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Abstract

Cyanobacteria require large quantities of iron to maintain their photosynthetic machinery; however, in most environments
iron is present in the form of insoluble iron oxides. Whether cyanobacteria can utilize these sources of iron, and the
potential molecular mechanisms involved remains to be defined. There is increasing evidence that pili can facilitate electron
donation to extracellular electron acceptors, like iron oxides in non-photosynthetic bacteria. In these organisms, the
donation of electrons to iron oxides is thought to be crucial for maintaining respiration in the absence of oxygen. Our study
investigates if PilA1 (major pilin protein) may also provide a mechanism to convert insoluble ferric iron into soluble ferrous
iron. Growth experiments supported by spectroscopic data of a strain deficient in pilA1 indicate that the presence of the
pilA1 gene enhances the ability to grow on iron oxides. These observations suggest a novel function of PilA1 in
cyanobacterial iron acquisition.
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Introduction

In the oxidative environment of Earth, organisms must contend

with the problem of accessing essential elements, which are locked

into insoluble oxides. In particular, the bioavailability of iron is

limited due to the tendency of Fe3+ to form insoluble minerals (i.e.

goethite, hematite) [1].

Iron acquisition in bacteria
Given the limited bioavailability of iron, several acquisition

strategies have evolved in bacteria. Siderophore-mediated iron

uptake is one such strategy, involving the synthesis and secretion of

low-molecular-weight iron chelators that tightly bind Fe3+. This

results in a ferrisiderophore complex that is transported as a whole

into the cell where the iron can then be removed for cellular

utilization. This form of siderophore-mediated iron uptake has

been studied extensively in Gram-negative bacteria such as

Escherichia coli and Pseudomonas aeruginosa [2,3,4,5]. Citrate

also possesses Fe3+ chelating characteristics and many bacteria

possess a citrate-mediated mechanism for iron uptake. The uptake

of heme through hemophores (proteins that are synthesized and

excreted) is another iron-acquisition strategy that has only been

found in Gram-negative bacteria [6,7].

Recently, the Type IV pili of non-photosynthetic soil bacteria

have been shown to provide another strategy for iron acquisition.

Observations using Scanning Tunneling Microscopy (STM)

techniques demonstrated that these thick pili structures are

electrically conductive, coining the name ‘bacterial nanowires’

[8,9]. These pili are composed of pilins that form extracellular

protein fibers and facilitate electron donation to external electron

acceptors like metal oxides, thus facilitating respiration in

anaerobic conditions [8,9]. In addition to sustaining respiration,

another - so far untested - consequence of reducing metal oxides is

that this may also confer the ability to unlock iron that is essential

for bacterial growth.

Iron utilization in cyanobacteria
Cyanobacteria employ a variety of strategies to access iron from

the environment. Although siderophore production has been

observed in several cyanobacteria species [10], detailed analysis

has shown that genes for siderophores are not present in many

cyanobacteria species, including Synechocystis sp. PCC 6803 [11].

Despite this, it has been suggested that Synechocystis sp. PCC 6803

can obtain iron bound to exogenous siderophores [12,13] that are

produced by other organisms in proximity. Citrate has the ability

to chelate ferric iron, and ferric dicitrate uptake systems are

present in the genomes of many cyanobacteria, including

Synechocystis sp. PCC 6803. Alternatively, an iron uptake pathway

for cyanobacteria involving a reductive step has been evaluated in

recent studies, suggesting extracellular or periplasmic reduction

occurs followed by transport of the iron through the plasma

membrane into the cell [14].
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Iron utilization in Synechocystis sp. PCC 6803
Several mechanisms for iron uptake are well-understood in

Synechocystis sp. PCC 6803. In the plasma membrane of

Synechocystis sp. PCC 6803 there are two transporters FutABC

and FeoB, suggested to transport free Fe3+ and Fe2+, respectively

[12,13,15]. A ferric dicitrate uptake system is coded by the genes

slr1318–1319 and slr1491–1492 in Synechocystis sp. PCC 6803.

Ferric ammonium citrate has been used as an iron source in

cyanobacterial growth media, including BG-11 for Synechocystis
sp. PCC 6803 [16].

Kranzler et al. [14] have presented data suggesting that

Synechocystis sp. PCC 6803 is capable of acquiring iron through

reduction of Fe3+ substrates before transport through the plasma

membrane. Although the location of iron reduction is yet to be

defined, it is proposed to be outside of the cell, on the surface of

the outer membrane or in the periplasmic space [14]. This

reductive two-step model for iron uptake allows for the utilization

of a variety of inorganic and organic iron sources, thereby

eliminating the presence for specific ferrisiderophore transporters.

Following reduction, iron may be transported as Fe2+ or, in some

cases, reoxidized to Fe3+ and then transported [17,18,19] across

the cytoplasmic membrane. This ‘reductive activation’ may

provide a mechanism for accessing the great variety of ferric iron

conjugates and iron chelators cyanobacteria may encounter in

their natural environment.

