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Mogroside IIe is primarily present in the unripe fruit ofSiraitia grosvenorii (Swingle) C. Jeffrey, and
it is the predominant saponin component. The purpose of this study was to investigate the
effects of mogroside IIe (MGE IIe) on myocardial cell apoptosis in diabetic cardiomyopathy
(DCM) rats by establishing a high-sugar and high-fat diet–induced model of type 2 diabetes
(T2D) in SD rats and a homocysteine (Hcy)-induced apoptotic model in rat H9c2
cardiomyocytes. The results showed that MGE IIe decreased the levels of fasting blood
glucose (FBG), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels,
but increased the levels of high-density lipoprotein (HDL) in the SD rat model. Furthermore,
MGE IIe decreased the levels of lactate dehydrogenase 2 (LDH2), creatine phosphokinase
isoenzyme (CKMB), and creatine kinase (CK), and improved heart function. Additionally, MGE
IIe inhibited the secretion of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α),
improved myocardial morphology, and reduced myocardial apoptosis in the SD rat model.
Furthermore, MGE IIe inhibited the mRNA and protein expression of active-caspase-3, -8, -9,
-12, andBax andCyt-C, and promoted themRNAandprotein expression of Bcl-2 in the SD rat
model. Furthermore, MGE IIe suppressed homocysteine-induced apoptosis of H9c2 cells by
inhibiting the activity of caspases-3, -8, -9, and -12. In conclusion,MGE IIe inhibits the apoptotic
pathway, thereby relieving DCM in vivo and in vitro.
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INTRODUCTION

Diabetic cardiomyopathy (DCM) generally refers to diabetes-related myocardial dysfunction in the
absence of other apparent causes. Moreover, DCM is one of the most long-lasting cardiovascular
diseases and has generated much interest in recent years (Shetty et al., 2018; Zheng et al., 2018). DCM
pathogenesis is complex and involves a wide range of factors, including abnormal insulin secretion,
glucose, and lipid metabolism disorders, as well as inflammatory responses (Xing et al., 2019).
Clinical manifestations of DCM include metabolic disorders, myocardial cell abnormalities, and
microvascular lesions. These manifestations further myocardial cell apoptosis and myocardial
fibrosis, and lead to ventricular wall stiffness and cardiac function damage, resulting in heart
failure and eventually death in severe cases (Song et al., 2017; Yu et al., 2017).

Apoptosis is an active and orderly process of programmed cell death, which is regulated by
multiple genes and proteases (Wang et al., 2018). DCM manifests as metabolic disorders and
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cardiomyocytes abnormalities that are related to cardiomyocyte
apoptosis (Cuomo et al., 2019). Therefore, it is necessary to
explore the effects of apoptosis on myocardial injury in DCM
and identify drugs that inhibit myocardial injury in patients
with DCM.

Mogroside (MGE) is an important monomer extracted from
Siraitia grosvenorii (Swingle) C. Jeffrey. It belongs to the triterpene
compounds, including MGE Ⅱe, Ⅲ, Ⅲe, Ⅳ, Ⅴ, and Ⅵ as well as
serotonin I. Among them, MGE Ⅱe is primarily present in the
unripe fruit of Siraitia grosvenorii (Swingle) C. Jeffrey (Xiao et al.,
2020). Studies have shown that MGE reduces blood glucose and
lipid levels in diabetic mice, eliminates reactive oxygen species
in vitro (Zhang et al., 2018; Liu et al., 2019; Zhang et al., 2020),
and alleviates high glucose-induced inflammation and oxidative
stress in podocytes in vitro (Xue et al., 2020). However, whether
MGE IIe can improve T2D cardiomyopathy by inhibiting
cardiomyocyte apoptosis is unclear.

In this study, we established a DCM rat model to study
whether myocardial injury is related to apoptosis of
myocardial cells and whether inhibition of apoptosis was a
cause of myocardial injury. Determining whether MGE IIe
therapy can improve apoptosis in myocardial cells and
alleviate myocardial injury would provide a scientific and
theoretical basis for DCM treatment using MGE IIe.

