
lable at ScienceDirect

Biochemical and Biophysical Research Communications 499 (2018) 642e647
Contents lists avai
Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate/ybbrc
Effects of cell adhesion motif, fiber stiffness, and cyclic strain on
tenocyte gene expression in a tendon mimetic fiber composite
hydrogel

Dharmesh Patel a, Sadhana Sharma b, Hazel R.C. Screen a, Stephanie J. Bryant b, c, d, *

a School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
b Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
c Material Science and Engineering Program, University of Colorado-Boulder, Boulder, CO 80309, USA
d BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80309, USA
a r t i c l e i n f o

Article history:
Received 24 March 2018
Accepted 27 March 2018
Available online 2 April 2018

Keywords:
Tenocyte
Biomimetic hydrogel
Cell adhesion peptide
Stiffness
Mechanotransduction
Cyclic tensile strain
* Corresponding author. Department of Chemical
University of Colorado Boulder, Boulder, CO 80309, U

E-mail address: stephanie.bryant@colorado.edu (S

https://doi.org/10.1016/j.bbrc.2018.03.203
0006-291X/© 2018 The Authors. Published by Elsevie
a b s t r a c t

We recently developed a fiber composite consisting of tenocytes seeded onto discontinuous fibers
embedded within a hydrogel, designed to mimic physiological tendon micromechanics of tension and
shear. This study examined if cell adhesion peptide (DGEA or YRGDS), fiber modulus (50 or 1300 kPa)
and/or cyclic strain (5% strain, 1 Hz) influenced bovine tenocyte gene expression. Ten genes were
analyzed and none were sensitive to peptide or fiber modulus in the absence of cyclic tensile strain.
Genes associated with tendon (SCX and TNMD), collagens (COL1A1, COL3A1, COL11A1), and matrix
remodelling (MMP1, MMP2, and TIMP3) were insensitive to cyclic strain. Contrarily, cyclic strain up-
regulated IL6 by 30-fold and MMP3 by 10-fold in soft YRGDS fibers. IL6 expression in soft YRGDS fi-
bers was 5.7 and 3.3-fold greater than in soft DGEA fibers and stiff RGD fibers, respectively, under cyclic
strain. Our findings suggest that changes in the surrounding matrix can influence catabolic genes in
tenocytes when cultured in a complex strain environment mimicking that of tendon, while having
minimal effects on tendon and homeostatic genes.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Tendons are multiscale composite materials that consist of
collagen fibers, which bundle together to create fascicles and ulti-
mately tendon tissue, all aligned in the direction of loading for
efficient load transfer between muscle and bone. Tissue extension
is achieved by extension and sliding throughout the hierarchy,
particularly between collagen fibers and fascicles; the two struc-
tural levels where tenocytes reside. As a consequence, tenocytes
sitting along collagen fibers within a fascicle experience tension
and shear as these units stretch and slide under mechanical loads
[1e3]. Overall, this local mechanical environment creates highly
complex, anisotropic strains around tenocytes.

Tenocytes regulate their behavior in response to the local envi-
ronment. The degree and pattern of mechanical loading towhich the
and Biological Engineering,
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tissue and cells are exposed impacts tendon development, homeo-
stasis and degeneration [4]. For example, in rat tendons low to
moderate fatigue loading enhanced expression of anabolic genes
(i.e., collagens) while high fatigue loading enhanced catabolic genes
[5]. Fatigue loading of isolated fascicles increased expression of pro-
inflammatory genes [6]. Cyclic tensile strain applied to tenocytes led
to increased collagen gene expression [7], increased collagen pro-
duction [8], and decreased matrix metalloproteinase (MMP) gene
expression [7]. However, when shear strain was applied to 2D cul-
tures of isolated tenocytes, catabolic genes for MMPs were elevated,
concomitant with decreased expression of tissue inhibitors of met-
alloproteinases (TIMPs) genes [9].

Relating these findings to tenocyte mechanobiology is chal-
lenging because the exact nature of the biochemical and local
mechanical cues surrounding tenocytes in tissue explants is not
well-characterized. While 2D and 3D cultures of tenocytes offer
control over the local cues, they do not capture the complex tension
and shear micromechanics of tendon. To address this shortcoming,
we recently developed a novel fiber composite hydrogel that under
cyclic tensile strains recapitulates the complex micromechanical
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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environment surrounding tenocytes with simultaneous shear
strain, created from fiber sliding, and tensile strain, created from
fiber stretch [10].

