibodies (Scl-Ab), such as romosozumab and blosozumab, have been tested
in osteoporosis treatment, revealing potent activity in stimulating bone formation and
reducing bone resorption [89,90]. The combination of Scl-Ab and anti-myeloma agents, or
the osteoclast inhibitor zoledronic acid, has been investigated in preclinical studies [91–93].
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3.3. Runt-Related Transcription Factor 2 (RUNX2)

Runt-related transcription factor 2 (RUNX2) belongs to the family of runt-related
transcription factors, and plays an essential role in both osteoblast differentiation and the
expression of osteoblast-specific genes [94]. RUNX2/CBFA1 (core-binding factor Runt
domain alpha subunit 1) is a critical osteoblast transcription factor in the inhibition of
osteoblastogenesis in MM [95]. Increased Runx2 expression is significantly associated with
a high-risk myeloma population, and promotes MBD progression [96].

3.4. EphrinB2/EphB4 Signaling Pathway

Together, Eph tyrosine kinase receptors and their ephrin ligands form a critical cell
communication system in normal physiology and disease pathogenesis [97]. The bidirec-
tional signaling between the cell-surface ligand EphrinB2 (expressed in osteoblasts) and
its receptor, EphB4 (expressed in osteoblasts and BMSCs), is involved in the coupling of
osteoblastogenesis and osteoclastogenesis and in angiogenesis [98,99]. EphrinB2/EphB4
signaling links the suppression of osteoclast differentiation by suppressing Fos and Nfatc1
transcription to the stimulation of bone formation by RhoA downregulation [99]. In MM
patients, both EphrinB2 and EphB4 expression is decreased in BMSCs. In murine MM mod-
els, the use of EphrinB2-Fc and EphB4-Fcs can enhance bone formation, inhibit myeloma
growth, and reverse the pathogenesis of MBD.

4. Current Myeloma-Related Bone Disease Treatment
4.1. Bisphosphonates

Bisphosphonates (BPs) are the cornerstone for MBD treatment because they can pre-
vent, reduce, and delay MM-related skeletal complications [11,100,101]. During bone
remodeling, bisphosphonates act as pyrophosphate analogs that bind to exposed areas of
hydroxyapatite crystals, and osteoclasts endocytose bisphosphonates, which are potent
inhibitors of intracellular farnesyl pyrophosphate synthase, impairing osteoclastogenesis
and enhancing osteoblostogenesis [102]. The FDA-approved BPs for MBD are zoledronic
acid and pamidronate [103]. Clodronate (oral non-nitrogenous BP), which is used for
reducing SREs in MM patients, yielded inferior survival outcomes compared with zole-
dronic acid in the Myeloma IX trial [104–106]. Zolendronic acid may have an anti-myeloma
effect through the inhibition of protein prenylation and the inhibition of antiangiogensis or
by the indirect downregulation of BMSC-related adhesion molecules and the blocking of
osteoclast activation [8,107,108]. According to the long-term follow-up data in one large
Phase III trial, zoledronic acid was more effective than pamidronate in MM patients with
bone metastases. The advantages of zoledronic acid (4 mg) include lower mean skeletal
morbidity rate, increased median time to first SRE, and reduced risk of developing an SRE
compared with pamidronate (90 mg) [109]. BPs are recommended as standard treatment of
MM patients with either osteolytic bone lesions or osteopenia in many current guidelines,
including those from the National Comprehensive Cancer Network (NCCN) [110], the
American Society of Clinical Oncology (ASCO) [111], the Mayo Clinic [112], the European
Society for Medical Oncology (ESMO) [113], and the International Myeloma Working Group
(IMWG) [11]. Zoledronic acid or pamidronate once monthly, at least for the first 1 to 2 years,
is recommended for almost all patients with MM who have evidence of MBD [11,111–113]
(Table 1). The standard dosing schedule for symptomatic MM patients with normal renal
function is 4 mg intravascular infusion over 15 min every 3 to 4 weeks for zoledronic acid,
and 30 mg or 90 mg administered over 45 min (for 30 mg) or 2 h (for 90 mg) every 3 to 4
weeks for pamidronic acid [11]. Dose adjustments for renal impairment are required both
at diagnosis and during treatment. Zoledronic acid is not recommended for patients with
severe renal impairment, while pamidronic acid can be administered increasing the time
of administration to 4–6 h for them (whose creatinine clearance < 30 mL/min) [114]. Ap-
proximately 40% of patients treated with intravascular nitrogen-containing BPs may have a
flu-like syndrome [114]. Some patients might develop severe hypocalcemia, so calcium and
vitamin D supplements should be administered to all patients receiving BPs [11]. Some MM
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patients receiving BPs might have renal toxicity. Zoledronate has mainly been associated
with acute tubular necrosis (ATN), and pamidronate causes collapsing focal segmental
glomerulosclerosis (FSGS) and other patterns of glomerular disease [115]. Another well-
known adverse effect of BPs is osteonecrosis of the jaw (ONJ), primarily associated with
the long-term use of BPs, a tooth extraction or other surgical or invasive dental procedure,
or a history of glucocorticoid use [11,114,116–118].