MATERIALS AND METHODS

Reagents and Antibodies
The MGE IIe (purity 98%) was purchased from Honghe
Qianshan Bioengineering Co., Ltd. (Honghe, China).
Streptozocin (STZ) and rosiglitazone were obtained from
Multi Sciences Biotech Co. Ltd. (Hangzhou, China).
Antibodies against ß-actin, caspase-3, -8, -9, -12, Bax, Cyt-C,
and Bcl-2 were obtained from Cell Signaling Technology
(Danvers, MA, United States). ELISA kits for the detection of
IL-1, IL-6, TNF-α, CK-MB, HDL, and LDL were purchased from
Thermo Fisher Scientific (Waltham, MA, United States). The
mRNA extraction kit, reverse transcription kit, PCR mixture, and
Masson staining kit were purchased from Tiangen Biochemical
Technology Co., Ltd. (Beijing, China). The Cell Counting Kit-8
(CCK-8) was purchased from Dojindo Molecular Technologies
(Kumamoto, Japan).

Animal Model
Adult male Sprague–Dawley (SD) rats (180–200 g), obtained
from the Experimental Animal Center of the Wuhan
University of Science and Technology (China), were kept
under standardized conditions as follows: room temperature,
22 ± 2°C; relative humidity, 45–55%; and a 12-h light/dark
cycle in the animal facility with free access to food and water.

Two weeks after completing the adaptive rat feeding, the
control group continued to receive a normal diet. The
remaining rats were fed a high-fat, high-sugar (HFHS) diet
(15% lard, 30% sucrose, 2% cholesterol, 1% sodium cholate,
5% protein powder, and 47% regular diet). After 8 weeks of
feeding, the rats were intraperitoneally injected with 35 mg/kg

STZ to induce a model of T2D. Animals with fasting blood
glucose (FBG) levels higher than 16.7 mmol/L three days after the
STZ injection constituted successful T2D models. The rats were
then orally administered MGE IIe at a dose of 30 (low-dose, LD)
or 60 mg/kg/d (high dose, HD), and rosiglitazone at 5 mg/kg/d
for 8 weeks.

Cell Culture
Rat H9c2 cardiomyocytes were obtained from the American Type
Culture Collection (ATCC). The cells were cultured at 37°C in a
5% CO2 incubator in Rosewell Park Memorial Institute 1,640
(RPMI1640) medium supplemented with 10% fetal bovine
serum. The cells were used for incubation after differentiation
with 1% serum accompanied by 1 μM all-trans retinoic acid for a
few days. Next, the cells were pretreated with MGE IIe for 4 h and
then induced with 1.5 mM homocysteine (Hcy) for 24 h.

Biochemical Index Detection
The FBG levels were measured using a glucose meter (Accu-
Check Performa, Mannheim, Germany). Triglyceride (TG) and
total cholesterol (TC) levels were measured using an automated
biochemical analyzer. The levels of insulin, IL-1, IL-6, TNF-α,
low-density lipoprotein (LDL), high-density lipoprotein (HDL),
and creatine phosphokinase isoenzyme (CKMB)were detected
using ELISA kits (Bai et al., 2019). The activity of creatine kinase
(CK) was detected according to Hughes (Hughes, 1962). Samples
(approximately 1 μg of protein) were incubated in a medium
consisting of 50 mMTris buffer, pH 7.5, 7.5 mMMgSO4, 7.1 mM
phosphocreatine, and 3.2 mM ADP for 10 min at 37°C when the
reaction was stopped by the addition of 20 μL of 50 mM
P-hydroxymercuribenzoic acid. The colorimetric reaction was
carried out by adding 20% a-naphthol and 20% diacetyl and was
read after 20 min of incubation (37°C) at 540 nm. A calibration
curve was constructed using creatine that was subjected to the
same procedure. The levels of malondialdehyde (MDA),
superoxide dismutase (SOD), and glutathione peroxidase
(GSH) were determined using the thiobarbituric acid (TBA),
hydroxylamine, and microplate methods, respectively, following
the manufacturer’s instructions.

TABLE 1 | Primer parameters.

