
Nuclear factor-jB modulates osteogenesis of
periodontal ligament stem cells through competition
with b-catenin signaling in inflammatory
microenvironments

X Chen1,2,5, C Hu2,3,5, G Wang1,2, L Li2,4, X Kong1,2, Y Ding*,1 and Y Jin*,2,3,4

Inflammation can influence multipotency and self-renewal of mesenchymal stem cells (MSCs), resulting in their awakened
bone-regeneration ability. Human periodontal ligament tissue-derived MSCs (PDLSCs) have been isolated, and their
differentiation potential was found to be defective due to b-catenin signaling indirectly regulated by inflammatory
microenvironments. Nuclear factor-jB (NF-jB) is well studied in inflammation by many different groups. The role of NF-jB
needs to be studied in PDLSCs, although genetic evidences have recently shown that NF-jB inhibits osteoblastic bone formation
in mice. However, the mechanism as to how inflammation leads to the modulation of b-catenin and NF-jB signaling remains
unclear. In this study, we investigated b-catenin and NF-jB signaling through regulation of glycogen synthase kinase 3b activity
(GSK-3b, which modulates b-catenin and NF-jB signaling) using a specific inhibitor LiCl and a phosphatidylinositol 3-kinase
(PI3K) inhibitor LY 294002. We identified that NF-jB signaling might be more important for the regulation of osteogenesis in
PDLSCs from periodontitis compared with b-catenin. BAY 11-7082 (an inhibitor of NF-jB) could inhibit phosphorylation of p65
and partly rescue the differentiation potential of PDLSCs in inflammation. Our data indicate that NF-jB has a central role in
regulating osteogenic differentiation of PDLSCs in inflammatory microenvironments. Given the molecular mechanisms of NF-jB
in osteogenic differentiation governed by inflammation, it can be said that NF-jB helps in improving stem cell-mediated
inflammatory bone disease therapy.
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Mesenchymal stem cells (MSCs) are being clinically explored
as a new therapeutic for treating a variety of immune-
mediated diseases, and the biologic behavior of endogenous
MSCs in inflamed tissues was found to be defective,
which may contribute to diseases.1–3 Periodontal ligament
stem cells (PDLSCs), a group of periodontal ligament
tissue-derived MSCs, had been isolated from periodontal
tissues.4–7 Our previous research suggested that osteogenic
differentiation of PDLSCs from periodontitis was inhibited by
inflammation, and could be regulated by b-catenin signal-
ing.8,9 However, the underlying molecular mechanism gov-
erned directly by inflammation is still poorly understood.

Nuclear factor-kB (NF-kB) is a transcription factor thought
to have an important role in the onset of inflammation.
Activation of NF-kB signaling induces transcription of proin-
flammatory genes by nuclear translocation of a transcription

factor complex.10,11 The connection between NF-kB and
osteoblasts stems from initial observations that inflammation,
and in particular TNF-a, inhibits bone formation.12–14 How-
ever, it remains to be understood whether inflammatory
cytokines in periodontitis could activate NF-kB signaling
leading to impaired differentiation of PDLSCs.

Glycogen synthase kinase 3b (GSK-3b) is known to
modulate cell apoptosis and differentiation through multiple
intracellular signaling pathways. GSK-3 is now known to
target multiple cell regulatory proteins and to be controlled by
both WNT signaling and the PI3K/Akt pathway. In addition
to b-catenin, the targets of GSK-3 that have been implicated
in the regulation of cell proliferation and differentiation
include several transcription factors of NF-kB signaling.15–19

Recently, some studies have found that GSK 3b could
modulate both NF-kB and b-catenin activity through
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phosphorylation or transcriptional regulation.13,20,21 However,
it is not clear whether GSK 3b regulates NF-kB and b-catenin
activity in inflammation.

Previously, it was reported that nuclear translocation of p65
in response to inflammation was mediated through NF-kB
signaling.12,22,23 We found an unexpected result showing that
p65 nuclear translocation was inhibited after LiCl stimulation
only in periodontitis PDLSCs but not in healthy PDLSCs, as
well as higher activation of b-catenin activity in periodontitis as
expected. Then we rescued the osteogenic potency of
PDLSCs from periodontitis using BAY 11-7082 (inhibitor of
NF-kB), which could also upregulate b-catenin expression
only in PDLSCs from periodontitis patients (P-PDLSCs).