The goal of this study was to employ this new fiber composite
hydrogel [10] to investigate whether the cell adhesion peptide and
fiber stiffness affect tenocyte gene expressionwhen combined with
cyclic tensile strains. Fibers of two stiffness were fabricated with
either cell adhesion peptide, DGEA (Asp-Gly-Glu-Ala) or YRGDS
(Tyr-Arg-Gly-Asp-Ser) to mimic cellular interactions to collagen
type I [11] or fibronectin [12], respectively. Both proteins are found
in the pericellular matrix surrounding tenocytes in their native
environment [13]. Primary bovine tenocytes seeded within the fi-
ber composite hydrogels were evaluated by gene expression for
tendon markers, anabolic genes, and catabolic genes.

2. Materials and methods

2.1. Tenocyte source

Primary tenocytes were isolated from bovine common digital
extensor tendons from three donors (1.5e2 years old) (Arapahoe
Meat Co, USA) and kept separate (n¼ 3). Tendon digestion was
achieved by 1 U/ml dispase (STEMCELL Technologies, USA) and
2mg/ml collagenase type II (Worthington Biochemical Corporation,
USA) for 48 h. Isolated tenocytes were suspended in culture me-
dium without fetal bovine serum (FBS) and used immediately.
Culturemedium consisted of DMEMwith lowglucose and pyruvate
(Life Technologies, USA), 10mMHEPES buffer (Sigma Aldrich, USA),
4 nM L-glutamine (Sigma Aldrich, USA), 0.1M non-essential amino
acids (Sigma Aldrich, USA), 50 U/ml penicillin and 50 mg/mL
streptomycin (Sigma Aldrich, USA).

2.2. Syntheses of monomers

Poly(ethylene glycol) dimethacrylate (PEGDM) (Fig. 1A) was
Fig. 1. Tendon mimetic hydrogel chemistry (A) and fabrication process (B). Viable tenocyte
matrix. (For interpretation of the references to colour in this figure legend, the reader is re
synthesized by reacting PEG (3000MW, Merck Schuchardt, Ger-
many) with 5 molar excess methacrylic anhydride (Sigma Aldrich,
USA) with trace hydroquinone (Sigma Aldrich, USA) for 10min at
400W [14]. PEGDM was purified by precipitation in diethyl ether.
The degree of methacrylate substitution was 93% by 1H-NMR
spectroscopy.

Acrylate-PEG-peptide (Fig. 1A) monomer containing peptide
was prepared by reacting acrylate-PEG-succinimidyl valerate
(3400 Da; Laysan Bio, Inc.) with 10% molar excess peptide (YRGDS
or DGEA, GenScript, USA) in 50mM sodium bicarbonate buffer (pH
8.4) at room temperature for two hours. The resulting conjugate
was purified by dialysis against deionized water, and lyophilized.
The degree of peptide functionalizationwas determined to be >93%
by Fluoraldehyde™ o-Phthalaldehyde (Pierce, USA).
2.3. Fiber composite manufacture

Fiber stiffness was controlled by PEGDM concentration prior to
polymerization. Fibers were made from 20% or 60% (w/v) PEGDM
and 5mM acrylate-PEG-peptide in phosphate buffered saline (PBS)
(pH 7.4, Sigma Aldrich, USA) with 0.05% w/v Irgacure 2959 (BASF,
USA). This solution was polymerized in a Teflon mold (0.3mm
diameter and 4mm length) under 352 nm light (~5mW/cm2) for
10min. The fibers were sterilized in 70% ethanol overnight, under
short wavelength UV light in a sterile hood for one hour, and then
rinsed 3�with sterile PBS. Sterile fibers (~150) were placed in non-
tissue culture treated 48-well plates, incubated with tenocyte cul-
ture medium without FBS for 30min, and then seeded with 3.5
million tenocytes per well in tenocyte culture mediumwithout FBS
for 1.5 h to support cell attachment. Cells were then supplemented
with 5% serum, cultured for another 1.5 h, and finally cell seeded
fibers were transferred to a new well and cultured in complete
tenocyte medium with 10% FBS overnight.