Name Sequence Tm (°C) Amplicon length

Caspase-3 F: ACAGGAGAGCAGGGATTT 60 141
R: CACCATTTCAGTAGCAGGA

Caspase-8 F: CGAGAAGGGAGGACAGAG 60 127
R: ACACCACATAGAGGCAGAAG

Caspase-9 F: CCAACAAAACTAATCCCAAG 60 123
R: CCAAACCCTATCTCCTGAA

Caspase-12 F: CTGCTTGGCTCTTCTCTTT 60 89
R: CTTGTTTGCGATGTCTCC

Bax F: GATTACGTGAGGAGATAGA 60 105
R: ATGCCACATAGACGCAGAG

Bcl-2 F: AGCGACAGCAGGGATTAT 60 99
R: CCAGTTTCGGTAGCAGGA

Cyc-C F: GGAAAGCAAAGACCACCT 60 150
R: GTTCAAAGCAGGAGAGCA
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Real-Time Polymerase Chain Reaction
Total RNA was extracted from the heart tissues using a total RNA
extractor (TRIzol) kit. Then the cDNA for each RNA sample was
reverse transcribed using an rtase cDNA kit according to the
manufacturer’s instructions. Real-time PCR was performed using
SYBR Premix EX Tap 2× kit and a PT-PCR system. The reaction
conditions were as follows: 95°C for 30 s, 95°C for 5 s, 60°C for
30 s, followed by 30 cycles at 72°C for 10 min according to the
provided instructions. The primer sequences are listed in Table 1.
Ribosomal 18S is an internal standard for the quantitative
comparison of mRNA levels (Goidin et al., 2001). The relative
expression of each gene was calculated using the 2−ΔΔCt method
(Livak and Schmittgen, 2001).

Hematoxylin–Eosin, Masson’s Trichrome,
Immunohistochemical, and Terminal
Deoxynucleotidyl Transferase dUTP Nick
End Labeling (TUNEL) Staining
Small pieces of myocardium tissue were fixed with 10%
paraformaldehyde. The samples were then washed with tap
water and subjected to a series of processing steps, including
dehydration, rendering transparent, paraffin embedding, and
sectioning for hematoxylin-eosin (HE) or Masson’s trichrome
staining. The samples were then stained with HE for 10 min,
differentiated with ethanolic hydrochloric acid for 20 s, and
rinsed with water for 10 min. After dehydration with ethanol,
the samples were rendered transparent with xylene and sealed
with a neutral gel. For immunohistochemical detection, paraffin
sections were retrieved with citric acid and incubated with the
primary antibodies at 4°C overnight. The secondary antibody was
then added and samples were incubated at 37°C for 15 min. For
TUNEL staining, after dewaxing the liver paraffin sections,
proteinase K was added to the sections and incubated for
30 min, followed by incubation with a mixture of TdT enzyme
and biotin-dUTP (TdT:Biotin-dUTP � 1:9) was added and
incubated for 1 h at 37°C. The converter-AP solution was then
added to the sections which were then incubated at 37°C for
20 min. Finally, BCIP/NBT and nucleus red solutions were used
in a color reaction and AEC aqueous sealing tablets were used to
seal the sections.

Western Blotting
Total proteins were extracted using radioimmunoprecipitation
assay (RIPA) lysis buffer containing PMSF, and quantified using
BCA. The final protein concentration was adjusted to 5 μg/μL.
Protein samples (40 μg) were then separated using 8% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
transferred to polyvinylidene fluoride (PVDF) membranes, and
blocked with 5%milk for 120 min at room temperature. Then, the
membranes were incubated with primary antibodies (1:1,000
dilution) against active-caspase-3, -8, -9, -12, Bax, Bcl-2, and
Cyt-C overnight at 4°C. Horseradish peroxidase (HRP)-
conjugated anti-rabbit or mouse IgG (1:3,000 dilution) served
as secondary antibodies. The protein bands in the membranes
were visualized using enhanced chemiluminescence (ECL)

detection system. Signal intensity was quantified using ImageJ
software.

CCK-8 Assay
H9c2 cells (1 × 103 cells per well) were seeded in a 96-well plate,
and treated with different concentrations of Hcy or MGE IIe. The
viability of cells was determined at every 24 h. Before the test,
10 μL CCK-8 (Dojindo Molecular Technologies, Kumamoto,
Japan) was added into each well and incubated at 37°C for
2 h. Then the OD values were measured at 450 nm using a
spectrophotometer (BioTek, Winooski, VT, United States).

Flow Cytometry
H9c2 cells were pretreated with 20, 50, and 100 μM MGE IIe for
4 h, and then induced with 1.5 mM Hcy for 24 h. Next, the
adherent cells were collected in a 15 ml centrifuge tube and
centrifuged at 1,000 rpm for 5 min. The supernatant was
discarded, and 500 μL of PBS was added to the tube to
resuspend the cells. A total of 10 μL PI and 5 μL FITC were
added to the tubes and the tubes were incubated in the dark. The
cells were finally subjected to flow cytometric analysis, according
to the manufacturer’s instructions.