Results

Inhibition of GSK-3b could restore osteogenic differen-
tiation of P-PDLSCs. In our earlier study, WNT signaling is
implicated in regulating osteogenic differentiation of
P-PDLSCs. Next, considering that GSK-3b is a key
modulator in the WNT pathway, we want to assess the role
of GSK-3b after using a specific inhibitor LiCl. LiCl could
functionally affect the activity of GSK-3b of PDLSCs. When
the PDLSCs were cultured in osteogenic differentiation
medium with LiCl (10 mM), the phosphorylation level of
GSK-3b was significantly increased in both PDLSCs. The
results were consistent with previous research (Figure 1a).

We observed that LiCl promoted the ALP activity of
P-PDLSCs, as well as staining. However, ALP activity and
staining were inhibited, obviously, in H-PDLSCs (Figure 1b).
The mRNA and protein levels of osterix were also consistent
with these results (Figures 1c and d). These data suggested
that GSK-3b showed the opposite effect on osteogenic
differentiation of PDLSCs from different microenvironments.

GSK-3b modulated WNT and NF-jB signaling in
PDLSCs. GSK-3b, a component of the canonical WNT
signaling pathway, is implicated in the regulation of bone
mass.24 To gain further insight into the different GSK-3b-
mediated effects on PDLSCs, we tested two key signaling
pathways WNT and NF-kB, which might be regulated by
GSK-3b. The addition of LiCl in our assay system signifi-
cantly blocked the activity of NF-kB in P-PDLSCs, whereas it
did not affect the NF-kB activation of H-PDLSCs. We then
directly tested the WNT signaling using the active-b-catenin
antibody and found that WNT signaling was activated after
LiCl treatment in H-PDLSCs, but was slightly decreased in
P-PDLSCs (Figure 2b). Moreover, we did not observe any
transcription change of p65 and b-catenin in both PDLSCs
after LiCl stimulation (Figure 2a). These results suggested
that WNT signaling might be mediated by osteogenesis in
H-PDLSCs, and NF-kB signaling was competent with WNT-
regulating osteogenic differentiation of P-PDLSCs.

Activation of GSK-3b could decrease the osteogenic
differentiation of PDLSCs. The results of our experiments
suggest that GSK-3b inhibition only increases the osteogen-
esis of P-PDLSCs. Therefore, we examined the possibility
that the status of GSK-3b kinase activity is a determining
factor in osteogenic differentiation of P-PDLSCs. To test this
hypothesis, we further analyzed the osteogenic expression
profile of PDLSCs by promoting GSK-3b kinase activity. LY
294002, a small-molecule inhibitor of the PI3K signal
pathway, could inhibit GSK-3b phosphorylation as shown in
a previous study (Figure 3c). It is noteworthy that LY 294002
exposure significantly decreased the osteogenesis of
P-PDLSCs, as well as of H-PDLSCs, which was indicated
by a 1.5-fold reduction of ALP activity (Figure 3a). Real-time
PCR and western blot analysis revealed that the levels of the
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Figure 1 Inhibition of GSK-3b rescues the osteogenic differentiation of P-PDLSCs but decreases osteogenic differentiation of H-PDLSCs. H-PDLSCs and P-PDLSCs
were treated with or without LiCl along with osteogenic differentiation medium for 7 days. (a) The expression of p-GSK-3b and GSK-3b was examined by western blot analysis.
(b) Quantification of ALP activity staining. (c,d) Real-time RT-PCR and western blot analysis of the osteoblast marker gene (Osterix, normalized to b-actin) on day 7. Data
represent the means±S.D. *Po0.05 (n¼ 3)
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osteoblast-specific gene Osterix was higher in PDLSCs
compared with the cells treated with LY 294002 (Figure 3b).