Iron-stress-induced chlorophyll-binding protein
regulation

Iron limitation induces a remarkable remodeling of the

photosynthetic machinery in cyanobacteria. Under iron stress

IsiA (an iron-starvation-induced chlorophyll-binding protein), is

expressed. IsiA can form ring structures around Photosystem I

(PSI) [20,21] and binds up to 50% of cellular chlorophyll [22].

Accumulation of IsiA leads to spectral changes that can be readily

observed at room temperature and 77 K. The transcription of isiA
in Synechocystis sp. PCC 6803 is regulated by transcriptional

activation of the corresponding bi-cistronic isiAB operon [23] that

is controlled by the ferric uptake regulator protein (Fur) [24].

Another regulation of the isiAB-operon involves an internal

asRNA, isiR [25,26]. A strain, in which the isiA gene has been

inactivated, shows a transcriptional up-regulation of several pilin

genes [27]. This observation indicates that the expression of pilins

interfaces with a regulatory network that controls the expression of

IsiA in response to stress conditions, including iron depletion.

Pilins in Synechocystis sp. PCC 6803
In Synechocystis sp. PCC 6803, functional pili are essential for

twitching motility and DNA uptake [28,29,30,31]. The genome of

Synechocystis sp. PCC 6803 contains a large number of genes that

show clear pilin characteristics. Four pilin genes are encoded

individually (slr0079, slr1120, slr1456 and sll1359), but there are

also three operons in which pilins are arranged in consecutive

order. One operon consists of the genes sll1693–1696, where the

protein encoded by sll1694 (the pilA1 gene) is the main

constituent of the extracellular pili [28,29,30,31]. Deletion of this

pilin results in an inability to take up external DNA, impairment of

mobility, and the absence of pili as shown by negatively stained

electron micrographs [31]. The protein encoded by sll1695 (the

pilA2 gene) is another pilin that has been suggested to be localized

on the cytoplasmic surface of the cytoplasmic membrane [29,30].

The function of proteins encoded by sll1693 and sll1696 are not

known. The two additional operons containing pilin genes are

slr1928–1931 and slr2015–2017. Unlike the pilins encoded by

the operon slr1928–1931 [31], the pilins encoded within and the

other operon (slr2015 and slr2016) are crucial for locomotion

[29].

Aim of this study
There are several lines of evidence suggesting a role of pili in

mediating the reduction of iron oxides in bacteria [8,9], and

reduction of iron has been implicated in making iron available for

cyanobacteria [14]. As iron is an essential element and induces a

strong phenotypic response in cyanobacteria, we decided to assess

iron bioavailability as a function of the presence of PilA1 in

Synechocystis sp. PCC 6803.

Results

Dsll1694 strain construction
The PilA pilin encoded by sll1694 is the main component of

Type IV pili [29,31]. A mutant of Synechocystis sp. PCC 6803 was

generated in which sll1694 was replaced by a kanamycin-

resistance cassette (Fig. S1 in File S1). Mutant segregation, i.e.

the replacement of sll1694 in all copies of chromosomes in a

Synechocystis sp. PCC 6803 strain, was achieved by plating out

Synechocystis sp. PCC 6803 cells that were transformed with the

Dsll1694 deletion plasmid on BG-11 media, supplemented with

the antibiotic kanamycin. Complete segregation was confirmed by

colony PCR (Fig. S2 in File S1).

Characterization of pilA1 deletion strain
Liquid cultures of wild type, and the Dsll1694 strain were

grown in liquid medium in order to assess the presence of PilA1 in

these two strains. Once cultures reached an OD of 0.8, they were

harvested and PilA were sheared off the cells by vortexing [32].

The concentrated supernatant was analyzed by SDS-PAGE (Fig.

S3 in File S1). The main band visible in wild type (located at

,20 kDa), was excised and characterized by mass spectrometry.

Analysis of the sample protein resulted in the sequence of a 13

amino acid fragment (SMSGGTFYDSGTR). This sequence

matched to the sll1694 gene product (PilA1), confirming that

the gene product of sll1694 is the main constituent of the cell

supernatant [28,29,30,31] and the Dsll1694 strain had been

inactivated.

Growth analysis
The growth characteristics of wild type and the Dsll1694 strain

in liquid BG-11 medium (without added glucose or atrazine) on

different iron sources were characterized. Cells grew fastest on

ferric ammonium citrate, while slower growth was observed on

ferric oxide, and the slowest growth occurred on goethite (Fig. 1).

In all three media, the growth rate of the wild type exceeded the

growth rate of the Dsll1694 deletion strain.

As vortexing is a very efficient method for removing pili from

cells (as practiced for pili isolation), we suspected that pili may also

be constantly sheared off in agitated liquid culture. To prevent the

potential for shearing off of pilins and to allow for a persistent

contact with iron oxide particles, we assessed growth of wild type

and the Dsll1694 strain on agar plates.

For wild-type cells grown on plates, ferric ammonium citrate,

ferric oxide, and goethite showed the same propensity for

supporting growth as observed in liquid medium; however, on

plates, the differences in growth between wild type and the

Dsll1694 strain were more exaggerated than in liquid culture

(Fig. 2). While ferric citrate supported growth of Dsll1694 cells,

very slow growth was observed on ferric oxide and goethite.

