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Abstract

Tumour growth critically depends on a supportive microenvironment, including the tumour 
vasculature. Tumour blood vessels are structurally abnormal and functionally anergic which 
limits drug access and immune responses in solid cancers. Thus, tumour vasculature has 
been considered an attractive therapeutic target for decades. However, with time, anti-
angiogenic therapy has evolved from destruction to structural and functional rehabilitation 
as understanding of tumour vascular biology became more refined. Vessel remodelling 
or normalisation strategies which alleviate hypoxia are now coming of age having been 
shown to have profound effects on the tumour microenvironment. This includes improved 
tumour perfusion, release from immune suppression and lower metastasis rates. 
Nevertheless, clinical translation has been slow due to challenges such as the transient 
nature of current normalisation strategies, limited in vivo monitoring and the heterogeneity 
of primary and/or metastatic tumour environments, calling for more tailored approaches 
to vascular remodelling. Despite these setbacks, harnessing vascular plasticity provides 
unique opportunities for anti-cancer combination therapies in particular anti-angiogenic 
immunotherapy which are yet to reach their full potential.

Introduction

Cancer and stromal accessory cells co-evolve to foster 
malignant growth and tumour progression. Among 
stromal cells, tumour blood vessels have been a major focus 
in oncology. It has been shown in the early 1970s that 
the rate of tumour neovascularisation – or angiogenesis 
– controls tumour growth (1). Subsequently, Folkman’s 
hypothesis of blocking tumour angiogenesis as a means 
to starve cancers (2) triggered decades of molecular 
studies into the pathophysiology of angiogenesis, and 
most importantly, the development of anti-angiogenesis 
therapy. In 2004, Bevacizumab (Roche), a humanized 
antibody against vascular endothelial growth factor 
(VEGF), became the first anti-angiogenic drug approved 
in the United States for the treatment of metastatic colon 

cancer in combination with chemotherapy (3). However, 
a decade of clinical experience has tempered the initial 
enthusiasm for anti-angiogenesis therapy. Blood vessel 
destruction with anti-angiogenic reagents results in 
transient tumour ‘starvation’ and hypoxia, but in time, 
adaptive resistance emerges followed by aggressive tumour 
re-growth (4, 5). Furthermore, in preclinical models, there 
is clear evidence for enhanced metastatic dissemination 
with chronic anti-angiogenesis therapy (6).

Coinciding with the idea of killing blood vessels, 
an alternative concept, namely tumour blood vessel 
normalisation, first emerged as a strategy to transform 
the chaotic angiogenic vasculature into a more orderly 
anatomy which also reduced metastatic dissemination 
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(7). Since then, pioneering studies in the laboratory 
of Rakesh Jain have delineated molecular processes of 
tumour vessel remodelling in response to mechanical 
forces and growth factors within the cancer environment; 
these studies have deepened our understanding of the 
tumour vasculature as a barrier to drug delivery (8, 9, 
10). In particular, the potential for low-dose anti-VEGF 
therapy to prune immature tumour vessels and enhance 
functionality of the remaining vasculature for improved 
chemo- and radiation therapies was recognized and has 
shown promising outcomes in preclinical and clinical 
studies (11). Ganss and colleagues first described the 
correlation between tumour vessel normalisation and 
immune cell infiltration (12). In highly angiogenic, 
non-inflamed cancers, vessel normalisation is necessary 
and sufficient to enable infiltration by pre-activated 
immune cells and consequent tumour destruction (13). 
Subsequently, low-dose anti-VEGF treatment in mouse 
melanoma was shown to improve adoptive T cell therapy 
and to re-programme a suppressive innate immune 
environment (14, 15). More recent evidence suggests that 
anti-tumour T cells contribute to vessel normalisation in 
a positive feedback loop where initial T cell infiltration 
promotes tumour perfusion leading to overall enhanced 
T cell accumulation and response to checkpoint  
blockade (16, 17). Thus, at least in animal models, the 
efficacy of all current anti-tumour therapies, including 
chemo-, radiation and immunotherapy, is intimately 
linked to tumour vasculature status, perfusion and 
oxygenation (18).