We next investigated the impact of p65 and b-catenin
nuclear translocation after LY 294002 addition. In accordance
with phosphorylation of GSK-3b, LY 294002 treatment
significantly upregulated p65 and downregulated b-catenin
translocation in the nucleus, but had no effect on p65 and b-
catenin in the cytoplasm (Figure 3c). Recent studies implied a
functional role for GSK-3b in regulating phosphorylation of
IkBa. IkBa predominantly regulates the function of p65
nuclear localization in the classical pathway.22 However, we
found that the pattern of p-IkBa has no effect on PDLSCs
under LY 294002 treatment (Figure 3c). In addition, on adding
LY 294002 to H-PDLSCs, it was found that P-PDLSCs and
H-PDLSCs with TNF-a had a similar effect on the activity of
WNT and NF-kB signaling. These findings suggest that GSK-
3b is involved in osteogenic differentiation of PDLSCs.
However, the effect of LY 294002 treatment is not dependent
only on GSK-3b activity.

Higher activation of NF-jB in P-PDLSCs and decreased
osteogenesis was rescued by inhibition of NF-jB. Our
results support a notion that GSK-3b mediated osteogenic
differentiation by activating NF-kB signaling in P-PDLSCs.
To determine whether NF-kB signaling is indeed implicated
in defective osteogenesis, we next compared the status of
NF-kB signaling between H-PDLSCs and P-PDLSCs. ALP
staining showed that osteogenic differentiation was defective
in P-PDLSCs (Figure 4a). Real-time PCR and western blot
analysis were performed to determine the osteogenic marker
genes and the protein levels. Osterix gene expression in
P-PDLSCs was lower than that in H-PDLSCs (Figure 4b).
BAY 11-7082, an irreversible inhibitor of IkBa phosphoryla-
tion, could block NF-kB signaling. BAY 11-7082 treatment
significantly increased the osteogenic differentiation potential

of P-PDLSCs. However, BAY 11-7082 did not affect the
differentiation of H-PDLSCs (Figure 4). To further confirm
these findings, another inhibitor PDTC, which selectively
inhibits NF-kB activation, was also used in our work.
Similarly, PDTC rescued the defective osteogenesis of
P-PDLSCs, but had no effect on H-PDLSCs (Figure 4).

These data indicated that inhibition of NF-kB could recover
the osteogenic differentiation potential of P-PDLSCs. Now
that our results showed that WNT and NF-kB signaling
modulated osteogenic differentiation of PDLSCs together, we
also assessed the effect of NF-kB on the regulation of WNT
signaling. Interestingly, BAY 11-7082 did not affect the activity
of b-catenin, but upregulated the expression of b-catenin
through an unknown mechanism only in P-PDLSCs; real-time
PCR and western blot analysis showed a similar pattern
(Figure 5). The results again suggest that NF-kB has a critical
role in regulating osteogenesis of P-PDLSCs.

Discussion

MSCs that could differentiate into osteoblasts under appro-
priate conditions have a great application prospect in treating
bone diseases. PDLSCs are a population of tissue-specific
MSCs that could be obtained very easily especially in
periodontitis. However, P-PDLSCs exhibit a lower multi-
differentiation potential than H-PDLSCs. Therefore, we focus
our investigation on how to improve the differentiation
potential of P-PDLSCs in order to make better use of the
stem cells.

The present study establishes the important role of NF-kB
signaling in osteoblastic differentiation and inflammation. We
have uncovered a signal circuit regulating osteogenesis
interfered by inflammation between NF-kB and b-catenin
signaling (Figure 6). Our studies demonstrate that (i) GSK-3b
acts as a mediator of NF-kB and b-catenin signaling and
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Figure 2 Effects of GSK-3b activity on NF-kB and WNT signaling in PDLSCs. (a) The expression of NF-kB (p65) and b-catenin was examined by Real-time RT-PCR
(n¼ 3). (b) The activation of NF-kB (phosphorylated p65, pNF-kB) and b-catenin (specific for the active form of b-catenin, dephosphorylated on Ser37 or Thr41) and actin
was examined by western blot analysis
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regulates osteogenesis of PDLSCs; (ii) the inhibitor of PI3K
LY 294002 modulates both NF-kB and b-catenin signaling in
PDLSCs with and without inflammation; (iii) BAY 11-7082
blocks p65 nuclear translocation in P-PDLSCs, and rescues
the differentiation potential of PDLSCs in inflammation; and
that (iv) BAY 11-7082 also influences b-catenin expression in
P-PDLSCs through unknown mechanisms. We propose that
NF-kB signaling may be more important than b-catenin
signaling in the regulatory network response to inflammation,
leading to defective osteogenic differentiation in PDLSCs.