Pilin-Mediated Iron Acquisition in the Cyanobacterium Synechocystis
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Agar-grown Dsll1694 cells exhibited a dramatic change in

coloration on all iron sources, including ferric ammonium citrate

(Fig. 3), while no obvious difference in coloration between wild

type and the Dsll1694 strain were observed in liquid culture. The

speckled phenotype of the Dsll1694 strain grown on solid media

may be indicative of the statistical nature of having access to iron

oxide particles.

Whole cell absorption spectra
Absorption spectra of whole cells can provide information on

the organization of the photosynthetic machinery of cyanobacte-

ria. In Synechocystis sp. PCC 6803, absorption features can be

readily assigned to chlorophyll a, carotenoids and phycobilins. In

non-stress conditions, chlorophyll a is mainly associated with PSI

and photosystem II (PSII) and exhibits absorption maxima around

435 nm (Soret band) and 680 nm. The main light-harvesting

system of PSII is made up of phycobilisomes, which contain

phycocyanin (absorption maxima at 570 nm and 620 nm) and to a

lesser extent allophycocyanin (maxima at 650 nm), resulting in a

composite absorption peak around 625 nm. It is possible to assess

the relative chlorophyll / phycobilin ratio by evaluating the ratio

of the 625 nm to 680 nm absorption peaks.

Synechocystis sp. PCC 6803 cells possess four main carotenoids

[33] (b-carotene, zeaxanthin, myxoxanthophyll and echineone)

that absorb light efficiently between 400 and 500 nm. The light

absorption of the carotenoids therefore overlaps with the light

absorption of chlorophyll a. An approximation of the amount of

carotenoids within a cell can be obtained by assessing the peak

ratio of chlorophylls at 435 nm and 680 nm. When Abs 435 nm /

Abs 680 nm is small then a relatively small number of carotenoids

are present. To unify replicated absorption spectra the statistical

measurement of the standard error between the replicates was

measured.

Carotenoids
The absorption ratio at 435 nm and 680 nm was used to assess

the presence of carotenoids in relation to chlorophyll a in wild type

and the Dsll1694 cells grown on agar plates and in liquid, which

were supplied with different iron sources. Wild type and the

Dsll1694 strain have a similar carotenoid to chlorophyll ratio

when grown in liquid with ferric ammonium citrate as the iron

source (Fig. 4A). An increase in the carotenoid to chlorophyll ratio

can be deduced in the Dsll1694 mutant compared to the wild type

when either iron oxide or goethite was the iron source in liquid

grown cultures (Fig. 4B, C).

When grown on agar in the presence of ferric ammonium

citrate, a similar carotenoid to chlorophyll ratio was present in the

Dsll1694 strain and wild type (Fig 5A). In plate-grown cultures,

Figure 1. Liquid growth characteristics. Photoautotrophic growth
characteristics of wild type and the Dsll1694 strain in liquid BG-11 with
ammonium iron(III) citrate, iron(III) oxide, or goethite as the exclusive
iron source. Trend shown is the average of three separate experiments.
Error bars indicate the standard error of the three experiments.
doi:10.1371/journal.pone.0105761.g001

Figure 2. Agar-plate growth characteristics. Photoautotrophic
growth characteristics of wild type and the Dsll1694 strain on BG-11-
contatining agar plates with ammonium iron(III) citrate, iron(III) oxide,
or goethite as the exclusive iron source. Trend shown is the average of
three separate experiments. Error bars showing the standard error of
the three experiments.
doi:10.1371/journal.pone.0105761.g002

Figure 3. Agar-plate growth phenotype. Images of wild type (left)
and Dsll1694 strain (right) on petri dishes containing agar-solidified BG-
11 medium with ammonium iron(III) citrate substituted by goethite. The
extracellular protein harvested from wild type and Dsll1694 strains show
the PilA protein (encoded by sll1694) in the wild type, but not the
Dsll1694.
doi:10.1371/journal.pone.0105761.g003
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the chlorophyll to carotenoid ratio was increased more in wild type

than in the Dsll1694 strain grown on iron oxide and goethite

(Fig 5B, C).

Chlorophyll
The status of the photosynthetic machinery can be deduced

from the amount of light-harvesting pigments that are present. In

non-stress conditions, a relative high phycobilisome to chlorophyll

ratio indicates active electron generation by PSII, while in stress

conditions the number of phycobilisomes to chlorophyll is often

reduced. The absorption at 625 nm and 680 nm can be used to

assess changes in the phycobilisome to chlorophyll ratios in wild

type and the Dsll1694 strain.

In liquid media, the Dsll1694 strain and wild type have similar

chlorophyll to phycobilin ratios under two of the iron sources

(ferric ammonium citrate, iron oxide) (Fig 4). When grown in

liquid with goethite (Fig 4C), a small decrease in the chlorophyll to

phycobilin ratio was observed in both wild type and Dsll1694 cells

compared to cells grown on ferric ammonium citrate and ferric

oxide.