Insights into blood vessel normalisation

Tumours harbour a tortuous network of leaky blood vessels 
which lack the hierarchical order and patency of their 
normal counterparts. Tumour blood vessel normalisation 
restores vascular function thereby increasing tumour 
perfusion and alleviating hypoxia. This in turn increases 
the response to therapy, suppresses endothelial-
to-mesenchymal transition and reduces metastatic 
dissemination (19, 20). Blood vessels consist of an inner 
endothelial cell layer surrounded and supported by mural 
cells such as pericytes. Endothelial cells and pericytes are 
normally closely attached and embedded in a mesh of 
extracellular matrix (ECM) called the basement membrane. 
In highly leaky cancer vessels, however, pericytes are not 
well aligned with endothelial cells and indeed migrate 
away from the compromised vessel wall featuring altered 
basement membrane thickness and/or composition 

(21, 22, 23) (Fig. 1). During the vessel normalisation 
process, disorganized and highly proliferating tumour 
endothelial cells become more quiescent and form 

Figure 1
Distinct cellular features of wild type and normalised tumour blood 
vessels. Tumour blood vessels consist of endothelial cells (inner layer) 
and, vascular smooth muscle cells or pericytes (outer layer) which are 
embedded in basement membrane. (A, left) Representative image of a 
tumour blood vessel featuring disrupted endothelial cell lining (CD31 
endothelial marker in red, arrow heads indicated endothelial gaps) and 
pericytes (desmin pericyte marker in green) protruding into tumour 
parenchyma as indicated by arrows. (A, right) Representative image of a 
normalised tumour blood vessel consistent of compact CD31+ 
endothelium and closely aligned desmin+ pericytes. Here, normalisation 
of the entire vascular bed was achieved by changing the maturity of 
pericytes only. Confocal images, magnification, 60×. (B, left) Schematic 
representation of a ‘leaky’ tumour blood vessel featuring endothelial cell 
gaps and irregularly attached pericytes. (B, right) Schematic 
representation of a normalised tumour blood vessel with closely aligned 
endothelial cells and pericytes embedded in basement membrane.
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tighter connections between neighbouring cells 
involving adherens junction molecules such as vascular 
endothelial (VE)-cadherin (24). In addition, endothelial 
cells of a normalised vasculature are supported by higher 
numbers of pericytes or pericytes which are more mature 
and adhesive (13, 20, 22). While most normalising 
drugs target the endothelial compartment, therapeutic 
induction of pericyte quiescence and maturity has similar 
normalising effects on the entire vascular bed (13, 25). 
Mechanistically, many factors which regulate cellular 
differentiation during physiological angiogenesis are also 
important for tumour vessel normalisation, for instance, 
angiopoietins (Ang) and their receptors, notch receptors 
and ligands, and integrins; the role of these molecules 
in vessel normalisation has been extensively reviewed 
(10, 11). In a broader context, rendering endothelial 
cells more quiescent by targeting metabolic or hypoxic 
response pathways matures the vasculature and increases 
tumour perfusion (26, 27). Endothelial cells, in particular 
sprouting vessels, heavily depend on glycolysis for energy 
production. Reducing endothelial cell glycolysis, for 
instance, by deleting the glycolytic activator Pfkfb3 (phos 
phofr uctok inase -2/fr uctos e-2,6 -biph ospha tase 3 enzyme) 
re-establishes endothelial adhesion and overall vessel 
maturation (20). Similarly, gene deficiency of Phd2 (prolyl-
hydroxylase) or its upstream regulator Siah2 (E3 ubiquitin 
ligase) normalizes vessels by regulating hypoxia-inducible 
factor (HIF) availability which increases tumour perfusion 
and pericyte coverage (19, 28). Overall, these functional 
studies demonstrate that the vessel normalisation process 
is intimately linked to cell proliferation, differentiation 
and metabolic function.

Anti-angiogenic strategies and 
vascular normalisation

To date, most mechanistic insights into vessel 
normalisation have been generated following inhibition of 
VEGF signalling pathways by using moderate-to-low doses 
of monoclonal antibodies or small-molecule inhibitors 
targeting tyrosine kinase receptors (29). However, since 
VEGF is an essential survival factor for endothelial cells, 
chronic inhibition even at low dose ultimately leads to 
vessel death or upregulation of other angiogenic factors 
(15). Induction of more durable normalisation effects 
therefore necessitates alternative strategies. Indeed, newer 
drugs which simultaneously block the de-stabilizing 
Tie-2 receptor ligand Ang-2 and VEGF (CrossMab A2V or 
Vanucizumab, Roche) or activate Tie-2 whilst blocking 