Table 1. Current myeloma bone-targeting treatment recommendations.

Guideline Recommendations Treatment Duration

NCCN [110]

All patients receiving primary myeloma
therapy should be given bisphosphonates

(category 1) or denosumab.
Both pamidronate and zoledronic acid

have shown equivalence in terms of
reducing risk of skeletal-related events in

randomized trials.
Denosumab is preferred in patients with

renal insufficiency.

Bisphosphonates (category 1) or
denosumab for up to 2 years.

Continuing beyond 2 years should be
based on clinical judgment.

EHA-ESMO [113]

All patients with osteolytic disease at
diagnosis should be treated with

antiresorptive agents, i.e., zoledronic acid
[I, A] or denosumab [I, A], in addition to

specific anti-myeloma therapy.

For patients who have not achieved a PR
after initial therapy, zoledronic acid

should be given for more than two years.
For patients who have achieved CR or
VGPR, 12–24 months of therapy with

zoledronic acid is adequate.
At relapse, zoledronic acid has to be

reinitiated.
In cases of osteonecrosis of the jaw (ONJ),
bisphosphonates or denosumab should

be discontinued and may be
re-administered if ONJ has healed.

IMWG [11]

Zoledronic acid (regardless of the
presence of MBD on imaging) for patients
with NDMM or RRMM; also consider for

patients at biochemical relapse.
Denosumab (only in the presence of MBD

on imaging; also consider for patients
with renal impairment).

Monthly zoledronic acid during initial
therapy and in patients with less than

VGPR.
If patients achieve a VGPR or better after
receiving monthly administration for at
least 12 months, the treating physician

can consider decreasing the frequency of
dosing to every 3 months or, on the basis

of osteoporosis recommendations, to
every 6 months or yearly, or

discontinuing zoledronic acid.
If discontinued, it should be reinitiated at
the time of biochemical relapse to reduce

the risk of new bone event at clinical
relapse.

Continuous and monthly denosumab.
If discontinued, a single dose of

zoledronic acid should be given to
prevent rebound effects at least 6 months

after the last dose of denosumab; also
consider giving denosumab every 6

months.

CR: complete response; EHA-ESMO: European Hematology Association and European Society for Medical
Oncology; IMWG: International Myeloma Working Group; MBD: myeloma-related bone disease; NCCN: National
Comprehensive Cancer Network; NDMM: newly diagnosed multiple myeloma; PR: partial response; RRMM:
relapsed or refractory myeloma; VGPR: very good partial response.

4.2. Denosumab

Denosumab is a fully human and highly specific monoclonal IgG2 antibody against
RANKL, which inhibits the development and activity of osteoclasts, decreases bone re-
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sorption, and increases bone density [119]. Denosumab imitates the physiological effect of
OPG by directly competing against the interaction of RANKL with RANK, and inhibits
osteoclastogenesis [120]. Denosumab given 60 mg every 6 months subcutaneously was
initial investigated for osteoporosis in postmenopausal osteoporosis and other metabolic
bone diseases [119]; it successfully prevented fractures in postmenopausal women with
osteoporosis [121], and had clinical benefit in patients with bone metastases from prostatic,
breast, and lung malignancies [122]. In clinical trials, denosumab also shows clinical benefit
in MM patients (Table 2) [123,124]. Denosumab 120 mg administered subcutaneously
every 4 weeks was non-inferior to zoledronic acid 4 mg given as an intravenous infusion,
delaying the time to first SRE after a multiple myeloma diagnosis in an international
Phase III, randomized, double-blind 20090482 trial (Table 2) [125]. In the exploratory result
of the 20090482 trial, the autologous stem cell transplantation (ASCT)-intent subgroup
demonstrated the largest PFS benefit for denosumab compared with zoledronic acid [126].
Denosumab is also a hypercalcemia therapeutic strategy for MM patients [127]. For patients
with renal dysfunction, denosumab is preferable over BPs, and denosumab can be safely
administered with close monitoring of patients’ renal function [127–129]. As for safety is-
sues, there appears to be slightly greater renal toxicity with zoledronic acid, but higher rates
of hypocalcemia with denosumab [129]. Denosumab should be administered continuously
until unacceptable toxicity occurs [11], because the rebound phenomenon may contribute
to the resultant high soluble RANKL/OPG ratio, which is associated with an expanded
pool of osteoclast precursors [130,131]. In contrast to BPs, denosumab does not incorpo-
rate into bone matrix; therefore, bone turnover is not suppressed after its cessation [130].
Denosumab discontinuation leads to reduced bone mineral density and increased risk of
fracture [131]. The IMWG recommends that a single dose of zoledronic acid be given at
least 6 months after the last dose of denozumab to prevent rebound effects [11].