Figure 4. Absorption spectra of a photoautotrophically grown liquid culture. Both wild type and Dsll1694 strains grown in BG-11 with
ammonium iron(III) citrate (A), iron(III) oxide (B), or goethite (C) as the exclusive iron source. Samples were standardized to an OD800 of 0.3. Traces
were baseline subtracted at 800 nm after acquisition. One data set is shown, which is representative of three separate experiments. The average
standard error between triplicates was calculated. Wild type SE: 63.0610-3 (A), 61.561023 (B), 62.961023 (C); Dsll1694 SE: 63.361023 (A),
63.961023 (B), 63.761023 (C). (For non-baseline subtracted absorption spectra see Figure S4 in File S1).
doi:10.1371/journal.pone.0105761.g004
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On solid medium the Dsll1694 strain and wild type only have a

similar chlorophyll to phycobilin ratio when grown on ferric

ammonium citrate (Fig 5A). The wild type showed a substantial

decrease in the chlorophyll to phycobilin ratio when grown on

goethite and ferric oxide (Fig 5B & C).

IsiA
In iron-limited conditions a shift in the red chlorophyll

absorption peak to shorter wavelengths has previously been

observed [34]. This shift has been attributed to the presence of

IsiA [34], a chlorophyll-binding protein that is related to CP43.

Unlike CP43, which is associated with PSII, IsiA has been shown

to be primarily associated with PSI.

In liquid-grown wild-type cells and the Dsll1694 strain, a shift of

the red chlorophyll peak to shorter wavelengths was observed

when ferric ammonium citrate was replaced by ferric oxide (1–

2 nm) and goethite (,5–7 nm). The same trends were observed

when wild type and the Dsll1694 strain were grown on plates with

different iron sources (see Table 1).

Figure 5. Absorption spectra of photoautotrophically grown plate cultures. Both wild type and Dsll1694 cells grown on agar-solidified BG-
11 with ammonium iron(III) citrate (A), iron(III) oxide (B), or goethite (C) as the exclusive iron source. Samples were standardized to an OD800 of 0.3.
Traces were baseline subtracted at 800 nm after acquisition. One data set is shown, which is representative of three separate experiments. The
average standard error between triplicates was calculated. Wild type SE: 61.861023 (A), 61.361023 (B), 63.961023 (C); Dsll1694 SE: 64.061023 (A),
64.361023 (B), 63.061023 (C). For non-baseline subtracted absorption spectra for plate grown cultures see Figure S5 in File S1).
doi:10.1371/journal.pone.0105761.g005
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77 K Fluorescence
The fluorescence spectra of whole cells at 77 K have been used

to characterize the photosynthetic machinery of cyanobacteria

[35]. Several fluorescence features can be assigned to specific

photosynthetic complexes in Synechocystis sp. PCC 6803. The core

light-harvesting complexes of PSII have characteristic fluorescence

emission maxima at 685 nm (CP43) and 695 nm (CP47).

Additionally, fluorescence emission at 685 nm has been found to

arise from the terminal phycobilisome emitter, called Lcm [36],

and IsiA [37]. PSI exhibits an emission maximum at 725 nm. In

cyanobacteria, excitation with light at 440 nm preferentially

excites chlorophyll a molecules that are part of PSI, PSII and

IsiA, but not phycobilisomes (the main light-harvesting system

associated with PSII of cyanobacteria). Validity of 77 K spectra is

analyzed using the statistical measurement of the SE between

replicates.

Spectral characteristics of cells grown in liquid and on
agar

Cells grown in liquid medium with different iron sources were

investigated using fluorescence emission spectra at 77 K (Fig. 6 A).

When iron was supplied as ferric ammonium citrate, the wild type

and the Dsll1694 strain show similar chlorophyll a emission

spectra that conform with 77 K emission spectra generally

reported for wild type grown in liquid. Interestingly, an increase

in the 685 nm fluorescence emission in wild type and the Dsll1694
strain was observed when iron oxide or goethite were supplied

(Fig. 6 B, C) in liquid culture.

Under some conditions, the fluorescence emission spectra at 77

K of cells grown on agar (Fig. 7) contrast substantially to the

spectra of the liquid-grown cells. In both, wild type and Dsll1694
strains, the fluorescence emission spectra from plate-gown cells

looked similar to cells grown in liquid. In contrast, when goethite

and iron oxide were supplied, the 685 nm and 695 nm peaks

increased in the wild type, while a smaller increase was observed in

the Dsll1694 strain.

To distinguish the contribution of IsiA and PSII to the 77 K

fluorescence emission spectra, analysis of the ratio of the emissions

specific for these complexes is required. The emission at 695 nm in

relation to the emission peak at 685 nm indicates the presence of

PSII and IsiA, respectively. This analysis revealed that slightly

more IsiA is present in the Dsll1694 strain compared to the wild

type in liquid-grown cells supplied with iron oxide and goethite

(Fig. 6 B, C). Conversely, more IsiA is present in the wild type

than in the Dsll1694 strain when grown on plates with iron oxide

and goethite (Fig. 7 B, C).

The PSI and PSII ratio is another characteristic that can be

evaluated by interpreting 77 K fluorescence emission spectra.