Statistical Analysis
The statistical analyses were conducted using SPSS software
(version 13.0). The data were expressed as the mean ±
standard error of the mean (SEM). One-way ANOVA was
followed by post hoc tests for comparisons among groups,
where p < 0.05 indicated that the difference was statistically
significant.

RESULTS

Diabetic Cardiomyopathy Animal Model
The FBG and lipid factors were analyzed to determine whether
the DCM model had been successfully established. The results
showed that the blood sugar, TC, TG, and LDL levels had
significantly increased, whereas the HDL level had markedly
decreased in the DCM model group compared to those in the
control group (Supplementary Data A,B). Subsequently, rat
cardiac function was evaluated. The results showed that the
ratio of heart weight to body weight and biochemical factors
LDH1, CKMB, and CK were markedly increased in the DCM
model group compared to those in the control group
(Supplementary Data C,D). In addition, pathological changes
in the heart were evaluated by HE staining. The results showed
abnormal cardiomyocyte arrangement in the model group, with
small gaps between cardiomyocytes (Supplementary Data E).
Furthermore, the fibrotic changes in the myocardium were
detected using Masson’s trichrome staining. The results
showed that the collagen fiber deposition in rat myocardial
tissue was significantly increased in the model group
compared to that in the control group (Supplementary Data
F). The above results indicate that the DCM model had been
successfully established.
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Mogroside IIe Improves Cardiac Function
and Inhibits Apoptosis of Cardiomyocytes
The effect of MGE IIe (Figure 1A) in the DCM model was
examined. Rosiglitazone, an anti-diabetic drug, was used as a
positive control. The results showed that MGE IIe decreased the
levels of glucose, TG, TC, and LDL, and increased the level of
HDL in a dose-dependent manner (Figures 1B,C). Furthermore,
MGE IIe improved heart function by reducing the ratio of heart
weight to body weight and the levels of LDH1, CKMB, and CK in
a dose-dependent manner (Figures 1D,E). In addition, MGE IIe
suppressed the secretion of the inflammatory factors IL6, IL1, and
TNF-α (Figure 1F). Furthermore, HE staining results showed
that MGE IIe gradually normalized the arrangement of
cardiomyocytes in a dose-dependent manner (Figure 2G).
TUNEL staining results showed that MGE IIe inhibited

myocardial cell apoptosis in the DCM rat model in a dose-
dependent manner (Figure 1H). The above results showed
that MGE IIe improved cardiac function and inhibited
cardiomyocyte apoptosis in a dose-dependent manner.

Mogroside IIe Inhibits the Apoptotic
Signaling Pathway
Based on these results, we further analyzed the activity of
apoptosis-related factors. First, the mRNA expression levels of
caspase-3, -8, -9, and -12 were detected. The results showed that
MGE IIe inhibited the mRNA expression of caspase-3, -8, -9, and
-12 in a dose-dependent manner (Figure 2A). Furthermore, the
effect of MGE IIe on caspase activity was examined by western
blotting and IHC staining. The results showed that MGE IIe

FIGURE 1 |MGE IIe slows down the damage to cardiomyocytes in the DCMmodel. (A) The structural formula of MGE IIe. (B)MGE IIe decreased the serum glucose
concentration. (C) MGE IIe inhibited lipid accumulation. (D) MGE IIe decreased the ratio of heart to body weight. (E) MGE IIe improved cardiac function. (F) MGE IIe
inhibited the secretion of inflammatory cytokines. (G) MGE IIe improved cardiomyocyte damage as revealed by HE staining. (H) MGE IIe reduced cardiomyocyte
apoptosis as revealed by TUNEL staining assay. Bar � 50 µm. One-way ANOVAwas followed by post hoc tests for comparisons among groups. The values shown
represent the mean ± standard error of the mean (SEM) of the data from three independent experiments. #p < 0.05 (compared to the control group alone); *p < 0.05
(compared to the model group alone).
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inhibited the activity of caspase-3, -8, -9, and -12 in a dose-
dependent manner (Figures 2B,C). Next, additional factors,
including Bax, Bcl-2, and Cyt-C that are also closely related to
apoptosis, were analyzed. The results showed that MGE IIe
decreased the mRNA and protein expressions of Bax and Cyt-
C, whereas it promoted the mRNA and protein expressions of
Bcl-2 in a dose-dependent manner (Figure 3). These results
showed that MGE IIe inhibited apoptosis of myocardial cells
in a dose-dependent manner in the DCM model.