TNF-a was a main inflammatory cytokine of periodontitis. In
our previous studies, we found that H-PDLSCs impaired by
TNF-a and P-PDLSCs exhibit a lower differentiation potential
than H-PDLSCs, and b-catenin signaling negatively regulates
the osteogenic differentiation of PDLSCs in inflammatory
microenvironments or when treated with inflammatory

cytokines.8,9 However, the mechanism as to how inflamma-
tion leads to modulation of b-catenin signaling and decreased
differentiation potential remains unclear. As TNF-a can
directly activate NF-kB signaling in many different cells
through the receptor, it may have an intrinsic effect on the
function of PDLSCs through the NF-kB pathway.14,25–29

However, there was no research carried out on this pathway
in PDLSCs from periodontitis.

To further confirm the role of NF-kB in PDLSCs, we
compared NF-kB signaling in P-PDLSCs and H-PDLSCs after
osteogenic induction. Then we identified a model between
H-PDLSCs and P-PDLSCs by modulating GSK-3b activity,
because both NF-kB and b-catenin activity could be influ-
enced by GSK-3b. The proteasomal degradation of b-catenin
mediated by GSK-3b and the destruction complex is the
central step in the canonical WNT signaling pathway.30,31
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However, it was reported that GSK-3b affects the nuclear
accumulation of NF-kB and the binding to its target gene
promoters.32–34 In this study, it was found that GSK-3b could
mediate b-catenin and NF-kB signaling through the regulation
of translocation of b-catenin and p65 to the nucleus.
Interestingly, IkBa and its phosphorylation were unaffected
by the activation change of GSK-3b, although a recent study
indicated that the high levels of GSK-3b activity in quiescent
cells repress gene expression by negatively regulating NF-kB
through the inhibition of IkB kinase.35 LY 294002 enhances
the phosphorylation of NF-kB p65 on Ser529 and Ser536
residues, which results in enhanced p65 transactivation
activity.36 On the other hand, GSK-3b could directly regulate
phosphorylation of p65 at Ser(468) in unstimulated cells,
thereby controlling the activity of NF-kB.33 The activity of p65,
which is targeted by various signaling pathways and protein

kinases, may be enhanced by PI3K or GSK-3b not through the
upstream gene IkB. It is possible that the trend of p65 may be
not only be essential for osteogenesis but also for protection of
PDLSCs from TNF-a-induced apoptosis or other feedback
regulation b-catenin signaling.37,38 However, the mechanism
by which GSK-3b regulates the balance of b-catenin and NF-
kB signaling in PDLSCs is still unknown and needs further
study.

BAY 11-7082, an inhibitor of IkB kinase activity, has been
studied in anti-inflammatory and apoptosis researches.39–41

However, its function in osteogenesis is still unclear. In the
study of NF-kB signaling, we have discovered that BAY
11-7082 could inhibit NF-kB signaling and that it improved the
osteogenic potential of H-PDSLCs treated with TNF-a or
P-PDLSCs. These data suggest that canonical NF-kB
signaling indeed mediated the osteogenesis progress

*

- -

-

-

-

- -

PDTC

Actin

Osterix

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

+ + - -

+ +

-

- -

+ - + PDTC

+ + -

- -

-

+ +

- + - +

+ + -

- -

-

+ +

- + - +

*
*

0.5

0.4

0.3

A
L

P
 a

ct
iv

it
y

(O
D

/t
o

ta
l p

ro
te

in
)

O
st

er
ix

 m
R

N
A

(R
el

at
iv

e 
ex

p
re

ss
io

n
)