Here the fluorescence emission at 695 nm indicates the presence

of PSII, while the emission centered at 725 nm represents the

presence of PSI. The spectra in Figs. 6 and 7 are normalized to the

PSI emission peak at 725 nm. After taking into account of the

contribution of IsiA to the spectra at 685 and 695 nm, it can be

concluded that the ratio of PSII to PSI in liquid-grown cells is

much higher than in the agar-grown cells for both wild type and

the Dsll1694 strain on iron oxide and goethite. On agar, the wild

type maintains a higher PSII to PSI ratio on iron oxide and

goethite compared to the Dsll1694 strain.

Discussion

Our study investigated the role of PilA1 in the utilization of

oxidized (ferric) iron sources. Iron is a crucial cofactor of many

protein complexes that mediate photosynthetic electron transport

in cyanobacteria. Moreover, iron is a growth-limiting factor in

many environments. Utilization of iron oxides through electron

donation to the iron may therefore be an important strategy for

survival in otherwise iron-limited environments.

Electron donation to iron oxides as a mechanism for utilizing

otherwise inaccessible sources of iron has recently been suggested

to occur in cyanobacteria [14]. Extracellular or periplasmic

reduction of ferric iron is thought to be followed by transport of

the soluble ferrous iron through the cytoplasmic membrane into

the cell. In the proposed scheme, a ferri-siderophore is thought to

be disassembled via reduction outside of the plasma membrane.

This disassembly is followed by the uptake of the iron through the

cytoplasmic membrane [14]. The reduction of iron oxides also

occurs in non-photosynthetic soil bacteria [9]. Several mechanisms

have been proposed for this respiratory reduction including the use

of electrically conductive pili that link cellular electron transport to

extracellular electron acceptors [9]. Based on this information, we

decided to investigate if PilA1, the main constituent of pilins

[28,29,30,31,38,39], has a role in iron acquisition in cyanobacte-

ria.

Growth experiments
In our study, the lack of PilA1 has direct phenotypic

consequences when cells are grown on plates, even when the

biologically accessible iron source, ferric ammonium citrate, is

present. Interestingly, the pilA1-deficient mutant strains exhibit a

mosaic of pigmentation when grown on plates on ferric

ammonium citrate. This phenotype may indicate that direct

contact with iron oxide particles is required for iron utilization as

proposed by Kranzler and colleagues [14]. Despite this, the

difference between the Dsll1694 mutant and wild type indicates

that another mechanism of iron reduction exists, as no change in

pigmentation is observed in the wild type. In the wild type,

extracellular PilA1 may enable the activation and utilization of

oxidized iron sources while this is only possible when direct

contact is made in the Dsll1694 mutant. Spectroscopic data

reveals that this change in pigmentation is most likely the

Table 1. Absorption maxima of the red chlorophyll peak in wild type and Dsll1694 strain grown with different iron sources in
liquid medium and on agar plates.

wild type Dsll1694

liquid plate liquid plate

Iron(III) citrate 682 nm 682 nm 685 nm 685 nm

Iron oxide 681 nm 678 nm 684 nm 684 nm

Goethite 675 nm 675 nm 680 nm 682 nm

doi:10.1371/journal.pone.0105761.t001

Pilin-Mediated Iron Acquisition in the Cyanobacterium Synechocystis

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e105761



consequence of a decrease in phycobilisomes in the Dsll1694
strain.

Wild type and the Dsll1694 strain are able to grow on iron

oxide and goethite in liquid cultures, although it is unlikely that

they can make sustained contact with iron oxide mineral particles.

Moreover, although the initial growth of wild type and Dsll1694

cells appears similar in liquid on iron oxide and goethite, the wild

type shows more growth after several days. As pili may constantly

be sheared off in liquid the ability to grow on iron in liquid culture

indicates that in addition to the ‘‘cell-contact’’ iron utilization

mechanism, an additional ferric iron uptake mechanism is also

present, that cannot be engaged on plates.

Figure 6. 77 K fluorescence emission spectra of photoautotrophically grown liquid cultures excited by 440 nm light. Both wild type
and Dsll1694 cells were grown in BG-11 with ammonium iron(III) citrate (A), iron(III) oxide (B), or goethite (C) as the exclusive iron source. Samples
were excited by a 440 nm light source. Traces were normalized to the PS I peak at 725 nm. Data shown is indicative of three separate experiments.
The average standard error between triplicates was calculated. Wild type SE: 61.361022 (A), 62.361022 (B), 61.861022 (C); Dsll1694 SE: 61.761022