Mogroside IIe Suppresses the Hcy-Induced
Apoptosis of H9c2 Cells
The effect of MGE IIe on the apoptosis of H9c2 myocardial cells
in vitro was further examined. H9c2 cells were treated with
different concentrations of Hcy or MGE IIe. The CCK8 assay
results showed that Hcy inhibited the activity of H9c2 cells in a
dose-dependent manner (Figure 4A). In contrast, MGE IIe had

no significant influence on the viability of H9c2 cells (Figure 4B).
Furthermore, flow cytometric analysis revealed that H9c2 cell
apoptosis was significantly induced by Hcy, whereas MGE IIe
inhibited the Hcy-induced apoptosis of H9c2 cells in a dose-
dependent manner (Figure 4C). In addition, MGE IIe
downregulated the expression of active caspase-3, -8, -9, -12,
and Bax and Cyt-C, and upregulated the expression of Bcl-2 in a
dose-dependent manner (Figure 4D). The above results showed
that MGE IIe inhibited Hcy-induced apoptosis in H9c2 cells.

DISCUSSION

Injury to tissues and organ functions are the main complications
associated with the occurrence and development of diabetes. An
SD mouse model of T2D was generated using a high-sugar and
high-fat diet combined with low-dose STZ injection (Gu et al.,
2017). This animal model has been previously used to study

FIGURE 2 | MGE IIe inhibits the expression of apoptotic factors of the caspase family. (A) MGE IIe inhibited mRNA expression of caspase-3, -8, -9, and -12 as
assessed by qPCR assay. (B) MGE IIe suppressed the activity of caspase-3, -8, -9, and -12 as revealed by western blot assay. (C) MGE IIe suppressed the activity of
caspase-3, -8, -9, and -12 as revealed by IHC assay. Bar � 50 µm. One-way ANOVA was followed by post hoc tests for comparisons among groups. The values shown
represent the mean ± standard error of the mean (SEM) of the data from three independent experiments. #p < 0.05 (compared to the control group alone); *p < 0.05
(compared to the model group alone).
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various aspects related to T2D, such as symptoms, progression,
and complications (Barrière et al., 2018). The model has also been
used in pharmacological experiments to identify drugs that are
more effective (Liu et al., 2018).

After successfully establishing the T2D model using this
method, we found that rats in the HFHS treatment group had
higher glucose, TC, TG, and LDL levels and lower HDL levels
compared to rats in the normal diet group (Supplementary Data
A,B). This validated that the T2D model was successfully
established. We further examined whether these animal
models exhibited T2D-induced cardiomyopathy. The ratio of
heart weight to body weight and the levels of LDH1, HDL,
CKMB, and CK were increased in the model group
(Supplementary Data C,D). In addition, several empty
structures and collagen fibrous deposition were present around
the cardiomyocytes and the distance between cells was increased

the model group (Supplementary Data E,F). These findings
suggested that the T2D rats in this study sustained myocardial
damage. Therefore, the in vivo DCM model was successfully
established. We also found that cardiomyocyte apoptosis
was significantly increased in the DCM model. Furthermore,
an Hcy-induced myocardial cell apoptosis was established
in vitro. This model is widely used to study cardiomyocyte
apoptosis (Zhang et al., 2017; Aminzadeh & Mehrzadi, 2018;
Chen et al., 2020).