Fiber composites were fabricated by aligning ~7 tenocyte-
seeded fibers approximately parallel to each other, but staggered
s (green) are shown adhered to PEG-peptide fibers embedded within a PEG hydrogel
ferred to the Web version of this article.)
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(Fig. 1B) in a sterile rectangular Teflon mold (25mm� 2.5mm x
1mm), spanning the entire length. A sterile filtered precursor so-
lution of 20% (w/w) PEGDM with 0.05% (w/v) Irgacure 2959 in
tenocyte culture medium without FBS was slowly injected around
the fibers to minimize fiber movement. The solution was then
exposed to 352 nm light (~5mW/cm2, 10min). Manufactured fiber
composites were maintained in complete tenocyte culture medium
incubated at 37 �C with 5% CO2 for 24 h.

2.4. Tenocyte viability

Tenocyte viability was measured in the fiber composites
immediately after encapsulation by incubating with calcein AM
(4 mM) and ethidium homodimer (4 mM). Tenocytes were imaged at
two locations per fiber (n¼ 3 samples) with an epifluorescent mi-
croscope (DMI 4000B, Leica) at 10� magnification.

2.5. Mechanical properties of fibers and fiber composites

Hydrated samples were placed into a Hounsfield tensile test
machine with a 5N load cell. Samples were tested (n¼ 9-13 per
sample type) to failure at a strain rate of 15%/min.

2.6. Tensile strain measurement

Fiber strain within tenocyte-seeded fiber composites was
assessed using a custom uniaxial strain rig with brightfield mi-
croscopy [15]. Tenocytes at passage four from one donor and fibers
with YRGDS were used to create composites with the 20% (n¼ 12)
and 60% (n¼ 6) PEGDM fibers. Fibers within composites were
imaged before and after applying a 5% tensile strain at 15%/min.
Images were captured and 2e6 fibers analyzed per sample using
NIH ImageJ software. Local fiber tensile strains were calculated by
dividing fiber extension by original fiber length.

2.7. Cyclic tensile strain application

A separate set of fiber composites were manufactured (as
described above) using freshly isolated tenocytes from three
different donors. Composites were placed into individual wells in
6-well plates (free-swelling) or a sterile custom bioreactor (loaded)
[35] in an incubator at 37 �C and 5% CO2, and left to stabilize for
24 h. The loaded sample was subjected to a 5% amplitude strain
applied in a sinusoidal waveform at 1 Hz continuously for 24 h. For
each substrate stiffness and peptide motif, there were two loaded
samples and two free swelling samples per biological replicate.

2.8. RNA extraction and RT-qPCR

RNA was extracted using a miRNeasy Micro Kit (QIAgen, USA)
from freshly isolated tenocytes of each donor (referred to as donor
tenocytes) and from tenocyte-seeded fiber composites at experi-
ment's end. Samples were snapped frozen in liquid nitrogen and
homogenized (TissueLyser II). Technical replicates for each exper-
imental condition and donor were pooled to obtain enough RNA.
RNA (180 ng) was reverse transcribed to cDNA (High-Capacity
cDNA Reverse Transcription (RT) Kit, Applied Biosystems). Quan-
titative real-time polymerase chain reaction (qPCR) was performed
using Fast SYBR Green Master Mix (Applied Biosystems) and
custom primers (Supplemental Table 1) (Life Technologies, USA) on
a 7500 Fast Real-Time PCR Machine (Applied Biosystems). Gene
expression for each gene of interest (GOI) was analyzed following
the Pfaffl method using primer efficiency (E) [16] relative to the
reference gene (REF), ribosomal protein L30, RPL30. Gene expres-
sion data are reported as relative expression (RE) by
RE ¼ ECTðREFÞ
REF

.
ECTðGOIÞ
GOI

or normalized expression (NE) by

NE ¼ EDCTðGOIÞðcalibrator�sampleÞ
GOI

.
EDCTðREFÞðcalibrator�sampleÞ
REF

where CT is the cycle threshold point, the calibrator is the freshly
isolated donor tenocytes and the experimental sample.