O
st

er
ix

 m
R

N
A

(R
el

at
iv

e 
ex

p
re

ss
io

n
)

0.2

0.1

0.0

H-PDLSCs

P-PDLSCs

H-PDLSCs

P-PDLSCs

BAY 11-7082

H-PDLSCs

P-PDLSCs

BAY 11-7082

H-PDLSCs + +

+ - +

+ +

+

+ + - -

- - -

-

-

- - - - -

+ +

+

P-PDLSCs

BAY 11-7082

Figure 4 Inhibition of NF-kB restored osteogenesis of P-PDLSCs. H-PDLSCs and P-PDLSCs were treated with BAY 11-7082 (H-PDLSCs as a control), and then were
cultured with osteoblastic differentiation medium for additional 7 days. (a) Osteoblastic differentiation was determined by ALP staining and activity at day 7. (b,c) The PDLSCs
were treated with another inhibitor PDTC, and the expression of the osteoblast-related gene Osterix was measured by Real-time RT-PCR and western blot analysis at day 3.
The expression levels were normalized to b-actin. Data were shown as means±S.D. *Po0.05, n¼ 3

Effect of NF-jB on inflammation MSCs
X Chen et al

5

Cell Death and Disease



influenced by inflammation. To our knowledge, this is the first
study to show the increased osteogenesis by NF-kB inhibitors
in PDLSCs using a clinical patient model. Against all
expectations, BAY 11-7082 could also affect b-catenin
signaling. Although some reports have elucidated a cross
talk between NF-kB and b-catenin signaling through altera-
tions in GSK-3b,34,42–44 NF-kB might influence the location of
b-catenin through an unknown mechanism, and the hypoth-
esis needs verification in future work.

In summary, our study has provided new insight into
molecular mechanisms of NF-kB, showing that it acts as a
regulator controlling multiple facets that are critical for the
osteogenic differentiation of PDLSCs obtained from inflam-
matory microenvironments. The IkBa phosphorylation inhibi-
tor can partially restore P-PDLSCs’ osteogenic capacity,
suggesting that NF-kB could mediate the osteogenic differ-
entiation of P-PDLSCs. Our future efforts will be focused on
developing an in-depth understanding of the cross talk
between NF-kB and b-catenin signaling, which could have a
profound impact on improving bone regeneration and repair in
inflammatory microenvironments.

Materials and Methods
Study samples and cell culture. Healthy periodontal tissues were
obtained from healthy human premolars or the third molars extracted from 10
systemically healthy adults (27–32 years of age) for orthodontic purposes. The
inflammatory tissues were isolated from eight patients with moderate or severe
chronic periodontitis (30–41 years of age) for orthodontic or periodontal flap
surgery reasons. The clinical diagnosis of chronic periodontal disease was based
on clinical examination and radiography assessment. Patients with periodontitis
are defined as those having at least one periodontal probing pocket depth of
X5 mm, with bleeding on probing and radioraphic evidence of alveolar bone
loss(2/3). All of the surgical procedures were performed for the purpose of
treatment, and all samples were collected at the Dental Clinic of the Fourth Military
Medical University. The study was approved by the hospital ethics committee, and
informed consent was provided by all patients.

PDLSCs were isolated and cultured according to previously reported protocols,
as follows.8,9 We gently washed the teeth with sterile phosphate-buffered solution
(PBS) (Boster, Wuhan, China) and separated PDL tissues from the middle part of
the root surface using a scalpel from healthy (H-PDLSCs) orP-PDLSCs patients.
H-PDLSCs and P-PDLSCs were obtained using the limiting dilution technique. After
2–4 weeks, the single-cell-derived clones were harvested and mixed together. —
Two to four passages of multiple colony-derived H-PDLSCs and P-PDLSCs were
used in our experiments.