Cardiomyocyte apoptosis plays a key role in the mechanism
for myocardial injury in diabetes mellitus. Studies have shown
that the caspase family plays an important role in apoptosis
execution (Wang et al., 2019). Caspase-3 constitutes the central
molecule in apoptosis and is involved in three main pathways: the
exogenous death receptor pathway, endogenous mitochondrial
pathway, and endoplasmic reticulum pathway (Espinosa-Oliva

FIGURE 3 |MGE IIe inhibits the expression of apoptotic factors Bax andCyt-C and promotes the expression of Bcl-2. (A)MGE IIe inhibited themRNA expression of
Bax and Cyt-C, and promoted the mRNA expression of Bcl-2 as revealed by qPCR assay. (B) MGE IIe suppressed the protein expression of Bax and Cyt-C and
promoted the protein expression of Bcl-2 as revealed by western blot assay. (C)MGE IIe suppressed the protein expression of Bax and Cyt-C and promoted the protein
expression of Bcl-2 as revealed by IHC assay. Bar � 50 µm. One-way ANOVA was followed by post hoc tests for comparisons among groups. The values shown
represent the mean ± standard error of the mean (SEM) of the data from three independent experiments. #p < 0.05 (compared to the control group alone); *p < 0.05
(compared to the model group alone).
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et al., 2019). The exogenous death receptor pathway is triggered
by a transmembrane protein reaction caused by TNF-α, and
mainly involves caspase-8, a pro-apoptotic factor (DeLaney et al.,
2019). The mitochondria-mediated apoptotic pathway regulates
the positive and negative regulators of apoptosis including Bcl-2
and Bax. Its mainmechanism is to regulate the release of Cyt-C by
coordinating mitochondrial membrane permeability (Xiong
et al., 2014; Wei et al., 2018). In addition, Ca2+ content in the
endoplasmic reticulum is the highest, and it mainly regulates the
concentration of Ca2+ to coordinate the signal transduction of
cells. When the endoplasmic reticulum is severely damaged,
apoptosis is initiated by the activation of caspase-12 and Bax,
and caspase-12 is transferred to the factor caspase-9 (Jong et al.,
2017). Activated caspase-9 stimulates caspase-3 and causes
apoptosis (Honda et al., 2007). The present study found that
the above proteins reflecting apoptosis were altered in DCM and
Hcy-induced apoptotic models of cardiomyocytes. Therefore, it is
necessary to identify drugs against myocardial apoptosis to
alleviate the occurrence of DCM.

Siraitia grosvenorii (Swingle) C. Jeffrey (luo-han-guo or monk
fruit, NCBI Taxonomy ID: 190,515) is a herbaceous perennial
native to southern China, and has been used for centuries as a
natural sweetener and traditional Chinese medicine for the
treatment of dry cough, lung congestion, sore throats and
colds, as well as constipation and intestinal ailments (Li et al.,
2014).

MGE IIe is the main component extracted from Siraitia
grosvenorii (Swingle) C. Jeffrey, and is used as both medicine
and food. It also has anti-inflammatory and antioxidant
properties.

The present study found that MGE IIe gradually decreased the
heart-body ratio (p < 0.05). It also downregulated the levels of
glucose, TG, TC, LDL, CLDH1, CKMB, CK, IL-1, IL-6, and TNF-
α, and upregulated HDL levels in a dose-dependent manner
(p < 0.05). The results of pathological staining showed that the
disorder of cardiac cells was improved and the intercellular
space was reduced, whereas the apoptosis of cardiomyocytes
gradually decreased following treatment with MGE IIe.

FIGURE 4 | MGE IIe inhibits the apoptosis of H9c2 cells induced by Hcy. (A) The effect of Hcy on H9c2 cell viability. (B) The effect of MGE IIe on the H9c2 cell
viability. (C) The effect of MGE IIe on the Hcy-induced H9c2 cells apoptosis model by flow cytometry. (D) The effect of Hcy on the activity of caspase-3, -8, -9, and -12 in
H9c2 cells. One-way ANOVA was followed by post hoc tests for comparisons among groups. The values shown represent the mean ± standard error of the mean (SEM)
of the data from three independent experiments. #p < 0.05 (compared to the control group alone); *p < 0.05 (compared to the model group alone).
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Further analysis of the apoptotic signaling pathways showed
that MGE IIe regulates the expression of mRNA and the
protein activity of caspase-3, -8, -9, -12, and Bcl-2, Bax, and
Cyt-C (p < 0.05). A high dose of MGE IIe was more effective
than rosiglitazone. Therefore, MGE IIe can be used as an
additive to produce food and health care products for
glucose-reducing and immunity enhancement, and can also
be used in combination with antidiabetic drugs where it has
play an adjunctive therapeutic role.

In conclusion, our data suggest that MGE IIe may alleviate
DCM by inhibiting cardiomyocyte apoptosis in vitro and
in vivo.
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