2.9. Statistical analysis

Data are reported as the mean with standard deviation denoted
parenthetically in the text or as error bars. All statistical tests were
performed using Real Statistics add-in for Excel. Data were tested
for normality using the Shapiro-Wilk test and analyzed for statis-
tical significance. The mechanical properties were compared using
a t-test or a one-way ANOVA (a¼ 0.05). Gene expression was
analyzed using a three-way ANOVA (a¼ 0.05) with peptide type
(DGEA vs YRGDS), fiber stiffness, and loading (free swelling vs.
cyclic strained) as factors. If the three-way interaction was statis-
tically significant as determined by p< 0.05, follow up tests were
performed by a simple two-way interactions and simple main ef-
fects. Post-hoc analysis was performed using Tukey's HSD with
a¼ 0.05. P-values of pairwise comparisons less than or equal to 0.1
are provided to indicate the level of significance [17].

3. Results

3.1. Fiber composite manufacture

The tendon mimetic hydrogel was fabricated from PEG dime-
thacrylate and acrylated-PEG-peptide monomers (Fig. 1A and B). The
fiber composite hydrogel consisted of soft or stiff tenocyte-seeded
PEG fiber-like structures embedded within a soft PEG matrix. The
fibers were discontinuous and placed in an aligned and staggered
configuration (Fig. 1B). Peptide motifs (DGEA or YRGDS) were teth-
ered into the fibers only to selectively promote cell attachment to the
fibers. Tenocytes remained viable during the fabrication process and
were localized to the fiber-like structures (Fig. 1C).

3.2. Mechanical properties of the fiber composite

The mechanical properties of the tendonmimetic hydrogels and
their constituent parts were characterized (Fig. 2). The 20% and 60%
PEGDM, used to make the soft and stiff fibers, respectively, had
tensile moduli of 53(9) kPa and 1300(56) kPa, respectively (Fig. 2A).
The soft hydrogel matrix was prepared from the same formulation
as the soft fibers. The stiffness of the matrix was sufficiently high to
enable clamping for mechanical testing and stretching in the
bioreactor, but not too high to restrict nutrient diffusion to the
tenocytes. The tensile modulus of cell-laden fiber composites was
compared to that of the hydrogel material without fibers (Fig. 2B).
The modulus increased (p¼ 0.0095) by 54% with soft fibers and
increased (p< 0.0001) by 120% with stiff fibers. Fiber composite
micromechanics were determined by measuring fiber strain after
applying 5% strain to the fiber composite. For both soft and stiff
fibers, fiber strain was less than the overall strain applied, but was
dependent on the fiber stiffness (Fig. 2C).

3.3. Gene expression of donor tenocytes

Gene expression of tenocytes isolated from each donor was
evaluated directly after harvest, and prior to seeding within the



Fig. 2. Tensile modulus of soft and stiff fibers (A) and hydrogel fiber composites containing none, soft or stiff fibers (B). Local fiber strain under a 5% applied tensile strain (C). Data
are mean with standard deviation as error bars.
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fiber composites (Fig. 3). Genes associated with tendon markers,
anabolism and catabolism were assessed. The relative expression
(RE) for all genes differedwith donor, but trendswere similar. RE for
the tendon marker TNMD was higher than SCX. Of the collagen
genes examined, COL1A1 expression was highest by ~2e3 orders of
magnitude when compared to COL11A1 and by ~6 orders of
magnitude when compared to COL3A1. Of the MMPs examined,
MMP3 was the highest followed by MMP1 and then MMP2. TIMP3
levels were lower than MMP3, but higher than MMP2. Donor 1 had
the highest expression of tendon markers and collagen genes,
which coincided with the lowest levels of MMP1, MMP3, and IL6.
Donor 3 exhibited an opposite trend, having the lowest expression
of tendon markers and collagen genes, but highest levels of MMP1,
MMP3, TIMP3, and IL6.

3.4. Effect of peptide motif, fiber stiffness, and loading on tenocyte
gene expression for tendon markers and collagen genes

Tenocyte gene expression for tendon markers, SCX or TNMD
(Fig. 4A and B), and collagen genes, COL1A1, COL3A1, and COL11A1
(Fig. 4CeE), was investigated as a function of peptide motif, fiber
stiffness, and loading. GOI expression was normalized to the rela-
tive expression level in the pre-seeded donor tenocytes. Three-way
ANOVA results with peptide motif (DGEA or YRGDS), fiber stiffness,
and loading (free swelling or cyclic strain) as factors revealed no
significant three-way or two-way interactions for the genes
investigated. Moreover, there were no significant main effects for
the genes investigated.