Table 2. Major trials of RANKL inhibitor denosumab in myeloma bone diseases.

Trial Study Design Patient Numbers Outcomes/Results References

Phase II, open-label
trial

Denosumab 120 mg SC
on days 1, 8, and 15 of
cycle 1 (28 days), and
then day 29 (day 1 of

cycle 2) and on day 1 of
every cycle (28 days)

thereafter

96

Suppressed bone
resorption, decreased
sCTx both in relapsed

and plateau-phase
groups,

mPFS: 2.7 months
(relapsed group), 8

months (plateau-phase
group)

[124]

Phase III, international,
double-blind,
randomized,

active-controlled trial

Denosumab 120 mg SC
Q4W vs Zoledronic
acid 4 mg IV Q4W

180

Similar time to first
on-study SRE; worse
OS, similar rates of
overall AEs; greater

suppression of uNTx

[123]

Phase III, international,
double-blind,

double-dummy,
randomized,

active-controlled trial

Denosumab 120 mg SC
Q4W vs Zoledronic
acid 4 mg IV Q4W

1718

Non-inferior in time to
first SREs; similar
incidence of ONJ;

similar OS; similar time
to first-and-subsequent

SREs
Fewer first on-study
SREs (in 196 Asian

patients)

[125,132]

AEs: adverse events; IV: intravenously; SC: subcutaneously; sCTx: serum C-terminal telopeptide of type I collagen;
SRE: skeletal-related event; ONJ: osteonecrosis of the jaw; OS: overall survival; mPFS: median progression-free
survival; uNTx: urinary N-terminal telopeptide of collagen type 1; NDMM: newly diagnosed multiple myeloma;
RRMM: relapsed or refractory myeloma.
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5. Proteasome Inhibitors in Myeloma Bone Disease

Proteasome inhibition has emerged as an essential therapeutic strategy in the treatment
of MM. Over the past decades, a variety of new proteasome inhibitors (PIs) have led to great
progress in treatment and improved the survival of patients with MM [133]. Proteasome
inhibition regulates bone metabolism through the reduction of RANKL-mediated osteoclast
differentiation [134]. As mentioned above, RANKL binds to RANK on the surface of
osteoclast precursors and subsequently causes NF-κB activation; therefore, PIs can block
this pathway and inhibit osteoclastogenesis and suppress bone resorption [135,136]. In
addition to the anti-myeloma effect, PIs have an anabolic effect on bone formation by
inhibition of the ubiquitin–proteasome pathway [134]. PIs also induce the activation of
Wnt/β-catenin signaling-independent Wnt ligands [134]. Bortezomib, a potent proteasome
inhibitors, inhibits MM-BMSC interactions, and can activate β-catenin/TCF signaling in
inducing osteoblast differentiation, and also upregulate RUNX-2 expression and enhance
osteoblastogenesis [137,138]. Second-generation PIs, such as carfilzomib (PR-171), which
selectively and irreversibly inhibits proteasome enzymatic activities in a dose-dependent
manner, and ixazomib (MLN9708), which was the first oral PI with a robust efficacy and
favorable safety profile, demonstrate clinical benefit in myeloma bone diseases through the
inhibition of bone resorption and the promotion of osteoblastogenesis [133,139].