(A), 61.261022 (B), 61.061022 (C).
doi:10.1371/journal.pone.0105761.g006
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Our growth experiments on agar plates show that iron oxide

and goethite can be used by the Synechocystis sp. PCC 6803 wild-

type strain, while a PilA1-deficient strain struggles to utilize these

sources of iron. As the PilA1-deficient mutant grows slower than

the wild type on oxidized iron minerals, it seems likely that pili

play an important role in accessing this iron on agar plates. The

ability to move that is connected to the presence of pili in some

Synechocystis sp. PCC 6803 strains is lost in the strain we used for

our experiments. Resequencing of this strain [40] revealed a

frameshift mutation in slr0162, whose gene product, PilC, is

required for twitching motility. Therefore locomotion by the wild-

type cells is not the reason for the observed phenotype. The PilA1

protein may be essential in the transport of electrons from the

electron transport chain to iron oxides, and the consequent

Figure 7. 77 K fluorescence emission spectra of photoautotrophically grown plate cultures excited by 440 nm light. Both wild type
and Dsll1694 cells grown on BG-11 plates with ammonium iron(III) citrate (A), iron(III) oxide (B), or goethite (C) as the exclusive iron source. Samples
were excited by a 440 nm light source. Traces were normalized to the PS I peak at 725 nm. One data set is shown, which is representative of three
separate experiments. The average standard error between triplicates was calculated. Wild type SE: 62.761022 (A), 63.261022 (B), 63.561022 (C);
Dsll1694 SE: 64.461022 (A), 64.261022 (B), 63.161022 (C).
doi:10.1371/journal.pone.0105761.g007
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reduction of ferric iron into soluble ferrous iron (Fig. 8); the

electron carriers that mediate this reduction of iron sources remain

to be defined.

IsiA
IsiA is induced under iron-limited conditions and therefore the

presence of IsiA may be a good indicator for the availability of iron

[41]; however, although IsiA has originally been discovered during

iron stress, recent experiments also indicate that IsiA is induced as

a response to oxidative stress [42].

Spectroscopic data at room temperature and fluorescence

emission spectra at 77 K of wild type and the Dsll1694 strains

indicate the presence of IsiA when cells are grown on oxidized iron

minerals in liquid; however, the shift to shorter wavelengths

associated with the presence of IsiA is more exaggerated in the

wild type than in Dsll1694 strain. It is furthermore notable that

the Dsll1694 strain possesses an in vivo room temperature light

absorption spectrum that is further red-shifted than the wild type

when grown under every iron source tested, including the bio-

available ferric ammonium citrate. Possible reasons for this red-

shift are an increased amount of IsiA in wild type and/or an

increased amount of PSI in the Dsll1694 strain. Indeed, 77 K

fluorescence emission data indicate that this combination of factors

is present in agar-grown cells. Moreover, 77 K fluorescence

spectra also indicate that the origin of this shift is not necessarily

due to changes in the amount of IsiA and PSI, as the Dsll1694
strain and wild type possesses almost identical 77 K fluorescence

emission spectra when grown on ferric ammonium citrate on agar

plates and in liquid.

We have therefore to accept – at first sight – a contradicting

situation in regards to iron utilization and presence of IsiA: growth

tests indicate that PilA1-deficient cells are not able to utilize

oxidized iron minerals as efficiently as wild type, but in response to

iron limitation, PilA1-deficient cells only produce elevated

amounts of the stress-response protein IsiA in liquid culture, but

not on plate. We think this behavior can be explained by the

physiology of plate-grown colonies, and by attributing the

production of IsiA to the presence of oxidative stress and not

the absence of iron.

The physiological response of Synechocystis sp. PCC 6803 wild

type and the Dsll1694 strain to growth on iron oxide minerals in

liquid is somewhat surprising as the absorption spectra indicate

that phycobilisomes are abundant and 77 K fluorescence emission

spectra indicate the presence of IsiA in coordination with a high

PSII to PSI ratio. This contrasts with the general observation of

liquid-grown, iron-limited cyanobacteria cultures, where an

increase in the amount of IsiA and a decrease in the amount of

phycobilisomes and PSII are observed [43]. One interpretation of

these data is that the wild-type cells experience some stress but are

not iron-limited. This stress may originate from a higher oxygen

concentration present within dense cyanobacterial colonies, e.g.

bacterial mats [44].

Possible regulatory network
Recent transcriptome profiling has uncovered a wealth of

expressed antisense and other noncoding RNAs in Synechocystis
sp. PCC 6803 [45]. Within the pilA12 operon (sll1693, sll1694,
sll1695 and sll1696), two asRNA molecules (sll1694-as and

sll1695-as), along with three other non-coding RNA features have

been detected [45]. The deletion and over-expression of these

antisense RNA will aide in determining their function, including

the regulation of the isiA operon.

A study that investigated the transcriptional response of an isiA
deletion strain provides evidence that pilins are a component in a

complex stress response network. An isiA deletion mutant

exhibited an increase in the mRNA of the pilin-containing

sll1693-sll1696 operon and two other pilin genes (slr1456 and

slr0079) compared to wild type during standard growth conditions

[27]. The isiA-isiB operon in turn also contains a regulatory

mRNA (isiR) that would have been impaired by deleting isiA in

the aforementioned study. The presence of regulatory RNAs in the

pilin-containing operon sll1694-sll1695 and the isiA-isiB operon,

in combination with the phenotypic coupling of these operons

observed by Singh and colleagues [27] as well as our study, suggest

that a complex regulatory framework coordinates PilA1 and IsiA

expression. This assessment is in line with our observations, as iron

metabolism and oxidative stress often interface with one another,

and therefore may require complex regulation.