3.5. Effect of peptide motif, fiber stiffness, and loading on tenocyte
gene expression for catabolic-related genes

Tenocyte gene expression for matrix degrading enzymes,MMP1,
Fig. 3. Relative gene expression in tenocytes from each donor directly
MMP2 and MMP3 (Fig. 4FeH), a regulator of matrix degrading en-
zymes, TIMP3 (Fig. 4I), and a pro-inflammatory cytokine, IL6
(Fig. 4J), was investigated as a function of peptide motif, fiber
stiffness, and loading. GOI expression was normalized to the rela-
tive expression level in the pre-seeded donor tenocytes. Three-way
ANOVA results with fiber stiffness, loading, and peptide motif as
factors revealed no significant three-way or two-way interactions
and no significant main effects for MMP1, MMP2, and TIMP3.

There was a significant three-way interaction for MMP3
(p¼ 0.04) expression. Follow-up two-way analyses were per-
formed and revealed several findings. For YRGDS, loading was a
significant factor (p¼ 0.017), but not stiffness. Cyclic strain up-
regulated (p¼ 0.018) MMP3 expression for the soft YRGDS fibers.
Mean MMP3 expression was higher (p¼ 0.10), but not statistically
significant, for the soft YRGDS fibers compared to the stiff YRGDS
fibers under loading. For DGEA, loading and stiffness were not
significant factors. Under free swelling conditions or cyclic strain,
peptide and stiffness were not significant factors. For soft fibers,
there was a significant two-way interaction (p¼ 0.04) between
peptide and loading, which revealed a higher (p¼ 0.068), but not
statistically significant, mean MMP3 expression for the YRGDS soft
fibers compared to the DGEA soft fibers. For stiff fibers, peptide
motif and loading were not significant factors.

There was also a significant three-way interaction for IL6
(p¼ 0.04) expression. Follow-up two-way analyses were per-
formed, which revealed several findings. For YRGDS, loading
(p¼ 0.00015) and stiffness (p¼ 0.0053) were significant factors and
there was a significant two-way interaction (p¼ 0.0045). Specif-
ically, cyclic strain up-regulated (p¼ 0.0016) IL6 expression for the
soft fibers. IL6 expression was significantly higher (p¼ 0.00018) for
the soft YRGDS fibers compared to the stiff YRGDS fibers under
dynamic loading. For DGEA, loading and stiffness were not signif-
icant factors. Under free swelling conditions or cyclic strain
after harvest, and prior to seeding within the fiber composites.



Fig. 4. Normalized gene expression as a function of peptide motif, fiber stiffness, and loading after 24 h of culture. Data are presented as mean with standard deviation as error bars
(n¼ 3 donors).
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conditions, peptide and stiffness were not significant factors. For
soft fibers, peptide motif (p¼ 0.00071) and loading (p¼ 0.0001)
were significant factors and there was a significant two-way
interaction (p¼ 0.0009). Specifically, IL6 expression was signifi-
cantly higher (p¼ 0.0002) for the YRGDS soft fibers compared to
the DGEA soft fibers under cyclic strain. For stiff fibers, peptide
motif and loading were not significant factors.

4. Discussion

This study employed our recently developed tendon mimetic
hydrogel, which similar to tendon, is a fiber compositematerial that
exhibits multimodal shear and tension micromechanics under
strain. Results from this study demonstrate that tenocyte genes of
tendon markers, collagens, matrix remodeling, and inflammatory
genes, were not sensitive to peptide motif or fiber stiffness in the
absence of loading. Tendon markers and collagens were not sen-
sitive to loading. Contrarily, MMP3 and IL6 were elevated under
loading with YRGDS soft fibers showing the most significant effect.
These results suggest that catabolic and inflammatory genes may
be more sensitive than anabolic genes to differences in the local
environment under cyclic tensile strain.