6. Supportive Intervention

Palliative radiotherapy also plays an important role for MM patients with MBD, as
most have painful bone lesions. Radiotherapy is also used for the prophylactic treatment of
impending pathological fractures, spinal cord compression, and the management of local
neurological symptoms [140]. Surgical interventions with percutaneous vertebroplasty and
balloon kyphoplasty are also applied to patients with vertebral compression fractures that
have a poor response to conservation treatment [141,142].

7. Novel Therapeutic Agents in Preclinical Research and Ongoing Trials

Wnt pathway signaling has a strong influence on MBD (Figure 1). The soluble Wnt
inhibitor DKK-1, produced by MM cells, inhibits osteoblast activity, and its serum level
correlates with focal bone lesions in MM [70]. BHQ880, a DKK1-neutralizing antibody,
can increase osteoblast differentiation, neutralize the negative effect of MM cells on os-
teoblastogenesis, reduce IL-6 secretion, upregulate β-catenin levels, and downregulate
nuclear factor-κB (NF-κB) activity in BMSCs in in vitro study [70,79]. In a Phase I/II
study, BHQ880 and zoledronic acid in combination with anti-MM therapy were used in
patients with relapsed or refractory MM with a prior SRE. The safety of BHQ880 was
determined and BHQ880 results in a general trend towards increased bone mineral density
over time [143,144] (Table 3). BHQ880 monotherapy in previously untreated patients with
high- and intermediate-risk smoldering MM can cause anabolic bone activity, as shown
using a novel imaging modality in one Phase II trial (NCT01302886) [80] (Table 3). Activin,
which belongs to the TGF β superfamily, regulates bone remodeling and is involved in
osteoclast development and differentiation. Sotatercept (formerly known as ACE-011), a
recombinant activin receptor type IIA (ActRIIA) ligand trap comprising the extracellular
domain of the human ActRIIA and human immunoglobulin G, has positive effects on
bone metabolism and hematopoiesis in newly diagnosed and relapsed MM patients [61]
(Table 3). RAP-011, a murine ortholog of sotatercept (Activin receptor type II Murine Fc
Protein), combined with lenalidomide resulted in the effectively restoration of osteoblast
function and inhibited MM-induced osteolysis in a preclinical setting [145] (Table 3).
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Table 3. Novel agents in preclinical research and clinical settings for MBD.

Drug Name Mechanism Therapeutic
Implication Trial Status Results References

BHQ880

Human neutralizing
IgG1 anti-DKK1

monoclonal antibody
Wnt pathway signaling

Reverse the effects of
DKK1-induced

osteoblast inhibition,
leading to increased

bone mass mediated via
upregulation of

osteoblasts

Phase I/II, RRMM
Phase IB, RRMM

Dual therapy with
zoledronic acid and

BHQ880 may provide
an effective treatment

strategy for MBD

[143,144]

Sotatercept
(ACE-011)

Decay
receptor-neutralizing

Activin-A, a
recombinant activin

receptor type IIA
(ActRIIA) ligand trap

Reverse osteoblast
inhibition

Phase I, RRMM
Phase IIa,

NDMM, RRMM

Increased hemoglobin
levels (dose–response

relationship), improved
bone formation

biomarkers

[61,146]

RAP-011

A murine ortholog of
sotatercept (Activin

receptor type II Murine
Fc Protein)

Reverse osteoblast
inhibition Preclinical setting [145]

Tabalumab
(LY2127399)

Human IgG4 anti-BAFF
monoclonal antibody

Decrease myeloma
tumor burden, decrease

osteoclastogenesis

Phase I, RRMM
Phase II, RRMM

No PFS benefit
Higher dose of 300 mg

tabalumab did not
improve efficacy

compared to the 100 mg
dose

[68,147,148]

Ibrutinib Bruton tyrosine kinase
inhibitor (BTKi)

Decrease myeloma
tumor burden, decrease

osteoclastogenesis
Phase II, RRMM

Clinical benefit and
favorable

safety/tolerability
profile

[149]

Romosozumab
(AMG 785)

Humanized monoclonal
IgG2 anti-Sclerostin

monoclonal antibody

Decreased
RANKL/OPG ratio,

decrease
osteoclastogenesis

Preclinical setting
Phase III, Osteoporosis

Decrease vertebral
fracture risk in

postmenopausal
women with
osteoporosis

[89,91]

RO4929097, γ-secretase
inhibitor XII (GSI XII)