In our Dsll1694 deletion strain, the pilin sll1695 (PilA2) and a

protein with an unknown function (sll1696) are likely not to be

expressed due to the disruption of the operon. Inactivating each

gene in this operon, while keeping the other genes intact will be

crucial to pinpoint the component that is critical for the observed

phenotype of the mutant we generated. This approach will also be

useful to assess the function of regulatory elements that are present

in the sll1693-sll1696 operon.

Conclusions

Our study provides evidence that Synechocystis sp. PCC 6803 is

well adapted to growing on a solid medium. Synechocystis and

Synechococcus species are part of microbial mats and therefore

growing in a high-oxygen environment should be part of their

physiological repertoire. In the case of Synechocystis sp. PCC 6803,

the ability to form fast-growing colonies on plates is likely

dependent on tolerating high oxygen concentrations.

The presented work shows that the absence of PilA1 in the

cyanobacterium Synechocystis sp. PCC 6803 impairs growth on

iron oxide minerals. This is the first report that connects pilins and

by extension pili with iron oxide utilization in cyanobacteria.

Presently, we cannot clearly distinguish if the observed phenotypic

consequences are solely caused by the inability to utilize oxidized

iron sources, or are also a consequence that arises due to the

disruption of a regulatory network, or a combination of both.

Nonetheless, if other bacteria can utilize pili to donate electrons to

iron oxides, it would appear unlikely that cyanobacteria would not

Figure 8. Schematic of electron transport to extra-cellular
particles containing ferric iron. Ferric iron (Fe3+) is converted to
ferrous iron (Fe2+) that can be taken up by a cyanobacterial cell.
Electron transport indicated in black, thylakoid membranes indicated in
green, respiratory membranes indicated in blue.
doi:10.1371/journal.pone.0105761.g008
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have developed this capability. The ancestors of modern

cyanobacteria were surely the first to experience the consequences

of elevated oxygen concentrations. It would therefore seem not

surprising that cyanobacteria have developed or adapted a tool

that allows them to unlock the non-bioavailable metal oxides their

oxygen produces.

Materials and Methods

Growth and maintenance of stock cultures
Cells were maintained on BG-11 agar plates containing 5 mM

glucose, 20 mM atrazine and appropriate antibiotics where

applicable [46]. Liquid cultures were established in 300 mL

Erlenmeyer flasks that have been specifically modified as described

by Eaton-Rye [46]. Cultures containing BG-11, 5 mM glucose

and appropriate antibiotics were grown mixotrophically. Both

plates and liquid cultures were grown under constant illumination

(30 mE.m22.s21), at 30uC. Liquid cultures were provided with

filtered aeration via small aquarium pumps. The air was

additionally bubbled through ddH2O to prevent dehydration of

cell cultures.

Alternative iron sources
BG-11 media without ammonium iron(III) citrate was supple-

mented with either 1.84 mg.mL21 (23 mM Fe) of iron(III) oxide, or

2.04 mg.mL21 (23 mM Fe) of goethite. BG-11.

Experimental liquid-media growth curve
Liquid cultures of Synechocystis sp. PCC 6803 were grown in

the presence of 5 mM glucose to an OD of 1.0. Cells were

centrifuged at 2760 g for 10 min at 25uC and washed twice in BG-

11. A flask containing 150 mL BG-11 (without glucose or atrazine)

was inoculated with washed cells to give a starting OD of 0.05.

Cultures were maintained under constant temperature (30uC),

illumination (30 mE.m22.s21) and aeration. The OD of each

culture was recorded every 12 h over 148 h period using a custom

built spectrophotometer [47]. To measure the OD accurately, a

small sample of the culture was taken and diluted 5 – fold to yield

the true culture OD.

Experimental solid-media growth curve
Liquid cultures of Synechocystis sp. PCC 6803 were grown in

the presence of 5 mM glucose to an OD of 1.0. Cells were

centrifuged at 2760 g for 10 min at 25uC followed by two washing

steps in sterile water and resuspended to an OD of 1.0. A small

amount of this liquid culture was used to inoculate 2 mL of sterile

water to an OD of 0.1. Serial dilutions of this culture were

subsequently made to attain two further OD aliquots of 0.01 and

0.001. Two micro liters of each of the three culture samples were

spotted onto BG-11 (without glucose or atrazine) agar growth

plates with appropriate growth conditions (specific iron source).

Cultures were maintained under constant temperature (30uC),

illumination (30 mE.m22.s21) and aeration. Raw images of each

culture were taken every 24 h over a 220 h period using a custom

built plate imager. The integrated intensity of the cultures was

compared to the agar background to give a relative growth

parameter.

Polymerase chain reaction
Primers for PCR analysis were ordered as needed in the 59 to 39

orientation with specific restriction enzyme cut sites upstream of

the 59 end (Table. S1 in File S1), through Sigma-Aldrich (Sigma-

Aldrich, NSW, Australia).

The reactions were performed in 1x Phusion amplification

buffer containing 0.4 mM of each dNTP (dATP, dCTP, dGTP

and dTTP), 0.4 mM of each primer and 0.05 units/mL Phusion

polymerase (Thermo Fisher Scientific, USA). PCR conditions

were: (1) initial denaturing step at 98uC for 30 s; (2) 14 cycles of

98uC for 7 s, annealing at 62uC (21uC per cycle) for 20 s,

extension at 72uC for 30 s/kb; (3) 16 cycles of 98uC for 7 s,

annealing at 62uC for 20 s, extension at 72uC for 30 s/kb; then (4)

final extension at 72uC for 5 min. PCR products were cleaned

using a QIAquick PCR purification kit (Qiagen, Duesseldorf,

Germany).