Ang-2 using bispecific antibodies potentiate the degree 
of vessel normalisation in preclinical studies (30, 31, 
32) (Table 1). A phase I clinical study of single-agent 
Vanucizumab in solid cancers (33) and a phase II study 
in metastatic colorectal cancer comparing Vanucizumab 
in combination with chemotherapy with Bevacizumab/
chemotherapy have been concluded (NCT02141295). 
Moreover, at a preclinical level, direct targeting of 
VE-Cadherin by using, for instance, the oligonucleotide-
based inhibitor CD5-2 which disrupts the interaction of 
VE-cadherin with its regulator miR-27a affects multiple 
junctional proteins and also activates the stabilizing 
Tie-2-Ang1 pathway, thus re-establishing endothelial 
barrier function (24). Alternatively or in addition to 
endothelial cell targeting, forced pericyte maturation 
by inhibiting PDGF-B signalling using a single-stranded 
nucleic acid oligonucleotide (aptamer AX102) or local 
TGFβ stimulation following pericyte-targeted cytokine 
therapy (LIGHT-VTP, TNFSF14 conjugated to a vascular 
targeting peptide) effects durable vessel normalisation 
and improves tumour perfusion in a variety of preclinical 
models (25, 34). Thus, there is an ever-increasing list of 
reagents with the capacity to normalise tumour vessels. 
Which approaches will find their way into the clinic 
will ultimately depend on delivery efficacy, specificity 
and durability of normalising effects to maximize the 
therapeutic window in combination therapies.

Variations on the theme: tumour vessel 
remodelling beyond vessel normalisation

In addition to vessel normalisation, other vascular 
remodelling concepts have emerged which are 
designed to increase vascular function, in particular, in 
desmoplastic cancers with collapsed blood vessels such as 
pancreatic adenocarcinoma (PDAC) (Fig. 2). For instance, 
vascular promotion therapy aims to increase blood vessel 
density and blood flow while reducing hypoxia. This was 
achieved in preclinical models of lung and pancreatic 
cancers by co-administration of low-dose Cilengitide (an 
αvβ3/αvβ5 integrin-specific RGD-mimetic cyclic peptide) 
and Verapamil (a generic calcium channel blocker) which 
increased delivery and responsiveness to chemotherapy 
(35) (Table 1). Similar in concept, vascular decompression 
therapy eliminates excessive ECM around blood vessels, 
increases blood flow and potentiates chemotherapy. 
For instance, the anti-hypertensive drug Losartan 
(angiotensin II receptor antagonist) reduces stromal 
collagen and hyaluronan production in pancreatic 
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adenocarcinoma by inhibiting TGFβ production in 
cancer-associated fibroblasts (CAFs) (36). Pirfenidone, 
an anti-fibrotic drug approved for idiopathic pulmonary 
fibrosis, is similarly effective in reducing stromal TGFβ 
signalling and increasing perfusion in breast cancer (37).  

The sonic-hedgehog pathway inhibitor Vismodegib (Roche) 
improves blood flow and chemotherapy effectiveness by 
reducing the number of proliferating CAFs and overall 
tumour collagen and hyaluronan content in breast cancer 
(38). Direct targeting of hyaluronic acid with pegylated 
hyaluronidase (PEGPH20, Halozyme Therapeutics) shows 
improvement of vessel patency in preclinical models (39) 
and is currently investigated in hyaluronic acid-high, stage 
IV pancreatic cancer patients in phase III in combination 
with standard of care chemotherapy (NCT02715804). 
Specific targeting of tumour ECM using the TNFα-CSG 
fusion compound attracts immune cells into the tumour 
microenvironment which secrete a cocktail of proteases 
to degrade ECM, enlarge tumour vessels and increase 
perfusion (40).

A different form of tumour vessel remodelling is 
the induction of high endothelial venules (HEVs), a cell 
type which is morphologically and functionally distinct 
from endothelial cells. HEVs are cuboidal in shape and 
decorated with peripheral node addressin (PNAds) which 
mediate L-selectin+ lymphocyte trafficking in peripheral 
lymph nodes and at sites of chronic inflammation. HEVs 
can arise spontaneously in cancer and are associated with 
a better patient prognosis (41). Importantly, HEVs can also 
be induced therapeutically, for instance, by the cytokine 
LIGHT (or TNFS14) and its receptors LTβR/HVEM, a 
process which is greatly facilitated by a normalised tumour 
vasculature (42, 43, 44). Since HEVs are entrance portals 
for lymphocytes, intratumoral HEVs in conjunction with 
normalized blood vessels in cancer are highly significant 
for immunotherapy, in particular, for ‘cold’ tumours 
which lack effector T cell infiltration (45, 46). Overall, 
stromal changes such as vessel normalisation, activation, 
trans-differentiation, de-compression or ultimately death 
demonstrate the plasticity of the vascular bed which 
can be therapeutically exploited (Fig. 2). While changes 
in tumour vasculature are not necessarily mutually 
exclusive and can occur simultaneously or consecutively, 
a combination of drugs may be required to optimize 
intratumoral effects in different tumour environments.