In the tendon mimetic hydrogel, tenocytes adhere to fibers,
which are encapsulated into a hydrogel matrix. During the encap-
sulation process, monomers diffuse into the fibers creating an
interpenetrating network, which effectively increases hydrogel
crosslink density at the boundary. This interpenetrating network
increases the mechanical properties leading to the higher tensile
modulus for the soft fiber composite compared to no fibers despite
being from the same material. With increasing fiber stiffness, ten-
sile modulus was even higher. When the tendon mimetic hydrogel
was subjected to tensile strains, fibers stretched, but not to the
same degree as the overall strain applied to the hydrogel. The stiffer
the fiber, the less the fibers stretched. Fiber strain ranged from 1.2%
to 2.2%, which is within the range reported for healthy tendons
under a 5% applied strain [10]. Therefore, the tendon mimetic
hydrogel under conditions studied herein represent healthy tendon
micromechanics.

Gene expression for tendonmarkers, scleraxis and tenomodulin,
were not affected by peptide motif, fiber stiffness, or loading.
Scleraxis is an early stage marker of tendon development [18].
Tenomodulin is a marker of maturation and is regulated by scler-
axis [19]. Studies have reported early increases and substrate-
dependent effects in SCX expression in stem cells during
tenogenesis [20]. Similarly, TNMD expression is upregulated during
tenogenic differentiation of stem cells [21]. On the contrary, mature
tenocytes were used herein and their expression levels remained
similar to the pre-seeded tenocytes, suggesting that the mature
tenocytesmaintained their tenogenic phenotypewithin the tendon
mimetic hydrogel regardless of the environment, which is consis-
tent with other studies [22].

Tenocyte gene expression for collagen genes, COL1A1, COL3A1,
and COL11A1 were not affected by peptide motif, fiber stiffness, or
loading. Collagen type I is a fibril-forming collagen and the main
collagen of tendons. Collagen type III is a fibril-forming collagen
that is upregulated during tendon healing [23]. Collagen type XI is
directly associated with collagen types I and III and is involved in
fibrillogenesis in developing tendons [24]. Additionally, MMP1 and
MMP2, which are functionally related to collagen degradation [48],
and TIMP3, which regulates many MMPs, were not affected by
these factors. Our studies suggest that under normal physiological
strain levels, genes for collagens and their associated MMPs and
MMP regulators are not sensitive to tenocyte environment under
the conditions studied herein.

Of the catabolic and inflammatory genes investigated, MMP3
and IL6 were up-regulated most significantly by loading in soft
YRGDS fibers. MMP3 is known for activating otherMMPs, which are
involved in matrix degradation [25], and for degrading pro-
teoglycans and non-fibrillar collagens. IL6 expression is induced
during inflammation [26] and its upregulation has been reported in
ruptured and painful tendons in humans [27]. YRGDS is a primary
integrin-binding domain in fibronectin [28], which is at high levels
immediately following injury [23] and is prevalent in the ECM of
ruptured tendon [29]. The large presence of YRGDS in the tendon
mimetic hydrogel may simulate an initial injury. Under cyclic ten-
sile strain, fiber strains were within reported physiological strains
of healthy tendon. This observation suggests that fiber stiffnessmay
be a contributing factor to elevated tenocyte catabolic response
when combined with loading, which is consistent with micro-
damage, which occurs after injury and weakens tendon [30]. Given
these findings, we postulate that MMP3 and IL6 may be early re-
sponders to changes in the tenocyte environment where YRGDS
and soft fibers may mimic the initial injury response.

There are several limitations of this study. This study was
limited to gene expression and a short culture time. The latter was
necessary to maintain control over the chemical and mechanical
cues in the microenvironment and to minimize contributions from
tenocyte deposited matrix. Long-term studies are needed to assess
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protein secretion to determine the potential autocrine and para-
crine effects, especially when pro-inflammatory cytokines are up-
regulated.

In conclusion, a tendon mimetic hydrogel that affords control
over the microenvironment enabled investigation into the role of
biochemical and mechanical cues in regulating tenocyte gene
expression. This study demonstrates that gene expression of bovine
tenocytes was largely insensitive to their environment in the
absence of loading. Under cyclic strain, a subset of catabolic genes
was sensitive to the peptide motif and fiber stiffness. Our findings
suggest that healthy tenocytes can sense their local strain envi-
ronment and depending on the peptide motif and stiffness, initiate
a catabolic response. Findings from this study suggest that changes
to the composition and/or structure of the tendon could initiate a
tenocyte-mediated catabolic response, thus warranting further
research.
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