Separation of DNA samples by gel electrophoresis
DNA samples were separated by electrophoresis using 0.8%

agarose gels in the presence of 10 mM NaOH and 73 mM boric

acid at pH 8.0. The running condition was 150 V for 25 min at

room temperature. Prior to loading, samples were mixed with 106
loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF

and 30% glycerol). DNA was visualized by exposure to a UV light

after soaking the gel in ddH2O containing 1 mg/mL ethidium

bromide for 10 min. Gel images were captured using a GelDoc

(BioRad, USA).

Plasmid construction
Ligation reactions were carried out at a vector to insert ratio of

3:1 with ,100 ng DNA in total. The reaction contained 50 mM

Tris-HCl (pH7.5), 10 mM MgCl2, 10 mM dithiothreitol (DTT),

1 mM ATP, and 3 U of T4 DNA ligase (Roche, Mannheim,

Germany). The reaction mixture was incubated at 22uC overnight.

Transformation of Synechocystis sp. PCC 6803
Liquid cultures were grown in the presence of glucose to an OD

of approximately 0.5. Cells were then centrifuged at 2760 g for

10 min and suspended in 0.5 mL BG-11 media to a final OD of

2.5 in a sterile glass tube. Approximately 5 mg of plasmid DNA

was added to tubes and incubated at 30uC under 30 mE.m22.s21

of illumination for 6 h with gentle shaking at the 3 h mark.

Negative controls with no DNA were also included. Samples were

spread over sterile nitrocellulose paper on BG-11 plates supple-

mented with glucose and incubated for 12 h. The filters, with cells

attached, were then transferred to plates containing glucose,

atrazine and appropriate antibiotics. After two weeks, single

colonies were picked and streaked out weekly for three weeks to

ensure complete segregation. Colony PCR was used to verify

complete segregation using the sll1694 left flank forward (NcoI)

primer and the sll1694 right flank reverse (PstI) primer.

Whole cell absorption spectra
Whole cell absorption spectra were measured using a Jasco V-

550 spectrophotometer. Cells were suspended in BG-11 contain-

ing HEPES-NaOH, pH 7.5, to an OD of 0.3. Translucent

cellotape was fixed on both sides of the cuvette holder during

measurements. Spectra were baseline subtracted after acquisition,

during the data analysis.

77 K fluorescence
Cells were diluted with BG-11 containing HEPES/NaOH,

pH 7.5, to a chlorophyll concentration of 2 mg.mL21 measured

using a custom built fluorometer [48]. Cells were then transferred

into glass tubes, frozen in liquid nitrogen and fluorescence

emission assessed using a fluorescence spectrometer (Perkin-Elmer,

MPF-3L). The emission slit was set to 4 nm for each measure-

ment. The excitation slit for samples was 12 nm and 10 nm for
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440 nm and 580 nm, respectively. Traces were normalized to a

PSI peak at 725 nm in the emission spectra.

PilA protein harvest
Cells were grown in 200 mL of BG-11 to an OD of 0.8. They

were then centrifuged at 2760 g for 8 min and the supernatant

was discarded. The cell pellet was then re-suspended in 5 mL of

BG-11. The cell suspension was subjected to 2 min of thorough

vortexing followed by another centrifugation at 2760 g for 8 min.

The supernatant was carefully removed without disrupting the cell

pellet and concentrated using a Vivaspin 500 column with a 5 kDa

molecular weight cut off (GE Healthcare, UK) to a final volume of

50 mL.

Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis

In this study, 12% SDS-PAGE using a Tris-glycine buffer

system was used. The running condition for Tris-glycine was

200 V for 55 min at room temperature. Directly after completion

of electrophoresis, the gels were removed from the glass cassette

and soaked in a gel-fixing solution (50% (v/v) ethanol and 10% (v/

v) acetic acid in 18 MV resistant purified milli Q water) for 1 h.

The gel was then incubated at room temperature overnight with

slight agitation in gel-washing solution (50% (v/v) methanol and

10% (v/v) acetic acid in ddH2O). For visualization of protein

bands the gel was covered with Coomassie stain (0.1% (w/v)

Coomassie blue R350, 20% (v/v) methanol and 10% (v/v) acetic

acid in 18 MV resistant purified milli Q water) for 3 to 4 h with

slight agitation. Destain solution (50% (v/v) methanol and 10%

(v/v) acetic acid in 18 MV resistant purified milli Q water) was

then used several times to remove excess Coomassie stain. The gel

was then stored indefinitely in a storage solution (5% (v/v) acetic

acid in 18 MV resistant purified milli Q water.

Mass spectrometry analysis
Samples were excised carefully from the SDS-PAGE gel and

analyzed at the Centre for Protein Research at the University of

Otago in order to determine identity of the protein bands.
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