Tumour vessel normalisation 
and immunotherapy

The advent of checkpoint inhibitors and other 
immunotherapeutics has changed the oncology 
landscape profoundly. Impressively, with combined anti-
CTLA4 (Ipilimumab, Bristol-Myers-Squibb) and anti-PD1 
(Nivolumab, Bristol-Myers-Squibb) treatment, 60% of 

Figure 2
Vessel remodelling strategies to increase tumour perfusion and immune 
cell penetration. (Left) Therapeutic approaches which aim to destroy or 
remodel highly angiogenic tumour blood vessels. These approaches are 
not necessarily mutually exclusive; vessel normalisation and 
decompression can result in vessel death, and remaining vessels can be 
normalised during anti-angiogenesis therapy, and induction of high 
endothelial venules (HEVs) is facilitated on a background of normalised 
vessels. (Right) Schematic representation of vascular plasticity following 
therapy and implications for immune cell infiltration. Vascular 
decompression therapy enlarges blood vessels by alleviating pressure 
from surrounding extracellular matrix/basement membrane which 
increases blood flow and potentially immune cell infiltration. Anti-
angiogenesis therapy prunes highly proliferative tumour vessels leading 
to overall blood vessel loss, increase in hypoxia and reduced adaptive 
immune responses. Vessel normalisation therapy induces a 
homogeneous vascular network of more quiescent/mature vessels which 
facilitate infiltration of anti-cancer immune cells. Tertiary lymph node 
structures, including HEVs, can be therapeutically induced on a 
background of normalised tumour vessels which increase influx and 
functionality of adaptive immune cells in the tumour microenvironment.
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metastatic melanoma patients now experience a median 
survival of 2 years rather than 6 months (47). However, 
checkpoint inhibitors are not universally beneficial. To 
increase response rates within and across tumour types, 
an unprecedented number of combination therapies are 
currently being tested. So far, there is strong preclinical 
evidence that stromal remodelling agents enhance 
checkpoint blockade and other immunotherapies (24, 
31, 43, 48, 49, 50). This is not overly surprising, since 
vessel normalisation or decompression reduces hypoxia 
and enhances T cell trafficking (18, 48); a higher density 
of intratumoral effector T cells in turn increases the 
effectiveness of checkpoint blockade (16, 45). In the 
context of anti-VEGF therapy, however, there are other 
reasons why vascular remodelling and checkpoint 
inhibition enhance tumour immunity synergistically. 
Blocking of pro-angiogenic factors such as VEGF changes 
the immune suppressive tumour environment by reducing 
the frequency of alternatively activated macrophages, 
myeloid suppressor cells and regulatory T cells while 
enhancing effector T cell function (51). Moreover, anti-
angiogenic therapy can also restore the expression of 
endothelial adhesion molecules, thereby reversing vessel 
‘anergy’ and enabling more productive lymphocyte-
endothelial interactions (52). Given the profound effects 
of VEGF inhibition in the tumour microenvironment 
beyond vascular remodelling, combinations of VEGF-
targeting agents and checkpoint inhibitors have rapidly 
advanced from phase I to III clinical trials with noteworthy 
early results in renal cell carcinoma and non-small-cell 
lung cancer (53).

Besides inhibition of VEGF signalling, other diverse 
strategies have been developed to specifically eliminate 
physical barriers to effector T cell penetration by targeting 
vascular and ECM features. For instance, CrossMab 
A2V (Vanucizumab) normalises angiogenic vessels and 
also stimulates tumour immunity leading to enhanced 
anti-PD1 effects (31). Phase I clinical trials combining 
Vanucizumab with anti-PD-L1 antibodies (Atezolizumab, 
Roche) are ongoing (NCT01688206). Peptide-mediated 
cytokine delivery specifically to tumour vasculature, for 
instance TNFα (RGR-TNFα, NGR-TNFα), normalises and 
activates endothelial cells, thus increasing adoptive T cell 
and vaccination therapies (54, 55); first in man studies 
(phase I, NGR-hTNF, MolMed) have been conducted 
combining NGR-TNFα and anti-tumour vaccination in 
metastatic melanoma patients (56). Retrospective analysis 
of metastatic urothelial cancer patients treated with anti-
PD-L1 antibodies (Atezolizumab) demonstrated that 
TGFβ plays a central role in T cell exclusion and lack of 

responsiveness (57). Blockade of TGFβ using Galunisertib 
(TGFβ receptor I inhibitor) in murine colorectal cancer 
enabled T cell infiltration and responsiveness to PD-L1 
therapy (58). Furthermore, therapeutic induction of 
HEVs triggers formation of distinct lymphocyte clusters 
or tertiary lymph node structures. These lymph node 
structures provide a critical microenvironment for 
generating anti-tumour immune responses and sensitize 
tumours to checkpoint inhibitor therapy in preclinical 
models of breast and pancreatic cancers and glioblastoma 
(43, 49).