Induction of osteogenic differentiation. H-PDLSCs and P-PDLSCs
(P4) were seeded into six-well culture dishes (Costar, Cambridge, MA, USA) at
1� 105 cells/well and cultured until they reached 80% confluence. The culture
medium for osteogenic differentiation comprised a-MEM (Gibco, Grand Island, NY,
USA) containing 10% fetal bovine serum (FBS) (Gibco), 100 nM dexamethasone
(Sigma, St Louis, MO, USA), 50 mg/ml of ascorbic acid, and 10 mM
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b-glycerophosphate(Sigma). The medium was changed every 2 days. After 2–4
weeks of the induction of osteogenic differentiation, the cells were stained with
alkaline phosphatase (ALP )stain or alizarin red stain at specific time points
according to the manufacturer’s protocol. ALP staining and ALP activity were
determined using the BCIP/NBT ALP color development kit (Beyotime, Haimen,
China) and the ALP (AKP/ALP) detection kit (BioVision, Milpitas, CA, USA).

Total RNA extraction and RT- PCR. Total RNA was extracted from
in vitro culture samples using TRIzol reagent (Invitrogen, Grand Island, NY, USA).
Reverse transcriptase-polymerase chain reaction was performed with 1 mg of RNA
using a PrimeScript RT reagent kit (TaKaRa, Dalian, China). The primer
sequences used in the experiment were listed in Table 1, and related genes were
quantified by real-time RT-PCR using the SYBR Premix Ex Taq II kit (TaKaRa)
and the CFX96 Touch Real-Time PCR Detection System (Bio-rad, Hercules, CA,
USA).

LiCl/ LY 294002/ BAY 11-7082/ PDTC treatment. The subset of
these cultures were separated and treated with the GSK-3b inhibitor (LiCl) at a
concentration of 10 mM, phosphatidylinositol 3-kinase (PI3K inhibitor; LY 294002) at a
concentration of 20mM, NF-kB inhibitor BAY 11-7082 at a concentration of 100 ng/ml
and pyrrolidine dithiocarbamate (PDTC) at a concentration of 50 ng/ml. Cells were
seeded at a density of 5000 cells/cm2 in T25 culture flasks and expanded in a-MEM
(10% FBS) until they reached 80% confluence. The culture medium was then
changed to the basal or osteogenic medium, which contained LiCl or LY 294002 or
BAY 11-7082 or PDTC used for the PDLSC cultures as described above and
changed every 2 days. On day 7, after the medium was replaced with fresh medium
1 h later, we harvested the cells and subjected them to assays for in vitro osteogenic
differentiation.

Protein isolation and western blot analysis. Total proteins were
extracted with lysis buffer (10 mM Tris-HCL, 1 mM EDTA, 1% sodium dodecyl
sulfate, 1% Nonidet P-40, 1 : 100 proteinase inhibitor cocktail, 50 mM
b-glycerophosphate, 50 mM sodium fluoride). Cytoplasmic and nuclear proteins
were extracted using the Nuclear Extraction Kit according to the manufacturer’s
protocols (Millipore, Billerica, MA, USA). The protein concentration in the
extracted lysates was determined with a protein assay kit (Beyotime) according to
the manufacturer’s recommended protocol. Aliquots of 20–60mg per sample
were separated by 10% SDS-polyacrylamide gel electrophoresis, transferred to
the polyvinylidene fluoride membranes (Millipore) and blocked with 5%
nonfat milk powder in PBST (PBS with 0.1% Tween); next, they were incubated
with the following primary antibodies overnight: anti-Osterix, anti-GSK-3b,
anti-b-catenin, anti-b-actin (Abcam, Cambridge, UK), anti-p-GSK-3b, anti-p65,
anti-p-p65, anti-IkBa, anti-p- IkBa, anti-HDAC1 (Cell Signaling Technology,
Beverly, MA, USA) and anti-active-b-catenin (Millipore). The membranes were
then incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit
IgG secondary antibody (Boster, Wuhan, China). The blots were visualized using
an enhanced chemiluminescence kit (Amersham Biosciences, Piscataway, NJ,
USA) according to the manufacturer’s recommended instructions.

Statistical analysis. All results are presented as mean (±S.D.) from at least
three independent experiments and analyzed by a two-tailed unpaired Student’s t-
test using the SPSS software (IBM, Armonk, NY, USA). P-values o0.05 were
considered to be statistically significant.
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