Notch/γ-secretase
inhibitor

Notch signaling

Downregulate
CXCR4/SDF1

chemokine axis,
decrease

osteoclastogenesis,
reduce angiogenesis

Preclinical setting [150,151]

MLN3897

Antagonist of the
chemokine receptor

CCR1
Akt signaling

Inhibit CCL3-induced
osteoclast formation

and function
Preclinical setting [33,152]

B-cell activating factor (BAFF) is a member of the tumor necrosis factor superfamily
(TNFSF). Tabalumab is a human IgG4 anti-BAFF monoclonal antibody [153]. Treatment
of mice with tabalumab resulted in a significant reduction in tumor burden, prolonged
survival, decreased osteoclast recruitment and activation, which caused fewer lytic lesions
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in the bone by a reduction in NF-κB signaling [154]. In Phase I studies, tabalumab in
combination with bortezomib was well tolerated for patients with relapsed/refractory
MM [147,148]. In a Phase II trial, patients with relapsed/refractory multiple myeloma were
randomly assigned 1:1:1 to receive placebo, tabalumab 100 mg, or tabalumab 300 mg, each
in combination with dexamethasone and bortezomib. There was no PFS benefit during
treatment with tabalumab compared to placebo. A higher dose of 300 mg tabalumab did
not improve efficacy compared to the 100 mg dose [68] (Table 3).

Bruton tyrosine kinase (BTK) inhibitors impaired osteoclastogenesis and suppressed
bone resorption activity in an in vitro study [155]. Ibrutinib is a first-in-class, oral, covalent
inhibitor of BTK that has produced notable responses in combination with dexamethasone
in heavily pre-treated MM patients in a Phase II trial [149] (Table 3).

Anti-sclerostin antibody (Scl-Ab), such as romosozumab (AMG785), is well-studied
in postmenopausal women with osteoporosis [89]. Sclerostin is a glycoprotein inhibitor
of osteoblast Wnt signaling produced by osteocytes, which causes a decrease in bone
formation [156]. Preclinical studies showed that treatment with anti-sclerostin antibody
prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased
fracture resistance [91] (Table 3).

The γ-secretase inhibitor XII (GSI XII) impaired murine osteoclast differentiation in
an in vitro study [151]. RO4929097 is a potent γ-secretase inhibitor (GSI), blocks Notch
signaling, and reduces expression of the Notch transcriptional target gene, which is associ-
ated with osteoclastogenesis in MM [150] (Table 3). Clinical studies of GSIs are ongoing in
different malignancies.

CCL3 (MIP-1α) enhances osteoclast formation and promotes MM cell migration and
survival [27]. MLN3897, a specific antagonist of the chemokine receptor CCR1, impaired
osteoclastogenesis and interfered with the interactions between osteoclasts and MM cells
in a preclinical setting [33] (Table 3).

8. Future Perspectives

The progress of new anti-myeloma drugs has contributed to excellent treatment
outcomes, prolonging MM patients’ progression-free survival and overall survival, and
improving their quality of life. There is still limited effective management and strong
evidence regarding the restoration of bone formation or the prevention of SREs, one of
the most devastating complications of MM. Furthermore, the current guidelines list the
most up-to-date recommendations for MBD, but there are inconsistencies in the duration of
treatment among the different guidelines. With the pathogenesis of MBD well studied and
reported, emerging novel agents have recently been utilized in real-world clinical practice,
including BHQ880, sotatercept, and ibrutinib. We are looking forward to positive clinical
outcomes of novel agents in the future, which will offer better treatment choices for MM
patients and for the prevention and therapy of MBD.

9. Summary

We discussed the pathogenesis of myeloma-related bone disease, the current treatment
and the novel agents in development for the treatment of MBD. We also illustrated the
important signaling cascades, including the RANKL/RANK/OPG axis, Notch signaling,
the Wnt/β-Catenin signaling pathways, and key signaling molecules, such as DKK-1,
sclerostin, osteopontin, activin A, chemokines, and interleukins, associated with osteoclast,
osteoblasts, and BMSCs in the BM microenvironment. The complexity of cross relationships
between MM cells and the surrounding cells has a critical role in MBD. Bisphosphonates
and denosumab remain the first-line standard therapy for MM patients to prevent SREs.
In development, there are new bone-modifying agents that target different molecular
pathways for restoring bone metabolism; some of these are currently in clinical trials and
may help meet patients’ needs in the near future.
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