Thus, there is a clear correlation between vessel/
stromal remodelling and T cell infiltration (18). However, 
it remains unresolved whether enhanced lymphocyte 
migration following vessel remodelling requires active 
receptor-ligand interactions or is regulated by passive 
mechanisms such as reduced interstitial pressure and 
hypoxia. It is conceivable though that vascular and ECM 
remodelling strategies will work in synergy to eliminate 
physical barriers in the tumour microenvironment and 
that mechanism-guided combination treatments could 
greatly improve immunotherapy.

Clinical challenges

Normalised tumour vessels have been described in many 
preclinical studies. However, clinical evidence correlating 
vessel remodelling with better survival outcomes is still 
sparse. For instance, treatment with VEGF receptor tyrosine 
kinase inhibitors enhanced survival in those glioblastoma 
patients who also showed increased tumour perfusion as 
measured by MRI (59). Neoadjuvant treatment of PDAC 
consisting of FOLFIRINOX (fluorouracil, leucovorin, 
oxaliplatin and irinotecan) and losartan followed by 
chemoradiotherapy achieved a 61% curative resection 
rate in a phase II trial, possibly linked to improved tumour 
perfusion (36, 60) (Table 1). Limited patient data reflect 
the need for further studies of vessel normalisation as 
an antitumour approach. Challenges include timing and 
dosing of vessel remodelling agents as well as monitoring 
of changes in the tumour microenvironment. Moreover, 
heterogeneity in angiogenic growth factor expression 
levels and the co-existence of blood vessels with different 
maturation states within the same tumour lesion impact 
on therapeutic responses (61). Longitudinal monitoring 
of tumour vessel status, perfusion, and oxygenation 
will be required to accurately assess the clinical benefits 
in combination therapies. Circulating biomarkers, for 
instance, soluble VEGFR1, Ang2, collagen IV and apelin 
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have been validated in some studies but so far no single 
predictive marker has been identified, even in the context 
of anti-VEGF therapy (11, 62). Imaging modalities such 
as dynamic MRI, blood oxygenation level-dependent 
(BOLD) MRI or PET are useful technologies to indirectly 
monitor vascular function and oxygen status but difficult 
to implement into clinical routine (62). Indeed, current 
insufficiencies in routine monitoring provide a strong 
incentive to develop alternative, more robust and durable 
normalisation strategies to increase the therapeutic 
window. Moreover, the vast majority of vessel remodelling 
agents to date are administered systemically. Systemic 
delivery of VEGF inhibitors for instance can cause off-
target effects in healthy tissue, and cessation of anti-VEGF 
therapy has even been reported to trigger liver metastases 
(63). Thus, more tailored tumour-targeting strategies 
may be required which utilize antibodies or peptides to 
enable deeper and more homogeneous access into tumour 
parenchyma, as well as simultaneous or sequential 
targeting of multiple stromal components (64).

Conclusions

Fifty years after Judah Folkman demonstrated the critical 
role of tumour angiogenesis, blood vessels remain an 
attractive target in the tumour microenvironment. The 
focus, however, has shifted from vessel destruction to 
remodelling in response to evidence demonstrating 
that vessel normalisation and tumour oxygenation 
are intertwined and crucial for combination therapies. 
To date, clinical insights into anti-angiogenesis/vessel 
normalisation therapies are still mainly based on VEGF/
VEGFR inhibition. Yet, even after a decade in the clinic, 
the mode of action, selection of responsive patient 
populations, treatment timeline and mechanisms of 
drug resistance remain largely unresolved. However, 
more recently, the immuno-modulatory effects of anti-
VEGF therapy have highlighted the intimate relationship 
between tumour blood vessels and anti-cancer immunity 
leading to ongoing clinical trials combining VEGF and 
checkpoint blockade (53). Given the heterogeneity of 
cancer environments, including highly desmoplastic 
stroma and lack of immune cell infiltration, new approaches 
which remove intratumoral barriers and increase T cell 
trafficking into ‘cold’ tumours are particularly attractive. 
In the future, vessel and stromal remodelling with more 
specific and sustained intratumoral effects are likely to 
become an essential part of combination therapies, in 
particular, immunotherapies. Monitoring the effects 

of multiple therapeutic interventions will be crucial for 
clinical translation.
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